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Abstract 

 
Critical Infrastructures (CIs) are fundamental for the operation of societies. They function 

interdependently in a system-of-systems configuration. Interdependencies are unveiled also 

when CIs become inoperable or only partially operable due to disruptions. The state of partial 

or full inoperability of a disrupted CI can cascade to the interdependent CIs connected to it 

in the system of systems, causing various degrees of inoperability. This paper presents a 

novel approach for modeling the disruption cascade dynamics in multi-state interdependent 

CIs. A Dynamic Inoperability Input-output Model (DIIM) is proposed to describe the multi-

state transition dynamics of the CIs. A case study is worked out to show the application of 

the proposed approach to a system of systems formed by interdependent power and water 

networks.  
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Nomenclature 

𝑀 Set of interdependent CIs 

𝑞̅ Inoperability vector 

𝑞𝑖 Inoperability value of the 𝑖-th CI 

𝐴̿ Interdependency matrix 

𝐴̿(𝑡 + 1) Multi-state interdependency matrix 

𝑎𝑖𝑗 
Interdependency coefficient representing the inoperability induced on the 𝑖-th 

infrastructure by the inoperability of the 𝑗-th infrastructure  

𝑎𝑗𝑖 
Interdependency coefficient representing the inoperability induced on the 𝑗-th 

infrastructure by the inoperability of the 𝑖-th infrastructure  

𝑐̅ Perturbation vector 

𝑐𝑖 Inoperability of the 𝑖-th CI due to direct effects of an external perturbation 

𝐾̿ Recovery matrix 

𝑘𝑖𝑖 Recovery rate coefficient for the 𝑖-th CI 

𝐺𝑖 Directed graph of the 𝑖-th CI 
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𝑁𝑖 Set of nodes in the 𝑖-th CI 

𝑛𝑧
𝑖  𝑧-th node of the 𝑖-th CI 

𝐸(𝑖,𝑖) Set of edges in the 𝑖-th CI 

𝑒𝑜𝑝
(𝑖,𝑖)

 Direct connection from node 𝑛𝑜
𝑖  to 𝑛𝑝

𝑖  in the 𝑖-th CI 

𝐾𝑛𝑧𝑖  Number of states of node 𝑛𝑧
𝑖  in the 𝑖-th CI 

𝑥̅𝑛𝑧
𝑖
 State variable vector of node  𝑛𝑧

𝑖  in the 𝑖-th CI 

𝑋𝑙
𝑖 State 𝑙 of the 𝑖-th CI 

𝑋̅𝑖 State variable vector of the 𝑖-th CI 

𝑂(𝑋𝑙
𝑖) Operational performance of the 𝑖-th CI in state 𝑋𝑙

𝑖 

𝐷(𝑋𝑙
𝑖) Demand met by the 𝑖-th CI in state 𝑋𝑙

𝑖 

𝑖 ↔ 𝑗 Interdependency between the 𝑖-th and the 𝑗-th CIs 

𝑖 → 𝑗 Dependency of the 𝑗-th CI on the 𝑖-th CI 

𝑗 → 𝑖 Dependency of the 𝑖-th CI on the 𝑗-th CI 

𝑁𝑖→𝑗
𝑖  

Set of nodes in the 𝑖-th CI responsible for the dependency of the 𝑗-th CI on the 𝑖-
th CI 

𝑁𝑖→𝑗
𝑗

 
Set of nodes in the 𝑗-th CI responsible for the dependency of the 𝑗-th CI on the 𝑖-
th CI 

𝑁𝑗→𝑖
𝑖  

Set of nodes in the 𝑖-th CI responsible for the dependency of the 𝑖-th CI on the 𝑗-
th CI 

𝑁𝑗→𝑖
𝑗

 
Set of nodes in the 𝑗-th CI responsible for the dependency of the 𝑖-th CI on the 𝑗-
th CI 

𝐸(𝑖,𝑗) Set of edges from the 𝑖-th CI to the 𝑗-th CI 

𝐸(𝑗,𝑖) Set of edges from the 𝑗-th CI to the 𝑖-th CI 

𝑆𝑖→𝑗
𝑖  Set of states of nodes in 𝑁𝑖→𝑗

𝑖  

𝑆𝑖→𝑗
𝑗

 Set of states of nodes in 𝑁𝑖→𝑗
𝑗

 

