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Abstract 

Small Modular Reactors (SMRs) are new concepts of Nuclear Power Plants (NPPs) whose safety 

assessment typically cannot rely on design-specific operational experience and field data. Assessing 

their safety requires a careful combination of engineering expertise, and of physical (laboratory) and 

virtual (simulation) experiments. Modeling the system response accurately, in consideration of the 

engineering design and physical aspects of SMRs requires computationally burdensome computer 

models. Although interpretable, it is difficult to consistently identify the most important inputs and 

provide safety margins, especially for high-dimensional correlated inputs and outputs. To address 

these issues, we propose a Global Sensitivity Analysis (GSA) framework that combines recently 

introduced global sensitivity indices based on Optimal Transport (OT) with a graphical visualization 

tool based on CUmulative SUm of NOrmalized Reordered Output (CUSUNORO). The OT-based 

indices allow us to identify the most important inputs, whereas the graphical representation of the 

latter enables us to identify the safety critical ranges of these inputs. The proposed framework is 

applied to a demonstrative case study concerning Small Modular Dual Fluid Reactors (SMDFRs), a 

new SMR concept. The numerical experiments show how the approach can help interpreting the 

simulation results and suggesting design improvements to keep operational settings away from the 

Critical failure Region (CR). 

Keywords: Small Modular Reactor (SMR), Safety Design, Critical failure Region (CR), Global 

Sensitivity Analysis (GSA), Optimal Transport (OT), CUmulative SUm of NOrmalized Reordered 

Output (CUSUNORO). 

Acronyms 



ACS Auxiliary Cooling System 

AFS Auxiliary Feedwater System 

AGAN As Good As New 

AGAO As Good As Old 

CDF Cumulative Distribution Function 

CP Coolant Pipe 

CR Critical failure Region 

CUSUNORO CUmulative SUm of NOrmalized Reordered Output 

EDG Emergency Diesel Generator 

GSA Global Sensitivity Analysis 

IUQ Inverse Uncertainty Quantification 

LBLOCA Large Break Loss Of Coolant Accident 

LOCA Loss Of Coolant Accident 

LOP Loss Of Power 

LWR Light Water Reactor 

MFP Melting Fuel Plug 

MSR Molten Salt Reactor 

MU Multi-Unit 

NPP Nuclear Power Plant 

NRC Nuclear Regulatory Commission 

OT Optimal Transport 

PGA Peak Ground Acceleration 

PoF Physics of Failure 

PPU  Pyrochemical Processing Unit 

PSA Probabilistic Safety Assessment 

PSM Probabilistic Safety Margin 

SMDFR Small Modular Dual Fluid Reactor 

SMR Small Modular Reactor 

 

  



Symbols 

𝑁 Number of nuclear reactor units 

𝑇𝑤 Peak cladding temperature 

𝑛 Index of reactor unit 

𝑿 Model inputs 

𝐼 Number of model inputs 

𝒀 Model outputs 

𝑂 Number of model outputs 

ℙ𝑿 Probability distribution of input values 

ℙ𝒀 Probability distribution of output values 

𝒚𝑡ℎ𝑟𝑒𝑠 Output threshold values 

𝒙𝑐𝑟𝑖𝑡 Input critical values 

𝜉(𝒀, 𝑋𝑖) Global sensitivity measure of 𝑋𝑖 with respect to 𝒀 

𝜁(ℙ𝒀, ℙ𝒀|𝑋𝑖) Distance between ℙ𝒀 and ℙ𝒀|𝑋𝑖 

𝑓𝑖(𝑋𝑖) Probability density function of 𝑋𝑖 

𝑖(𝒀, 𝑋𝑖) OT-based sensitivity index 

𝜋(𝒚, 𝒚′) Transport plan from ℙ𝒀 to ℙ𝒀|𝑋𝑖 

𝑘(𝒚, 𝒚′) Cost for moving a value that follows ℙ𝒀 to a value that follows ℙ𝒀|𝑋𝑖 

𝐾(𝜋) Integral cost given plan 𝜋(𝒚, 𝒚′) 

𝑑𝑝(𝒚, 𝒚′) Euclidean distance between realizations of ℙ𝒀 and ℙ𝒀|𝑋𝑖 

𝑊𝑝
𝑝(𝜈, 𝜈𝑖) p-th power of the Wasserstein distance of order p 

𝑖𝑊𝐵(𝒀, 𝑋𝑖) Wasserstein-Bures metric 

Γ Residual term of OT-based sensitivity index 

ℙ𝒀|𝑋𝑖 Probability distribution of output values conditioned on 𝑥𝑖 

𝔼[∙] Expected value operator 

𝕍[∙] Variance operator 

𝐴𝑑𝑣(𝒀, 𝑋𝑖) Advective component of 𝑖𝑊𝐵(𝒀, 𝑋𝑖) 

𝐷𝑖𝑓𝑓(𝒀, 𝑋𝑖) Diffusive component of 𝑖𝑊𝐵(𝒀, 𝑋𝑖) 

Σ𝒀 Second moment of the output distribution 

Σ𝒀|𝑋𝑖 Second moment of the output distribution conditioned on 𝑥𝑖 

𝐶𝑏𝑓 Double loop Monte Carlo computational cost 

𝑁𝑜𝑢𝑡 Sample size of outer Monte Carlo loop 



𝑁𝑖𝑛 Sample size of inner Monte Carlo loop 

𝐶𝑠𝑖𝑚 Given-data approach computational cost 

𝑁𝑠𝑖𝑚 Number of simulations of the available dataset 

𝜋 Permutation 

𝑧𝑜(𝑖) CUSUNORO for input 𝑥𝑖 

𝑦𝑜̅̅̅ Expected value of the o-th output  

𝑦𝛾,𝑜 𝛾-percentile of the o-th output 

𝑃𝑆𝑀𝑜 PSM of the o-th output 

𝑦𝑛𝑜𝑚,𝑜 Nominal value of the o-th output 

𝑿∗ Inputs most impacting the SMR safety 

𝑇𝑤,𝑛𝑜𝑚 Nominal peak cladding temperature 

𝑚̇𝑙𝑒𝑎𝑘 LOCA leak mass flow rate 

𝑡𝑟 Safety feature response time 

Δ𝑡𝑚 Time interval between two maintenance interventions 

𝑡𝐴𝐶𝑆
𝑚𝑒𝑎𝑛 Mean value of ACS failure time 

𝑡𝐸𝐷𝐺
𝑚𝑒𝑎𝑛 Mean value of EDG failure time 

𝑈(∙) Uniform probability distribution 

𝑁(∙) Normal probability distribution 

𝑑𝑖𝑛 Initial depth of corrosion defect 

𝑡𝑓 Safety feature failure time 

𝑇𝑠 Simulation time 

𝑇𝑤,𝑓𝑎𝑖𝑙 Threshold cladding temperature 

𝐸 Young modulus 

𝛾 Coefficient of thermal expansion 

𝜎 Tensile strength 

𝑇𝑤,𝑚𝑎𝑥 Maximum value of 𝑇𝑤 during the accidental scenario 

𝑁𝑠𝑖𝑚
𝑡𝑜𝑡𝑎𝑙 Total number of simulations  

𝑃𝐺𝐴𝑠𝑖𝑛𝑔𝑙𝑒
𝑚𝑒𝑑𝑖𝑎𝑛 Median PGA value leading to a single LOCA 

𝑃𝐺𝐴𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒
𝑚𝑒𝑑𝑖𝑎𝑛  Median PGA value leading to multiple LOCAs 

𝑁𝑠𝑖𝑚,2 Number of simulated accidental scenarios with imperfect 

maintenance 

𝜏𝐸
𝑞
 Effective age after the q-th maintenance intervention 

𝛼 Effectiveness of maintenance 



𝑡𝐴𝐶𝑆,𝑐𝑟𝑖𝑡
𝑓

 Critical value of ACS failure time 

𝑃𝐺𝐴𝑐𝑟𝑖𝑡 Critical value of PGA 

𝜇 Median seismic capacity 

𝛽 Standard deviation of logarithmic median seismic capacity 

𝜙(∙) Standard normal cumulative distribution function 

𝐷 Damping coefficient 

𝑃𝐺𝐴𝐵𝐷𝐵𝐸 PGA corresponding to a beyond design basis earthquake 

𝑃𝐹,𝑠 Failure probability of the s-th safety feature 

𝑃𝐹,𝑠
∗  Failure probability of the s-th safety feature considering the design 

improvements 

𝑁𝑠𝑖𝑚
∗  Number of simulated accidental scenarios with the design 

improvements 

𝐹𝑃,𝑛 Failure probability of the n-th reactor unit 



1. Introduction  

Small Modular Reactors (SMRs) promise lower construction and operational costs, enhanced safety 

features with respect to traditional large-scale Nuclear Power Plants (NPPs) [1], and flexible power 

capacity through modular Multi-Unit (MU) configurations [2]. To achieve safety enhancements, the 

design of SMRs must prioritize safety since the very early stages, implementing comprehensive 

defense-in-depth strategies for preventing severe accidents and mitigating their consequences [3]. In 

this regard, a rigorous assessment of the Critical failure Region (CR), i.e., the boundary of the reactor 

parameter space beyond which failure may lead to unacceptable consequences [4], is needed to risk-

inform the effective deployment of defense-in-depth principles. 

Because of the lack of operational experience and data, the risk-informed design process requires 

relying on complex, high-fidelity simulators to replicate as realistically as possible the physics and 

thermodynamics of SMRs, and obtain reliable indications of their behavior during accidents. 

However, the lack of data implies uncertainty in the input parameters of the simulation codes, which 

reverberates on their output results. One, then, needs to perform thorough uncertainty quantification 

to characterize the variability in the safety-related quantities of interest by propagating input 

uncertainties through the simulators ([5], [6]). At the same time, it is important, especially for SMRs, 

to identify key inputs and ensure adequate safety margins, given the complexity of the physical 

models involved ([7], [8]). In this respect, the literature has demonstrated that integrating uncertainty 

quantification with sensitivity analysis can, in fact, meet these needs [9]. 

Sensitivity analysis methods are typically classified into local and global. Local sensitivity analysis 

evaluates the impact of variations in one or more inputs at a specific location in the input parameter 

space. Local methods comprise differentiation-based methods or methods based on finite differences. 

An early discussion in the nuclear industry is offered by ([10], [11]). As seen in the literature, local 

techniques are not designed to capture uncertainty. Also, they typically imply the variation of one-

input-at-a-time, thus failing in capturing or respecting input dependences. This makes them possibly 

less suitable for inferring the importance of inputs in complex and nonlinear models, which, instead, 

are common in SMR simulations [12]. Conversely, GSA methods are designed to allow the input 

parameters to vary across their full ranges and account for interactions and nonlinearities [12]. GSA 

has already been applied across various disciplines in the nuclear sector and as well as in climate 

change [13], socio-cultural [14], thermal [15] and mechanical [16] models. In the nuclear industry, 

applications involve identifying surrogate model parameters [17], tailoring Inverse Uncertainty 

Quantification (IUQ) processes [18], analyzing source term uncertainties in accidental scenarios [19], 

and evaluating the time-dependent effects of uncertain parameters on reactor cladding temperatures 



during Large Break Loss Of Coolant Accidents (LBLOCAs) [20]. Additionally, sensitivity analysis, 

such as perturbation-theory-based approaches [21], is integral to the Best Estimate Plus Uncertainty 

method, widely adopted for NPPs safety assessments [22].  

Applying GSA methods to SMR simulators introduces new challenges and opens new research 

questions. First, the analysis is challenging, because of the large computational burden of the 

simulation codes, which calls for an extensive uncertainty quantification that allows modelers to 

inspect the model behavior thoroughly, letting the inputs vary simultaneously in the parameter space. 

This is necessary to properly characterize engineering uncertainty in the safety-related quantities of 

interest ([23], [24]). Second, SMR models typically output a multiplicity of quantities of interest, 

while most GSA methods in use are constructed for univariate responses [25]. Third, inputs might be 

correlated, which is also a challenge for current GSA methods. 

To solve these issues, we propose a novel framework that combines input prioritization through 

Optimal Transport (OT)-based sensitivity indices [25], and the assessment of marginal behavior 

through the CUmulative SUm of NOrmalized Reordered Output (CUSUNORO) [26]. OT-based 

global sensitivity indices are defined to yield the importance of inputs for univariate or multivariate 

outputs and are well posed in the presence of correlated inputs. Through CUSUNORO curves, one 

can perform a critical parameter segmentation, i.e., identify the critical input values, that, if exceeded, 

may cause the system to quickly approach the CR. The novelty of the approach lies in the integrated 

use of a suite of SA approaches, i.e., OT-based sensitivity indices and CUSUNORO, to enable 

decision support regarding the design of new concepts of NPPs, such as SMRs. 

Regarding the computational burden, both OT and CUSUNORO are calculated with a given-data 

approach using a single-loop Monte Carlo estimation, i.e., directly from the simulations used for 

uncertainty quantification [27]. If 𝑁𝑠𝑖𝑚 denotes the number of simulations used for uncertainty 

quantification, then the computational cost of the method is 𝑁𝑠𝑖𝑚, making it independent of the input 

dimensionality. Conceptually, this is the minimal cost for GSA. Thus, the method post-processes the 

input-output dataset produced by a Monte Carlo uncertainty analysis. Consequently, as it happens in 

any GSA investigation, the quality of the results is associated with the uncertainty quantification 

thoroughness, as an insufficient exploration of the input-output space might affect the reliability of 

the analysis. 

We present the implementation of the proposed method first through a simple analytical example. 

We, then, tackle a demonstrative test case, based on a MU-SMR installation composed by 𝑁 = 4 

units of Small Modular Dual Fluid Reactor (SMDFR), a fast reactor design with liquid lead flowing 

through the reactor core as coolant and molten salt as fuel [28]. The high operating temperatures that 



can be reached ensure a high thermal efficiency and make the SMDFR ideal for clean hydrogen 

production [29]. The overall design has four shared Auxiliary Cooling Systems (ACSs) to provide 

additional coolant mass flow rate to the SMDFR coolant circuit in case of Loss Of Coolant Accident 

(LOCA), and two shared Emergency Diesel Generators (EDGs) to operate in case of Loss Of Power 

(LOP). A simulation model is used to assess the NPP response to accidental scenarios initiated by an 

earthquake [30]. The model accounts for both the inter-unit dependencies among the different units 

and for the age-dependent fragility of the safety features (ACSs, EDGs and reactors Coolant Pipes 

(CPs)). The peak cladding temperature (𝑇𝑤) is the safety-related quantity of interest [30]. Parameter 

prioritization by OT lists the earthquake Peak Ground Acceleration (PGA), the corrosion of CP and 

the failure time of ACS as the most important inputs. The results of the OT-based sensitivity provide 

effective indications for design improvement, e.g., improving the seismic reliability of the NPP and 

the resistance to corrosion of CP. The CUSUNORO analysis provides, in addition, insights on the 

failure-critical values of these parameters, which can be used to ensure that the SMDFR operates far 

from the CR. 

The remainder of the paper is organized as follows: Section 2 describes the sensitivity analysis 

methods used in the work; Section 3 illustrates the proposed GSA framework; Section 4 presents the 

case study and the results of the application of the proposed framework; Section 5 offers conclusions. 

2. The sensitivity analysis methods 

Out approach is based on the combination of global sensitivity indices based on the theory of optimal 

transport and CUSUNORO curves. Section 2.1 presents the general GSA setup. Sections 2.2 and 2.3 

present OT-based global sensitivity measures and the CUSUNORO method, respectively. 

2.1. Setup 

In the general GSA setup, one considers a simulation model that processes a set of inputs and 

calculates a set of quantities of interest. We denote the vector of inputs and outputs respectively by 

𝑿 = [𝑋1, 𝑋2, … , 𝑋𝐼] ∈ 𝐷𝑿 ⊂ ℝ
𝐼, and 𝒀 = [𝑌1, 𝑌2, … , 𝑌𝑂] ∈ 𝐷𝒀 ⊂ ℝ

𝑂, where 𝐼 and 𝑂 are the number 

of inputs and outputs. We also let 𝒀 = 𝑚(𝑿) denote the input-output mapping, with 𝑚:𝐷𝑿 →𝐷𝒀 . 

Under uncertainty, the inputs and outputs are random variables on measurable space (Ω, 𝐵(Ω), ℙ), 

with joint probability law ℙ𝒀,𝑿 and marginal distributions ℙ𝑿 and ℙ𝒀, respectively. We also assume 

that the conditional laws ℙ𝒀|𝑋𝑖 are well posed for all 𝑖 = 1,2,… , 𝐼. Throughout the paper, we will 

assume that the model output has finite second order moment. This implies that the variance of 𝑌𝑜 is 

finite, an assumption that is verified by physical systems. 



Under uncertainty, knowledge about the key-factors that drive the model response is gained through 

GSA methods. These methods have a long tradition and several of them have been developed to 

address problems originated by nuclear engineering applications. We recall the work of [31], that 

describes the risk and uncertainty analysis for dose exposure from radioactive waste disposals, of 

[32], that uses importance measures for the performance assessment of a nuclear waste repository and 

of [33], where GSA is applied to fuel performance codes. 