𝑆𝑗→𝑖
𝑖  Set of states of nodes in 𝑁𝑗→𝑖

𝑖  

𝑆𝑗→𝑖
𝑗

 Set of states of nodes in 𝑁𝑗→𝑖
𝑗

 

𝑀̿𝑖→𝑗 Dependency matrix related to the dependency 𝑖 → 𝑗 

𝑀̿𝑗→𝑖 Dependency matrix related to the dependency 𝑗 → 𝑖 

𝑟𝑖 
Number of intervals in which the inoperability domain of the 𝑖-th CI is 

discretized 

𝑟𝑒
𝑖 Inoperability interval 𝑒 of 𝑟𝑖 

𝑎𝑗𝑖(𝑟𝑒
𝑖) 

Interdependency coefficient representing the inoperability induced on the 𝑗-th 

infrastructure when the inoperability of the 𝑖-th infrastructure is in the range 𝑟𝑒
𝑖 

of inoperability 

𝑅̿𝑖→𝑗 Conditional probability matrix related to the dependency 𝑖 → 𝑗 

𝑅̿𝑗→𝑖 Conditional probability matrix related to the dependency 𝑗 → 𝑖 

𝐴̿𝑖 Interdependency coefficient matrix for the 𝑖-th CI 

𝐴̿𝑗 Interdependency coefficient matrix for the 𝑗-th CI 

𝑇 Number of Monte Carlo simulations 

 

Abbreviations 

CI Critical infrastructure 

DIIM Dynamic Inoperability Input-output Model 

IIM Inoperability Input-output Model 
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1. Introduction 

Critical Infrastructures (CIs) provide essential services to societies, such as 

power, transportation, telecommunication and healthcare [1]. They are highly 

interconnected and interdependent on their services for their functioning [2]. 

However, this also creates ways for disruption in a CI to propagate to other connected 

ones in the system of systems that they form, with consequent damage to 

functionality and operability [3]. The terrible event of September 11, 2001, is an 

example of the offspring of disruptions in interdependent critical sectors, caused by 

an initiating deliberate attack on one of them [4]. The effects of human error in an 

offshore oil field in 2010 in the Gulf of Mexico severely impacted the oil and gas 

industry, devastated marine ecosystems, disrupted tourism and caused significant 

economic losses in the region [5]. The 2017 Hurricane Harvey in the United States 

severely disrupted power and communication networks, affecting various industrial 

and economic activities [6].  

Modeling the interdependent functioning of CIs is important to ensure the seamless 

supply of the essential services they provide to communities [7]. Various approaches 

have been proposed to quantify the degree of interdependency among CIs [8]. For 

instance, survey-based approaches quantify interdependencies based on the results 

of surveys for collecting expert judgment [9]. Limitations to these approaches may 

come from the difficulty for experts to capture indirect and high-order 

interdependencies between CIs. Dynamic Bayesian Networks (DBNs) provide a 

probabilistic framework for modeling interdependencies between CIs [10]. However, 

expert tuning of DBN parameters make them highly subjective, and their 

computational cost limits scalability to large-scale systems. Fault Trees can be used 

to model interdependencies through hierarchical logical relationships [11]. While 

simple and intuitive, their rigid structure make them unsuitable to capture evolving 

disruptions and adaptive responses. Also object-oriented approaches can model 

interdependencies [12,13], but are limited by a static structure not suited to represent 

the evolving nature of cascading failures and, also, they are quite computationally 

expensive for large interdependent systems subjected to dynamically evolving 

disruptions. System dynamic models, on the contrary, can represent 

interdependencies and time-dependent relationships, offering insights into long-term 

system evolution [14]. However, their lumped system representations and extensive 

parameter calibration make them ineffective for real-time disruption management. 

Data-based approaches leverage real-time CI functional data and mathematical 

models to analyze interdependencies [15]. These methods aim to incorporate real-

time information, offering a more dynamic perspective on CI behavior; however, the 
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small amount of data on dependent effects typically available in practice limits their 

accuracy [16].  