Several of the GSA methods in use can be encompassed in a common rationale, where one writes the 

global sensitivity measure of 𝑋𝑖 with respect to 𝒀 as [34]: 

𝜉(𝒀, 𝑋𝑖) = 𝔼[𝜁(ℙ𝒀, ℙ𝒀|𝑋𝑖)], (1) 

where 𝜁(ℙ𝒀, ℙ𝒀|𝑋𝑖) is a distance (or separation) between the probability distribution of 𝒀 and its 

conditional probability distribution after learning 𝑋𝑖 and the expectation is carried over the 

distribution of 𝑋𝑖. To illustrate, if 𝑋𝑖 is an absolutely continuous random variable, denoting its 

probability density function with 𝑓𝑖(𝑋𝑖), then Eq. (1) is equivalent to: 

𝜉(𝒀, 𝑋𝑖) = ∫ 𝜁(ℙ𝒀, ℙ𝒀|𝑋𝑖)
∞

−∞

𝑓𝑖(𝑋𝑖)𝑑𝑋𝑖 (2) 

Variance-based sensitivity measures are encompassed by the common rationale. To illustrate, if the 

output is univariate and we select as a separation measurement the quantity 

𝜁𝑉𝐵(ℙ𝑌, ℙ𝑌|𝑋𝑖) =
(𝔼[𝑌|𝑋𝑖] − 𝔼[𝑌])

2

𝕍[𝑌]
 (3) 

we obtain 𝜉𝑉𝐵(𝑌, 𝑋𝑖), given by: 

𝜉𝑉𝐵(𝑌, 𝑋𝑖) =
𝕍[𝑌] − 𝔼𝑋𝑖 [𝕍𝑋𝑗≠𝑖[𝑌|𝑋𝑖]]

𝕍[𝑌]
= 𝑆(𝑌, 𝑋𝑖) 

(4) 

The variance-based index 𝜉𝑉𝐵(𝑌, 𝑋𝑖) coincides with the first-order variance-based indices, also 

known as Sobol indices. When inputs are dependent, Eq. (4) is equivalent to Pearson correlation ratio 

and coincides with the global sensitivity measure proposed by [35] for the probabilistic risk 

assessment of NPPs. 

However, these methods have been developed mainly for univariate quantities of interest and are 

challenged by the multivariate nature of the simulation output, which, instead, characterizes the 

simulations of SMRs, especially when they are time or space dependent. To solve this issue, we rely 

on a global sensitivity measure based on the theory of optimal transport that we discuss in Section 

2.2. 



2.2. Optimal Transport-based GSA 

The global sensitivity measure we use in this work has been defined in [25], to which we refer for a 

complete overview. To make the present paper self-contained, we offer a concise overview. The 

theory of optimal transport has been widely studied across mathematics, statistics and machine 

learning [36]. A detailed theoretical description of can be found in ([37], [38]). Of relevance to us is 

the use of optimal transport to measure the distance between probability distributions.  

In our context, we are considering two distributions of 𝒀, its marginal distribution ℙ𝒀 and conditional 

distribution ℙ𝒀|𝑋𝑖. For notation simplicity, let us denote them with 𝜈 = ℙ𝒀  and 𝜈𝑖 = ℙ𝒀|𝑋𝑖, 

respectively. In an optimal transport setting, we aim to find a transport plan from 𝜈 to 𝜈𝑖 that 

minimized a given cost function. We denote a generic transport plan with 𝜋(𝒚, 𝒚′), where 𝒚 and 𝒚′ 

are realizations, respectively, of 𝒀 and 𝒀′. Note that 𝜋(𝒚, 𝒚′) is a function mapping 

𝑘: 𝐷𝒀 × 𝐷𝒀→[0, +∞] that gives us the cost 𝑘(𝒚, 𝒚′) we incur for moving a value of 𝒚 that follows 

the distribution 𝜈 to a value 𝒚′ that follows the conditional distribution 𝜈𝑖. 

The choice of the cost function can be quite general. As in [25], a typical choice is for 𝑘(𝒚, 𝒚′) to be 

lower semi-continuous. Then, the integral cost given plan 𝜋(𝒚, 𝒚′) is: 

𝐾(𝜋) =∬ 𝑘(𝒚, 𝒚′) 𝑑𝜋(𝒚, 𝒚′)
 

𝑌×𝑌

 (5) 

The Kantorovich OT-problem is then to find the plan 𝜋(𝒚, 𝒚′) that minimizes 𝐾(𝜋). There is a high 

flexibility in choosing the cost function. A typical choice is the Euclidean distance, so that 𝑘(𝒚, 𝒚′) =

𝑑𝑝(𝒚, 𝒚′) = ‖𝒚 − 𝒚′‖𝑑. In this case, the OT-problem becomes to determine 

𝑊𝑝
𝑝(𝜈, 𝜈𝑖) = inf

π∈Π(ν,ν𝑖)
∫𝑑𝑝(𝒚, 𝒚′)  𝑑π(𝒚, 𝒚′) (6) 

where 𝑊𝑝
𝑝(𝜈, 𝜈𝑖) is the p-th power of the so-called Wasserstein distance of order p between 𝜈 and 𝜈𝑖. 

When 𝑝 = 2, we find the 2-squared Wasserstein distance 

𝑊2
2(𝜈, 𝜈𝑖) = inf

𝜋∈Π(𝜈,𝜈𝑖)
∫‖𝒚 − 𝒚′‖2𝑑𝜋(𝒚, 𝒚′) (7) 

which has been widely studied and applied in the literature. 𝑊2
2(𝜈, 𝜈𝑖) admits a decomposition into 

three distinct components, which turns out to be convenient for GSA ([39], [40]). We have: 

𝑊2
2(𝜈, 𝜈𝑖) = ‖𝔼[𝒀] − 𝔼[𝒀|𝑋𝑖]‖

2 + 𝑇𝑟(Σ𝒀 + Σ𝒀|𝑋𝑖 − 2Σ𝒀
1/2
Σ𝒀|𝑋𝑖Σ𝒀

1/2
) + Γ(𝜈, 𝜈𝑖) (8) 

where: 



• 𝔼[𝒀] and 𝔼[𝒀|𝑋𝑖] are, respectively, the expected value of 𝒀 and the conditional expected value 

of 𝒀 given 𝑋𝑖. The term ‖𝔼[𝒀] − 𝔼[𝒀|𝑋𝑖]‖
2 quantifies the contribution due to the difference 

in the marginal and conditional expected values of 𝒀. 

• Σ𝒀 and Σ𝒀|𝑋𝑖 are the corresponding variance-covariance matrices, and the matrix trace term 

(i.e., 𝑇𝑟(Σ𝒀 + Σ𝒀|𝑋𝑖 − 2Σ𝒀
1/2
Σ𝒀|𝑋𝑖Σ𝒀

1/2
)) quantifies the difference in the second-order 

(covariance) structure.  

• The term Γ(𝜈, 𝜈𝑖) quantifies the difference in the two distributions due to the effect of higher-

order moments. Γ(𝜈, 𝜈𝑖) becomes null if 𝜈 and 𝜈𝑖 are two distributions belonging to the 

elliptical distribution family with the same characteristic generator [40]. This is the case when 

both the marginal and the conditional distribution of 𝒀 are Gaussian. 

The work of [25] defines the following global sensitivity measure based on the square 2-Wasserstain 

distance: 

𝑖(𝒀, 𝑋𝑖) =
𝔼[𝑊2

2(ℙ𝒀, ℙ𝒀|𝑋𝑖)]

2𝕍[𝒀]
, (9) 

where 𝕍[𝒀] is the variance of 𝒀, which, in a multivariate context, is the sum of the univariate variances 

of the outputs, that is, 𝕍[𝒀] = ∑ 𝕍[𝑌𝑜]
𝑂
𝑜=1 . The global sensitivity index 𝑖(𝒀, 𝑋𝑖) possesses relevant 

properties [25], whose importance is highlighted in recent statistical literature [41]: 

• zero-independence: 𝑖(𝒀, 𝑋𝑖) = 0 if and only if 𝒀 and 𝑋𝑖 are statistically independent, ensuring 

that no important input is wrongly neglected in the analysis; 

• max-functionality: 𝑖(𝒀, 𝑋𝑖) = 1 if and only if 𝒀 is functionally dependent on 𝑋𝑖; 

• monotonicity: 𝑖(𝒀, 𝑋𝑖) decreases if less refined information on 𝑋𝑖 is received. 

Zero-independence reassures us that if 𝑖(𝒀, 𝑋𝑖) is null then 𝒀 and 𝑋𝑖 are statistically independent, that 

is, when fixing 𝑋𝑖 does not change the distribution of 𝒀. Variance-based GSA methods do not satisfy 

this condition, because it may occur that 𝒀 and 𝑋𝑖 are statistically dependent even if the value of the 

variance-based sensitivity measure is zero (see the notable example of the Ishigami function [42]). 

The max-functionality property looks at the maximum value of 𝒀 and guarantees that 𝑖(𝒀, 𝑋𝑖) = 1 if 

and only if 𝒀 is functionally dependent only on 𝑋𝑖 (i.e., 𝒀 is completely determined by fixing 𝑋𝑖). 

This gives the following interpretation of the values of 𝑖(𝒀, 𝑋𝑖): 0 ≤ 𝑖(𝒀, 𝑋𝑖) ≤ 1, with zero achieved 

when 𝒀 is not (statistically) affected by 𝑋𝑖 and it is maximal if 𝑋𝑖 determines 𝒀 completely. This 

allows a straightforward interpretation of the value of 𝑖(𝒀, 𝑋𝑖) and a transparent way to rank the 

inputs. Also, 𝑖(𝒀, 𝑋𝑖) is well-defined and interpretable even when the inputs are correlated. This is 



because it does not rely on decomposing the output variance into contributions of independent inputs, 

but rather it quantifies how much the distribution of 𝒀 changes given 𝑋𝑖. 

Formally, the index in Eq. (9) is a moment-independent sensitivity measure, because it measures the 

separation between two distributions without any reference to its moments. However, the 

decomposition in Eq. (8) allows us to connect the moment independent index to contributions related 

to the expected impact of fixing 𝑋𝑖 on the variance and higher order moments of 𝒀. Substituting the 

decomposition in Eq. (8) into Eq. (9) yields: 

𝑖(𝒀, 𝑋𝑖) = 𝑖
𝑉𝐵(𝒀, 𝑋𝑖) + 𝑖

Σ (𝒀, 𝑋𝑖) +
𝔼[Γ[ℙ𝒀,ℙ𝒀|𝑋𝑖]]

2𝕍[𝒀]
,  (10) 

where 

𝑖𝑉𝐵(𝒀, 𝑋𝑖) =
𝔼[‖𝔼[𝒀] − 𝔼[𝒀|𝑋𝑖]‖

2]

2𝕍[𝒀]
=
∑ 𝑆(𝑌𝑜, 𝑋𝑖)
𝑂
𝑜=1

2
, (11) 

and 

𝑖Σ (𝒀, 𝑋𝑖) =

𝔼 [𝑇𝑟 ((Σ𝒀 + Σ𝒀|𝑋𝑖 − 2(Σ𝒀|𝑋𝑖

1
2 Σ𝒀Σ𝒀|𝑋𝑖

1
2 )

1
2

))]

2𝕍[𝒀]
 

(12) 

The term 𝑖𝑉𝐵(𝒀, 𝑋𝑖) is the sum of the variance-based indices of 𝑋𝑖 to all outputs: thus, it accounts for 

the impact of 𝑋𝑖 on the model outputs variance. The term 𝑖Σ (𝒀, 𝑋𝑖) is the expected impact on the 

variance-covariance matrix of the output 𝒀, and the last term in Eq. (10) is the residual error term that 

contains the contribution to higher-order moments. Thus, 𝑖(𝒀, 𝑋𝑖) subsumes variance-based 

sensitivity indices. For this reason, summing 𝑖(𝒀, 𝑋𝑖) does not yield a value of 1, because also higher 

order contributions are included in its value. 

A detailed description of the available given-data procedures to estimate 𝑖(𝒀, 𝑋𝑖) can be found in [25]. 

We note here that the suggested approach is based on a given-data strategy that allows one to obtain 

the estimates directly from the dataset provided for a Monte Carlo uncertainty quantification, 

performing the following steps, also shown in the flowchart of Fig. 1, for each input 𝑋𝑖: 

1. sort the values of 𝑋𝑖 in ascending order; 

2. divide the sorted values of 𝑋𝑖 into ℎ = 1,2,… , 𝐻 intervals; 

3. for each h-th interval, compute the optimal transport problem between the original data 𝒀 and 

the subset data 𝒀ℎ corresponding to the selected interval, as follows: 



a. if 𝒀 is univariate, the solution is exact and computationally efficient. The 

corresponding algorithm is based on sorting ([25], [43]); 

b. if 𝒀 is multivariate, the OT problem can be solved exactly using the simplex algorithm 

or any of its specialized variants ([44], [45]); 

c. if 𝒀 is multivariate and the number of available simulations is large, the OT problem 

can be solved approximately with the Sinkhorn algorithm, which is used in this paper. 

Such algorithm notably reduces the computational burden and makes the estimation 

feasible also for complex simulators [46]; 

 

Fig. 1. Flowchart of the given-data procedure to estimate 𝑖(𝒀, 𝑋𝑖).  

2.3. CUSUNORO-based graphical visualization tool 

Let 𝜋 denote a permutation that sorts the observed values of the i-th input 𝑋𝑖 in ascending order, so 

that 𝑥𝑖,𝜋(𝑘) ≤ 𝑥𝑖,𝜋(𝑘+1), for all 𝑘 = 1,2, … , 𝐾 − 1, where 𝐾 is the number of observations for 𝑋𝑖. The 

CUSUNORO index, which has been introduced in [26], with respect to the i-th input and the o-th 

output is defined as follows: 

𝑧𝑜(𝑖) =
1

√𝐼 ∙ ∑ (𝑦𝑜,𝑘 − 𝑦𝑜̅̅̅)
2𝐾

𝑘=1

∙∑(𝑦𝑜̅̅̅ − 𝑦𝑜,𝜋(𝑙))

𝑘

𝑙=1

 (13) 



where 𝑦𝑜̅̅̅ is the expected value of the o-th output. Sorting the output values 𝑦𝑜,𝜋(𝑙) according to the 

sorted inputs and computing the cumulative sum of deviations from 𝑦𝑜̅̅̅, 𝑧𝑜(𝑖) provides insights on the 

trend of the o-th output values due to with variations in the i-th input. A large cumulative sum 

∑ (𝑦𝑜̅̅̅ − 𝑦𝑜,𝜋(𝑙))
𝑘
𝑙=1  indicates a strong influence of the i-th input on the o-th output, while fluctuations 

around zero mean weak or no influence. The resulting CUSUNORO plot, which plots 𝑧𝑜(𝑖) against 

the reordered input 𝑥𝑖,𝜋(𝑘), helps to catch the trend visually. The following insights can also be drawn 

from a generic i-th CUSUNORO curve: 

• sign of input-output dependency: if 𝑧𝑜(𝑖) > 0, 𝑌𝑜 is directly proportional to 𝑋𝑖, if 𝑧𝑜(𝑖) < 0, 

𝑌𝑜 is inversely proportional to 𝑋𝑖, and if 𝑧𝑜(𝑖) crosses the horizontal axis multiple times, the 

dependency is non-monotonic; 

• type of monotonic input-output dependency: the dependency is linear if the maximum 

absolute value of 𝑧𝑜(𝑖) occurs at the median of 𝑋𝑖, and nonlinear the further the maximum 

value from the median of 𝑋𝑖. 

In case of monotonic nonlinear dependencies, the CUSUNORO plot can provide useful insights on 

the regions of large output sensitivity to inputs variations by highlighting, for each i-th input and o-

th output, the corresponding critical input value 𝑥𝑖,𝑐𝑟𝑖𝑡
𝑜 , i.e., the value providing the maximum absolute 

value of 𝑧𝑜(𝑖), above (or below) which 𝑌𝑜 shows a highly nonlinear growth (decrease), which may 

cause the system to quickly approach the CR. We use Probabilistic Safety Margins (PSMs) to 

evaluate, in probabilistic terms, to which extent the outputs 𝒀 are below the thresholds 𝒚𝑡ℎ𝑟𝑒𝑠 (i.e., 

how far the system is from the CR) [47]; this is done by estimating, for each o-th output, the 𝛾-

percentile of its distribution (i.e., 𝑦𝛾,𝑜) and calculating the PSM as [48]: 

𝑃𝑆𝑀𝑜 =

{
 

 
𝑦𝑡ℎ𝑟𝑒𝑠,𝑜 − 𝑦𝛾,𝑜
𝑦𝑡ℎ𝑟𝑒𝑠,𝑜 − 𝑦𝑛𝑜𝑚,𝑜

   𝑖𝑓 𝑦𝛾,𝑜 ≤ 𝑦𝑡ℎ𝑟𝑒𝑠,𝑜

  0                              𝑖𝑓 𝑦𝛾,𝑜 > 𝑦𝑡ℎ𝑟𝑒𝑠,𝑜
1                              𝑖𝑓 𝑦𝛾,𝑜 < 𝑦𝑛𝑜𝑚,𝑜

 (14) 

where 𝑦𝑛𝑜𝑚,𝑜 is the nominal value of 𝑌𝑜. The design improvements should, then, aim at maximizing 

the 𝑃𝑆𝑀𝑜, ensuring that 𝑋𝑖 remains below (or above) 𝑥𝑖,𝑐𝑟𝑖𝑡
𝑜  to prevent the nonlinear growth of 𝑌𝑜, 

which would lead to a rapid decrease of 𝑃𝑆𝑀𝑜.  