The Inoperability Input-Output Model (IIM) offers a mathematical framework 

suitable for catching high-order interdependencies (i.e., indirect relationships 

between CIs) [17]. However, at the expense of losing details on the subsystems and 

components constituting each CI, IIM models each CI as an individual entity and 

captures the interdependencies at such a macroscopic level [18]. The Dynamic 

Inoperability Input-Output Model (DIIM) [19] is an extension of the IIM that 

incorporates a temporal dimension to consider the dynamics of the processes (e.g. 

disruption cascade and recovery) occurring in the system of systems of 

interconnected CIs. DIIM has proven effective in analyses of interdependent 

systems, including for example the disruption of several CIs in Italy [20], the impact 

of COVID-19 on some CIs [21] or that of the Taal volcano eruption in the Philippines 

in January 2020 [22].  

In DIIM, interdependencies are represented by a deterministic and time-invariant 

interdependency matrix [23]. To introduce flexibility, some studies propose interval 

arithmetic to account for coefficient uncertainty [24] or expert-driven adjustments 

for time-varying interdependencies [25]. However, these methods are constrained by 

the assumption of time-invariant Boolean states, that does not allow to describe 

changes in the interdependencies during the evolving disruption, as it occurs in real-

world scenarios. Studies such as [25] have shown that interdependency coefficients 

can increase as disruption persist over time, reinforcing the idea that fixed 

coefficients do not fully represent the effects of the cascading process in real-world 

scenarios. On the other hand, it is the change in CI states due to the disruption 

evolution or its recovery that impact on the interdependencies, and whereas [25] 

models increasing interdependencies as a function of time, it still assumes Boolean 

infrastructure states, whereas CIs can experience varying degrees of inoperability, 

which affect interconnected systems differently. This can be captured by considering 

a multi-state representation for the interdependent infrastructures.  

This paper proposes a hybrid DIIM-network theory framework for: introducing a 

multi-state DIIM framework to represent the varying operational conditions in the 

system of systems of CIs for the dynamic assessment of disruption evolution; 

developing a procedure for the estimation of the interdependency coefficients that 

considers both CI topology and CI physical behavior, reducing reliance on subjective 

expert assumptions. This is obtained by: i) network theory to delineate the structure 

and operational characteristics of each CI, and ii) stochastic scenario exploration to 

systematically map interdependencies based on the inoperability states of subsystems 

and components. 
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The integration of the DIIM formulation with network theory allows the 

identification of critical nodes, to be targeted for protection and mitigation, and 

improves computational efficiency for large-scale infrastructure networks.  

 

The remainder of the paper is organized as follows. Section 2 describes the DIIM. 

Section 3 outlines the novel approach for modeling the multi-state CIs and their 

interdependencies. Section 4 presents a case study regarding interconnected power 

and water networks, wherein each CI has five possible operational states, each one 

differently affecting the response of the interdependent CIs upon disruption and, thus, 

ultimately affecting the operability of the system of systems made by the 

interconnected CIs. Section 5 discusses the results and compares them with those of 

a traditional DIIM approach, and the use of multi-state DIIM for the identification of 

the most critical nodes and the adoption of mitigation strategies. Finally, Section 6 

presents some conclusions and reflections on directions for future research. 

 

2.  Overview of DIIM  

The fundamental equation of IIM is [19]: 

𝑞̅ = 𝐴̿𝑞̅ + 𝑐̅ = [𝐼 ̿ − 𝐴̿]
−1
𝑐 ̅ (1) 

               

where 𝑞̅ is the vector of inoperability values 𝑞𝑖, 𝑖 = 1,… ,𝑀, of the 𝑀 interconnected 

CIs, indicating the proportion of the total planned production/service that remains 

unrealized/unsupplied due to disruptions [26]. The values of 𝑞𝑖 range from 0 (fully 

operational, meaning the production is completely realized) to 1 (fully inoperable, 

where no planned production is realized) [27]. 𝐴̿ is a 𝑀 ×𝑀 matrix whose entry 𝑎𝑖𝑗 

is the interdependency coefficient that governs the inoperability induced by the 𝑗-th 

infrastructure on the 𝑖-th infrastructure when the 𝑗-th infrastructure is in a completely 

inoperable state (𝑞𝑗 = 1); 𝑐̅ is the perturbation vector, whose entry 𝑐𝑖 is the 

inoperability of the 𝑖-th CI due to direct effects of external perturbations, such as 

accidental events, natural disasters and targeted attacks, which cause disruptions 

[18]. 