3. The proposed GSA framework  

In this Section, we discuss the workflow of the methodology proposed in the paper. Let us consider 

a multivariate simulation model 𝒀 = 𝑚(𝑿) of a safety-critical system, for which a dataset of 𝑁𝑠𝑖𝑚 

simulations is assumed to be available. The system design should ensure that the SMR operates away 



from the region of input values that lead to failure, i.e., the Critical Region 𝐶𝑅 =

{𝒙 ∈ 𝐷𝑿 ⊂ ℝ
𝐼: 𝒚 = 𝑚(𝒙) ≥ 𝒚𝑡ℎ𝑟𝑒𝑠}, where 𝒚𝑡ℎ𝑟𝑒𝑠 = [𝑦𝑡ℎ𝑟𝑒𝑠,1, 𝑦𝑡ℎ𝑟𝑒𝑠,2, … , 𝑦𝑡ℎ𝑟𝑒𝑠,𝑂] ∈ 𝐷𝒀 ⊂ ℝ

𝑂 is 

the vector of output thresholds that, if exceeded, lead the system into a failure state [4], and, thus, are 

typically defined by regulatory requirements or engineering safety standards. The proposed GSA 

framework consists of the following steps, also shown in the flowchart of Fig. 2: 

• parameter prioritization by OT-based GSA; we identify the parameters that impact the SMR 

safety the most (i.e., the sub-vector 𝑿∗ = [𝑋1
∗, 𝑋2

∗, … , 𝑋𝐼∗
∗ ] of the 𝐼∗ (with 𝐼∗ < 𝐼) inputs with 

the largest values of 𝑖(𝒀, 𝑋𝑖)); 

• critical parameters segmentation of the most important inputs by CUSUNORO, to identify 

the input critical values 𝒙𝑐𝑟𝑖𝑡 = [𝑥𝑐𝑟𝑖𝑡,1, 𝑥𝑐𝑟𝑖𝑡,2, … , 𝑥𝑐𝑟𝑖𝑡,𝐼∗]; 

• identification of suitable design improvements to keep 𝑿∗ far away from 𝒙𝑐𝑟𝑖𝑡. 

 

Fig. 2. Flowchart of the proposed GSA framework.  

To illustrate the proposed framework, we consider the following analytic model: 

(𝑌1, 𝑌2) = 𝑚(𝑋1, 𝑋2, 𝑋3), with 

{
𝑌1 = −1.5√𝑋1

5 + 𝑋2
4 + 0.01𝑋3

𝑌2 = 𝑋1
2 + 2𝑋2 − 0.5𝑋3

 
(15) 

where 𝑋𝑖~𝑈(0,1). We select this example for the ease of interpretation, although it has no direct 

reference to a nuclear system. We assume that the analyst has performed an uncertainty quantification 

and has available an input-output dataset of 𝑁𝑠𝑖𝑚 = 104 simulations. The procedure described in 

Section 2.2 is used to estimate 𝑖(𝒀, 𝑋𝑖). The results are reported in Fig. 3.  



 

Fig. 3. OT results for the analytic function in Eq. (15). 

Fig. 3 shows that 𝑋2 is the most relevant input, followed by 𝑋1 and with 𝑋3 playing a minor role. The 

design improvements of a system modelled by Eq. (15), whose parameters are 𝑋1, 𝑋2 and 𝑋3, should, 

thus, focus on 𝑋2 and 𝑋1 rather than 𝑋3.  

For the sake of brevity, in what follows we only consider the first output (i.e., 𝑌1) with 𝑦𝑡ℎ𝑟𝑒𝑠,1 = 0.2, 

𝑦𝑛𝑜𝑚,1 = −1.25 and 𝛾 = 95, leading to 𝑃𝑆𝑀𝑌 = 0.40. Then, following the insights provided by the 

OT-based parameter prioritization, 𝑧𝑜(𝑖) is calculated with Eq. (13) only for 𝑋1 and 𝑋2, and the 

corresponding CUSUNORO curves are plotted against their empirical Cumulative Distribution 

Function (CDF) (i.e., 𝐶𝐷𝐹𝑖 𝑖 = 1,2) in Fig. 4 and Fig. 5, respectively; analyzing the curves, the 

following considerations can be drawn: 

• the dependence of 𝑌1 on 𝑋1 is inverse (i.e., larger values of 𝑋1 correspond to lower values of 

𝑌1) and nonlinear, since its CUSUNORO curve (Fig. 4) is always negative and its maximum 

absolute value is skewed from the median of 𝑋1 (i.e., 𝐶𝐷𝐹1 = 0.5). The critical value for 𝑋1 

is 𝑥𝑐𝑟𝑖𝑡,1 = 0.43 (vertical line in Fig. 4); 

• the dependence of 𝑌1 on 𝑋2 is direct and nonlinear, since its CUSUNORO curve (Fig. 5) is 

always positive and its maximum absolute value is skewed from the median of 𝑋2 (i.e., 

𝐶𝐷𝐹2 = 0.5). The critical value for 𝑋2 is 𝑥𝑐𝑟𝑖𝑡,2 = 0.68 (vertical line in Fig. 5); 



 

Fig. 4. CUSUNORO curve and critical value for 𝑋1. 

 

Fig. 5. CUSUNORO curve and critical value for 𝑋2. 

The critical values 𝑥𝑐𝑟𝑖𝑡,1 and 𝑥𝑐𝑟𝑖𝑡,2 provide insights on how the most relevant inputs should be 

constrained. To show this, 𝑃𝑆𝑀𝑌 is calculated considering different constraints on the minimum value 

of 𝑋1 (due to the inverse dependency) and on the maximum value of 𝑋2 (due to the direct 

dependency). This demonstrative analysis is feasible thanks to the very low computational cost of 

evaluating the analytic model of Eq. (15) and to the limited number of inputs. Fig. 6 shows 𝑃𝑆𝑀𝑌 

plotted against the minimum value of 𝑋1 and the maximum value of 𝑋2. By limiting 𝑋1 and 𝑋2 to 

their critical values (i.e., 𝑋1~𝑈(𝑥𝑐𝑟𝑖𝑡,1, 1) and 𝑋2~𝑈(0, 𝑥𝑐𝑟𝑖𝑡,2)), the PSM is improved to 𝑃𝑆𝑀𝑌
∗ =

0.94, which lies outside the region of rapid decrease in the PSM (i.e., the region characterized by 

closely spaced contour lines, where small changes in inputs cause significant changes in the PSM). It 

is important to note that for dependent inputs, it is necessary to truncate the support of the joint 

distribution to preserve dependencies, rather than truncating marginal supports independently. These 

insights can enable targeted and tailored design improvements, avoiding resorting to a 

computationally burdensome trial-and-error procedure, which would be unfeasible for the complex 

long running best-estimate SMR simulation models. 



 

Fig. 6. 𝑃𝑆𝑀𝑌 as a function of the minimum value of 𝑋1 and maximum value of 𝑋2. 

4. Application to the Safety Assessment of a Small Modular Reactor 

In this Section, we apply the framework to analyze a case study that mimics a new concept reactor, 

which is still in the conceptual design phase. It is, thus, worth mentioning that the authors do not have 

access to detailed design information on the SMDFR and that the analysis has no marketing purpose. 

Subsection 4.1 presents the SMR design and the corresponding in-house developed simulation model. 

Subsection 4.2 presents the sensitivity analysis results and insights. 

4.1. The SMR design and simulation  

We consider a MU-NPP composed by 𝑁 = 4 units of SMDFRs, the same as in [29]. A single unit of 

SMDFR is shown in Fig. 7. In this reactor design, the liquid fuel is a mixture of uranium tetrachloride 

and plutonium tetrachloride, which enters the core vessel at the bottom and spreads through a system 

of vertical tubes for the heat transfer before leaving the reactor from the top to enter the Pyrochemical 

Processing Unit (PPU). The liquid coolant is pure lead and enters the core vessel from the bottom to 

remove the heat from the fuel tubes by conduction before leaving the vessel from the top to enter the 

heat exchanger. We assume a 60-year design lifetime as in [49]. 



 

Fig. 7. Sketch of the SMDFR [50]. 

The design parameters of the SMDFRs are reported in Tab. 1. 

Tab. 1. Design parameters of the SMDFR [28]. 

Parameter Value 

Core zone 𝐷 𝑥 𝐻 [m] 0.95 𝑥 2.0 

Distribution zone 𝐷 𝑥 𝐻 [m] 0.95 𝑥 0.2 

Collection zone 𝐷 𝑥 𝐻 [m] 0.95 𝑥 0.2 

Height of the core [m] 2.4 

Outer reflector diameter [m] 1.25 

Tank 𝐷 𝑥 𝐻 [m] 1.65 𝑥 3.4 

Number of fuel tubes 1027 

Fuel pin pitch [m] 0.025 

Outer/interior fuel tube diameter [m] 0.008/0.007 

Outer/interior coolant tube diameter [m] 0.005/0.004 

Mean linear power density [W/cm] 609 

Fuel inlet temperature [K] 1300 

Coolant inlet temperature [K] 973 

Nominal peak cladding temperature [K], 𝑇𝑤,𝑛𝑜𝑚 1150 

Fuel inlet velocity [m/s] 3 

Coolant inlet velocity [m/s] 5 

 

We assume that the system can be exposed to an earthquake with 𝑃𝐺𝐴 ∈ [0, 19.62]
𝑚

𝑠2
. The 

magnitude-frequency curve, whose CDF is used to calculate the failure probability of the system 

safety features to a random PGA, is taken from [51], without any specific reference to the case herein 

presented, and shown in Fig. 8. It is important to note that the the magnitude-frequency curve adopted 



does not refer to any site-specific seismic design basis safety assessment, but it is used, without loss 

of generality, for the seismic hazard characterization of a hypothetical SMDFR site. 

   

Fig. 8. Earthquake magnitude-frequency curve. 

For illustrative purposes, we assume that, if the earthquake occurrence leads to a LOCA, the coolant 

leak flow rate 𝑚̇𝑙𝑒𝑎𝑘 is independent of the PGA value and the LOCA occurs at the outlet of the coolant 

pump. Fig. 9 shows the leak flow rate as a function of time: the initial value is equal to the coolant 

flow rate in normal operating conditions, while the shape of the decrease of 𝑚̇𝑙𝑒𝑎𝑘 mimics the LOCA 

behavior in conventional Light Water Reactors (LWRs) [52]. This assumption is made because of the 

lack of specific data for LOCAs in SMDFRs.  

 

Fig. 9. LOCA leak flow rate. 

To prevent the occurrence of a LOCA, the NPP is equipped with stainless steel CPs. Furthermore, for 

mitigation of the consequences of a LOCA, the NPP is equipped with four ACSs (one for each unit, 

with a modular piping system that allows sharing the flow among all units, while guaranteeing that 

each ACS can perform its safety function independently from the others, in line with the design 

criteria of the Nuclear Regulatory Commission (NRC) [53]), two EDGs (shared among all units, with 

each EDG being capable of providing power to all ACSs in case of LOP [54]), and four Melting Fuel 



Plugs (MFPs) (one for each reactor), which are sections of molten salt designed to remain solid in 

normal operating conditions and to melt in case of a fuel temperature increase [29] (Tab.2). 

Tab. 2. Safety features employed in the system. 

Safety Feature Classification Description 

Coolant Pipes (CP) Passive, Preventive Liquid lead containment 

Auxiliary Cooling System (ACS) Active, Mitigative Auxiliary coolant delivery in case of LOCA 

Emergency Diesel Generator (EDG) Active, Mitigative Independent source of power in case of LOP 

Melting Fuel Plug (MFP) Passive, Mitigative Drains the fuel from the reactor in case of accident 

 

The considered 𝑠 = 1,2, … , 𝑆 safety features are actuated on demand with an uncertain response time 

𝑡𝑠
𝑟 (Tab. 3, second column) and maintained each Δ𝑡𝑚,𝑠 (Tab. 3, third column). The value of Δ𝑡𝑚,𝐴𝐶𝑆 

is assumed equal to that of an Auxiliary Feedwater System (AFS) of a typical LWR [55]; furthermore, 

Δ𝑡𝑚,𝐶𝑃 is necessarily synchronous to the periodic drainage of coolant and fuel from the reactor. No 

maintenance is considered for the MFP, which is assumed to be always available. Also, the 

maintenance is assumed to be perfect: safety features are restored to an As Good As New (AGAN) 

state upon maintenance. 

Tab. 3. Safety features employed in the system. 

Safety Feature 𝒕𝒔
𝒓 𝚫𝒕𝒎,𝒔 

Coolant Pipes (CP) 𝑡𝑟,𝐶𝑃 = 0 3 𝑦 

Auxiliary Cooling System (ACS) 𝑡𝑟,𝐴𝐶𝑆~[30,60] 𝑠 [56] 0.5 𝑦 [55] 

Emergency Diesel Generator (EDG) 𝑡𝑟,𝐸𝐷𝐺~[60,300] s [57] 1.5 𝑦 [58] 

Melting Fuel Plug (MFP) 𝑡𝑟,𝑀𝐹𝑃 = 1200 𝑠 ([29], [59], [60]) - 

 

The probability of failure of the safety features is composed of the probability of failure due to internal 

causes and that due to external hazards [30]. The degradation of the safety features is accounted for, 

as in previous works ([30], [61]), by embedding Physics-of-Failure (PoF) models into the safety 

features fragility models which, ultimately, provides fragility surfaces as functions of both the hazard 

magnitude and the safety feature age.  

A one-dimensional lumped parameter model that simulates safe and accidental conditions transients 

that might occur in the system is used for the risk assessment ([28], [62]). The model inputs are 

reported in Tab. 4 with their respective probability distributions. The selected inputs for the sensitivity 

analysis are those related with the safety features of the reactors, in line with that done in [30]. 

 



Tab. 4. Model inputs probability distributions. 

Input Description Probability distribution  

𝑃𝐺𝐴 Earthquake Peak Ground Acceleration [
𝑚

𝑠2
] 𝑃𝐺𝐴~𝐹𝑟𝑒𝑐ℎ𝑒𝑡(2.31,  0.133) [51] 

𝐴𝑔𝑒 Age of the system [𝑦] 𝐴𝑔𝑒~𝑈(0,60)  

𝑑𝑖𝑛,𝐶𝑃 Initial depth of CP corrosion defect [𝑚𝑚] 𝑑𝑖𝑛,𝐶~𝑁(1.59,  0.619) [63] 

𝑑𝑖𝑛,𝐴𝐶𝑆 Initial depth of ACS corrosion defect [𝑚𝑚] 𝑑𝑖𝑛,𝐴𝐶𝑆~𝑁(1.59,  0.619) [63] 

𝑑𝑖𝑛,𝐸𝐷𝐺
𝐶  Initial depth of EDG corrosion defect [𝑚𝑚] 𝑑𝑖𝑛,𝐸𝐷𝐺

𝐶 ~𝑁(1.59,  0.619) [63] 

𝑡𝐴𝐶𝑆
𝑟   Response time of ACS [𝑠] 𝑡𝐴𝐶𝑆

𝑟 ~𝑈(30,60) [56] 

𝑡𝐸𝐷𝐺
𝑟  Response time of EDG [𝑠] 𝑡𝐸𝐷𝐺

𝑟 ~𝑈(60,300) [57] 

𝑡𝐴𝐶𝑆
𝑓

 Failure time of ACS [𝑠] 
𝑡𝐴𝐶𝑆~𝑈(15, 𝑡𝑠𝑖𝑚), with mean value 

𝑡𝐴𝐶𝑆
𝑚𝑒𝑎𝑛 = 607.5 𝑠 

𝑡𝐸𝐷𝐺
𝑓

 Failure time of EDG [𝑠] 
𝑡𝐸𝐷𝐺~𝑈(15, 𝑡𝑠𝑖𝑚), with mean value 

𝑡𝐸𝐷𝐺
𝑚𝑒𝑎𝑛 = 607.5 𝑠 

 

The dynamic model [28] considers a time horizon 𝑇𝑠 = 1200 𝑠, which is the time allowed to confirm 

that the drainage of the fuel from the reactor core through the MFP is successful ([29], [59], [60]) 

and, thus, the accident is successfully mitigated. The model output is the peak cladding temperature 

𝑇𝑤,𝑛(𝑡) of each n-th reactor unit, since it is considered as the safety parameter of interest, and the 

threshold not to be exceeded during the accident is 𝑇𝑤,𝑓𝑎𝑖𝑙 = 1244 𝐾. This is set by assuming that 𝑇𝑤 

must never exceed the thermal stress inducing a loss of structural integrity of the fuel pipes: in 

practice, the thermal stress on the fuel pipes is given by:  

𝜎𝑡ℎ = 𝐸𝛾(𝑇)Δ𝑇 (16) 

where 𝐸 = 207 𝐺𝑃𝑎 is the Young’s Modulus of Nickel 201, which is the candidate material for 

Molten Salt Reactors (MSRs) [64], 𝛾(𝑇) is the temperature-dependent coefficient of thermal 

expansion (estimated interpolating the data in [65]) and Δ𝑇 is the temperature change of the fuel 

pipes. By setting 𝜎𝑡ℎ = 𝜎𝑈𝑇𝑆 = 345 𝑀𝑃𝑎, which is the ultimate tensile strength of the pipe, it is 

possible to calculate the temperature change that leads to a loss of structural integrity (i.e., Δ𝑇𝑓𝑎𝑖𝑙 =

94 °𝐶 and 𝑇𝑤,𝑓𝑎𝑖𝑙 = 𝑇𝑤,𝑛𝑜𝑚 + Δ𝑇𝑓𝑎𝑖𝑙 = 1244 𝐾). In Fig. 10, two example transients are shown.  



  

Fig. 10. Example transients of 𝑇𝑤,1: on the left a safe transient and on the right a failed transient; the solid 

straight line indicates the failure threshold. 

4.2. Sensitivity Analysis: Results and Insights 

The GSA framework presented in Section 3 is applied to the case study of Section 4.1. The available 

data consists of 𝑁𝑠𝑖𝑚 = 104 simulations of accidental scenarios (i.e., scenarios in which at least one 

of the reactors experiences a LOCA), generated in approximately 28ℎ on a commercially available 

laptop with an AMD Ryzen 5 PRO 4650U processor. The total number of simulations (including 

those without a LOCA) is 𝑁𝑠𝑖𝑚
𝑡𝑜𝑡𝑎𝑙 = 107. The median PGA for scenarios with only one LOCA is 

𝑃𝐺𝐴𝑠𝑖𝑛𝑔𝑙𝑒
𝑚𝑒𝑑𝑖𝑎𝑛 = 5.25

𝑚

𝑠2
, while for scenarios with multiple LOCAs it is 𝑃𝐺𝐴𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒

𝑚𝑒𝑑𝑖𝑎𝑛 = 14.27
𝑚

𝑠2
. The 

GSA is conducted considering the input parameters of Tab. 4 and the output of interest is the 

maximum value of 𝑇𝑤,𝑛 reached during the accidental scenario (i.e., 𝑇𝑤,𝑚𝑎𝑥,𝑛), for each n-th reactor 

unit.  

4.2.1. Parameter prioritization 

Fig. 11 shows the results of the parameter prioritization, where a dummy input (i.e., a fictitious input 

with no influence on the output) is added to facilitate the relative identification of uninfluential input 

parameters. 

 



 

Fig. 11. Parameter prioritization results.  

The following considerations are made based on the parameter prioritization results: 

• the PGA is the most important input; therefore, improvements should focus on anti-seismic 

measures; 

• the failure times of the mitigative safety features (i.e., 𝑡𝐴𝐶𝑆
𝑓

 and 𝑡𝐸𝐷𝐺
𝑓

) are more important that 

their response times (i.e., 𝑡𝐴𝐶𝑆
𝑟  and 𝑡𝐸𝐷𝐺

𝑟 ); therefore, it is more beneficial to focus on improving 

the reliability of those safety features rather than their response speed; 

• the initial depth of the corrosion defect of the CPs (i.e., 𝑑𝑖𝑛,𝐶𝑃) is among the most important 

inputs; therefore, an improvement to the CP resistance to corrosion can be beneficial for the 

system safety; 

• the age of the system does not impact 𝑇𝑤,𝑚𝑎𝑥 significantly; this is due to the “perfect” (AGAN) 

maintenance adopted for the system, which diminishes the impact of aging and degradation 

on the system safety. 

Finally, we identify the most important inputs considering the hypothesis of perfect maintenance as 

the most realistic, leading to the identification of 𝑃𝐺𝐴, 𝑑𝑖𝑛,𝐶𝑃,𝑛 and 𝑡𝐴𝐶𝑆,𝑛
𝑓

 as the most important 

inputs. 



To investigate the influence of the assumption of perfect maintenance, parameter prioritization has 

been reconsidered based on a set of 𝑁𝑠𝑖𝑚,2 = 10
3 simulated accidental scenarios with imperfect 

maintenance interventions (degradation of safety features only reduced and not completely 

eliminated) according to the same schedule of Tab. 3. The imperfect maintenance model adopted is 

the one described in ([66], [67]), based on the calculation of the effective age of the maintained 

component: 

𝜏𝐸
𝑞
= 𝜏𝐸

𝑞−1
+ 𝛼Δ𝑡𝑚 (17) 

where 𝜏𝐸
𝑞
 is the effective age immediately after the q-th maintenance intervention, 𝛼 is the 

effectiveness of the maintenance intervention (𝛼 = 0 represents perfect maintenance, i.e. AGAN; 𝛼 =

1 represents completely ineffective maintenance, i.e. As Good As Old (AGAO)) and Δ𝑡𝑚 is the time 

between two successive maintenance interventions. To show the impact of imperfect maintenance, 

we assume 𝛼 = 0.1. 

 

 

Fig. 12. Parameter prioritization results considering imperfect maintenance.  

As shown in Fig. 12, age becomes the most important input when imperfect maintenance is 

considered. In this case, an improvement to the maintenance strategy should be taken into account to 

reduce the impact of liquid lead corrosion ([68], [69]). 



Lastly, a univariate parameter prioritization (i.e., considering 𝑇𝑤,𝑚𝑎𝑥 of a single reactor unit at a time) 

has been performed based on the 𝑁𝑠𝑖𝑚 simulated accidental scenarios obtained with perfect 

maintenance. The prioritization is calculated using the squared 2-Wasserstein distance [25] and the 

results are compared with those of the multivariate parameter prioritization of Fig. 11.  

  

  

Fig. 13. Univariate parameter prioritization results for unit 1 (top-left), unit 2 (top-right), unit 3 (bottom-left) and unit 4 

(bottom-right).  

As shown in Fig. 13, the results of the univariate analysis assign, for each n-th unit, a larger 

importance to 𝑑𝑖𝑛,𝐶𝑃,𝑛, that, for unit 𝑛 = 1, seems to be more important than PGA. This does not 

occur for all units because of the fluctuations of the estimates induced by the limited number of 

simulations available in the dataset. It is also worth noting that 𝑑𝑖𝑛,𝐶𝑃,𝑛 has a non-negligible impact 

on the other SMR units. This is due to the fact that the units share the ACSs: a large initial depth of 

the CP corrosion defect increases the probability of a LOCA in the n-th unit; if LOCAs occur 



simultaneously in multiple units, the coolant mass flow provided by the ACSs must be shared, with a 

reduced mitigative effect.  

4.2.2. Critical input segmentation 

The critical input segmentation of 𝑃𝐺𝐴, 𝑑𝑖𝑛,𝐶𝑃,𝑛 and 𝑡𝐴𝐶𝑆,𝑛
𝑓

 is performed to identify the critical input 

values and provide guidelines for design improvement. For the sake of brevity, in what follows we 

consider only the analysis and results of the first reactor unit (𝑛 = 1), whose CUSUNORO curve is 

shown in Fig. 14.  

 

Fig. 14. CUSUNORO results for 𝑃𝐺𝐴, 𝑑𝑖𝑛,𝐶𝑃,1 and 𝑡𝐴𝐶𝑆,1
𝑓

 considering 𝑇𝑤,𝑚𝑎𝑥,1. 

The following considerations about the most important inputs emerge: 

• 𝑇𝑤,𝑚𝑎𝑥,1 has a direct and (almost) linear dependence on 𝑑𝑖𝑛,𝐶𝑃,1, since the maximum value of 

the CUSUNORO curve is (almost) centered on the median of 𝑑𝑖𝑛,𝐶𝑃,1, preventing the 

identification of a critical value for 𝑑𝑖𝑛,𝐶𝑃,1; nevertheless, given the importance of 𝑑𝑖𝑛,𝐶𝑃,1 

(Fig. 11), design improvements should still focus on the improvement of the CP resistance to 

corrosion by employing, for example, a low alloyed Fe-10Cr-4Al steel [70]; 

• 𝑇𝑤,𝑚𝑎𝑥,1 has a nonlinear dependence on the PGA (direct dependence) and the failure time of 

ACS (inverse dependence), since the maximum value of the corresponding CUSUNORO 

curves is significantly skewed from the median of the respective inputs; the critical value for 

the failure time of ACS is 𝑡𝐴𝐶𝑆,1,𝑐𝑟𝑖𝑡
𝑓

= 317 𝑠 (Fig. 15) and the critical value for the PGA is 

𝑃𝐺𝐴𝑐𝑟𝑖𝑡 = 11.61
𝑚

𝑠2
 (Fig. 16). While not directly linked with design acceptance criteria, the 



critical values identify regions of large output sensitivity to input variations, which may 

suggest increased risk sensitivity if operating in those regions. 

 

Fig. 15. Critical value of ACS failure time. 

 

Fig. 16. Critical value of PGA. 

Possible design improvements could, then, be: 

• reducing the probability of early failures of ACS, to avoid the region in which 𝑡𝐴𝐶𝑆,1
𝑓

≤

𝑡𝐴𝐶𝑆,1,𝑐𝑟𝑖𝑡
𝑓

 and increase the distance from the CR; this can be achieved by increasing the ACS 

seismic resilience, as earthquake-induced failures tend to occur at the beginning of the 

accidental scenario, whereas failures due to random internal causes are uniformly distributed 

in time; 

• reducing the earthquake impact on the NPP, effectively shifting the CR to larger PGA values. 



Since it is obviously not possible to control the earthquake magnitude to avoid the region in which 

𝑃𝐺𝐴 ≥ 𝑃𝐺𝐴𝑐𝑟𝑖𝑡, in practice both objectives can be achieved by improving the NPP overall seismic 

resilience. As an example, let us consider the installation of viscous dampers to the NPP buildings. 

To evaluate the effect of damping on the fragility of a concrete building, we first define the fragility 

as in [71]: 

𝐹(𝑃𝐺𝐴) = 𝜙 (
1

𝛽
ln (

𝑃𝐺𝐴

𝜇
)) (18) 

where 𝜙 is the standard normal cumulative distribution function, 𝜇 is the median seismic capacity 

and 𝛽 is the standard deviation of the logarithmic median capacity. By installing a viscous damper 

with damping coefficient 𝐷, the median capacity of the building increases as follows [71]: 

𝜇∗(𝐷) = 𝜇 ∙
(73.048 ∙ ln(𝐷) − 112)

100
 (19) 

To find a suitable damping coefficient, we use the distribution shown in Fig. 8 to estimate the PGA 

value for the design basis earthquake (SL-2 level), defined as the ground motion with an annual 

frequency of exceedance of 10−4. To account for beyond design basis conditions, we apply a 

conservative amplification factor of 1.4 to this value, leading to 𝑃𝐺𝐴𝐵𝐷𝐵𝐸 = 18
𝑚

𝑠2
 [72]. Finally, the 

damping coefficient 𝐷 is found as the one that leads to 𝑃𝐹,𝑠
∗ (𝑃𝐺𝐴𝐵𝐷𝐵𝐸) ≤ 𝑃𝐹,𝑠(𝑃𝐺𝐴𝑐𝑟𝑖𝑡) for all 𝑠 =

1,2, … , 𝑆 safety features, where 𝑃𝐹,𝑠 is the failure probability of the s-th safety feature considering the 

original SMR design and 𝑃𝐹,𝑠
∗  is the failure probability of the s-th safety feature considering the 

improved SMR design, leading to 𝐷 ≥ 42%. Note that, given the lack of facility-specific models 

linking the seismic capacity to the damping coefficient, the model in Eq. (19), developed for concrete 

buildings, has been adopted to illustrate the proposed framework, and the results are not intended to 

serve as an actual design basis for nuclear facilities.  

4.2.3. Implementation of the GSA-driven design improvements 

To summarize, the following improvements are identified by the GSA framework: 

• improvement of the CP resistance to corrosion by employing, for example, a low alloyed Fe-

10Cr-4Al steel [70]; 

• improvement of the NPP seismic reliability by installing viscous dampers with a damping 

coefficient 𝐷 ≥ 42%; 

While a conventional full-scope Probabilistic Safety Assessment (PSA) would identify the need for 

improved seismic resilience in general terms, the proposed GSA framework provides additional, more 

targeted design insights. For example, the parameter prioritization results specifically highlight that 



improving the failure times of the ACSs is more beneficial than reducing their response times, 

suggesting a focus on reliability enhancements and/or specific maintenance strategies rather than 

responsiveness. The analysis also shows the significant role of corrosion defect depth in the CP, 

pointing to a different material as a targeted design improvement. Additionally, critical input 

segmentation provides quantitative input thresholds that define regions of increased system 

sensitivity, which can guide setting design targets, such as the required damping coefficient. Overall, 

these insights can help the decision-maker prioritize design improvements to comply with regulations. 

To show the impact of implementing the identified design improvements on the system safety, we 

perform 𝑁𝑠𝑖𝑚
∗ = 104 simulations of accidental scenarios with the same simulation model, accounting 

for the above improvements in system design. The comparison between the results before (Fig. 17) 

and after (Fig. 18) the design improvements lead to the following considerations: 

• the number of system failures (i.e., the filled red dots) is significantly reduced, and failures 

occur at larger PGA values; 

• the number of ACS failures is significantly reduced (note that when 𝑡𝐴𝐶𝑆,1
𝑓

= 1200 𝑠, ACS is 

not failed); 

 

Fig. 17. 𝑇𝑤,𝑚𝑎𝑥,1 as a function of PGA and 𝑡𝐴𝐶𝑆,1
𝑓

 with the original design. 



 

Fig. 18. 𝑇𝑤,𝑚𝑎𝑥,1 as a function of PGA and 𝑡𝐴𝐶𝑆,1
𝑓

 with the improved design. 

Consequently, the CR obtained with the improved design is shifted to larger PGA values and is 

significantly smaller with respect to the CR obtained with the original design, as shown in Fig. 19, 

resulting in a safer operation of the reactor. 

 

Fig. 19. CR boundary with original and improved design. 

Finally, the results are also compared in terms of 𝑃𝑆𝑀𝑇𝑤,𝑚𝑎𝑥,1 (with 𝛾 = 95) and probability of failure 

of the first reactor (i.e., 𝐹𝑃,1). As shown in Fig. 20 and Fig. 21, the improved design achieves a 

significantly larger PSM (~53% increase) and a significantly lower failure probability (~95% 

decrease), showing the benefits of implementing the identified design improvements. 



 

Fig. 20. 𝑃𝑆𝑀𝑇𝑤,𝑚𝑎𝑥,1comparison between original and improved design. 

 

Fig. 21. 𝐹𝑃,1 comparison between original and improved design. 

4.3. Discussion 

The proposed framework can provide valuable insights to assist in the modeling phase of an SMR 

design, under the following constraints: 

• the validity of the sensitivity analysis results is inherently dependent on the fidelity of the 

simulation model: if the model does not satisfy the accuracy and predictiveness requirements 

necessary for its intended use in safety analysis and design decision-making [73], the 

sensitivity analysis results may be misleading; 

• the estimation accuracy of global sensitivity measures increases with the sample size, and the 

natural recommendation is to use the largest size allowed by computational budget. In our 

case, the estimation design is given data and allows the analyst to devote the entire budget to 

one Monte Carlo uncertainty quantification, thus increasing the sample size as much as 

possible. However, as the literature widely documents, uncertainty quantification becomes 

problematic for models with long running times. In these cases, the literature suggests 



alternative approaches. On the one hand, one can reduce computational burden by 

approximating time-consuming calculations in the original simulators by artificial intelligence 

tools or model emulators ([74], [75]). On the other hand, one can use exploration-exploitation 

strategies and mix high- and low-fidelity simulations [76]. Alternatively, one can plan the 

experiments in two steps, with first a careful selection of the points of the input space through 

a space-filling design [77], and then fitting a metamodel to propagate uncertainty, also 

preceding the analysis with a screening exercise ([17], [78]). If the metamodel fit is accurate, 

several runs can be obtained in a short amount of time. The utilization of these strategies to 

reduce computational burden is a field in constant evolution in the modeling of technological 

systems, recently accelerated by the rapid progress in artificial intelligence techniques.  

5. Conclusions 

We have proposed a novel GSA framework to assist in the modeling phase of an SMR design. First, 

the inputs most impacting the safety of the SMR are identified using OT-based GSA indices. Then, 

critical parameters segmentation is performed with CUSUNORO to identify the critical input values 

and provide guidelines for the design improvements aimed at keeping the SMR away from the CR. 

The framework has been applied to a case study concerning an SMR installation composed by four 

SMDFRs. The results of the OT-based parameter prioritization identify the PGA, the corrosion of CP 

and the failure time of ACS as the most important inputs, and the results of the parameters 

segmentation provide guidelines on the critical values of these inputs. Based on these findings, 

potential improvements to the system design are the improvement of the CP resistance to corrosion 

and the installation of viscous dampers to improve the system seismic reliability. 

Future work might investigate the scalability of the proposed framework to a real high-dimensional 

problem, whose model entails a large number of correlated inputs and many outputs. 
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