For example, considering the system of systems illustrated in Figure 1, which shows 

two interdependent CIs, where the complete inoperability of infrastructure 1 (𝑞1 =

1) leads to a 30% inoperability of infrastructure 2 and the complete inoperability of 

infrastructure 2 (𝑞2 = 1) leads to a 60% inoperability of infrastructure 1, the 𝐴̿ matrix 

is: 

𝐴̿ = (
0 0.6
0.3 0

) 

 
(2) 
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If an external perturbation occurs and disrupts the operation of infrastructure 2 to a 

state of 80% inoperable, the overall inoperabilities of the interdependent 

infrastructures 1 and 2 in the system of systems are calculated as follows, from 

Equation (1):  

 

(
𝑞1
𝑞2
) = (

0 0.6
0.3 0

) (
𝑞1
𝑞2
) + (

0
0.8
) = (

0.6𝑞2
0.3𝑞1 + 0.8

) 

(
𝑞1
𝑞2
) = (

0.59
0.98

)                                                                                                                        

 

(3) 

 
Figure 1 - Example of interdependent CIs 

Although IIM allows accounting for the interdependency between CIs and its effects 

on their inoperability, it misses: i) a dynamic perspective for modeling the disruption 

evolution and the system-of-systems recovery process in time, ii) a detailed 

description of the state of each CI, beyond the Boolean dichotomy of fully operable 

and fully inoperable (𝑞 = 0 or 𝑞 = 1), to describe the interdependency (and estimate 

the related coefficients). 

 

To overcome the first limitation, DIIM was introduced as an extension of the 

traditional IIM [28], to model the dynamics of the behavior of interdependent CIs in 

relation to their inoperability states upon the occurrence of disruptions that affect 

their operation. The fundamental equation of DIIM (considering discrete time steps 

of one arbitrary unit of time) is [29]: 

 

𝑞̅(𝑡 + 1) = 𝑞̅(𝑡) − 𝐾̿𝑞̅(𝑡) + 𝐾̿𝐴̿𝑞̅(𝑡) + 𝐾̿𝑐̅(𝑡) (4) 

 

The time-dependent description of the system-of-systems inoperability upon 

disruption is obtained by considering that the inoperability vector at time 𝑡 + 1, 

𝑞̅(𝑡 + 1), is: 

• the inoperability vector at time 𝑡, 𝑞̅(𝑡); 

• minus the inoperability recovery achieved through the inherent recovery 

capabilities of each CI in the system of systems, modeled by the diagonal 
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𝑀 ×𝑀 matrix 𝐾̿ where each entry 𝑘𝑖𝑖 represents the recovery rate coefficient 

of the 𝑖-th CI, i.e. the speed at which each CI can recover from inoperability 

[29,30]; 

• plus the term 𝐾̿𝐴̿𝑞̅(𝑡), which accounts for the propagation of inoperability 

across the CIs of the system of systems through their interdependencies at 

time 𝑡, modulated by their respective recovery rates; 

• plus the increase in inoperability that occurs at the next time step 𝑡 + 1 due 

to external perturbations, 𝐾̿𝑐̅(𝑡), also adjusted by the ability of each CI to 

recover from its perturbations.  

As built, Equation (4) provides a model to describe the dynamic interactions and 

external influences affecting the inoperability of interconnected CIs in a system-of-

systems context. The values of the recovery matrix 𝐾̿ are estimated based on CI-

specific recovery data, accounting for factors such as historical restoration times, 

infrastructure redundancy, and operational or location constraints. Larger recovery 

coefficients correspond to faster system recovery, as discussed by [31]. The reader 

may refer to [3], [29] and [32] for methodologies to estimate these coefficients.  

Considering the previous case of the two CIs with 𝐴̿ as in Equation (2), the initial 

inoperability conditions calculated as estimated in Equation (3) and the following 

recovery matrix: 

𝐾 =  

(

 

1

14(1 − 𝑎11)
𝑙𝑛 (

1

0.01
) 0

0
1

21(1 − 𝑎22)
𝑙𝑛 (

1

0.01
)
)

 = (
0.33 0
0 0.22

) (5) 

 

Those recovery values are estimated from the typical restoration times of each CI, 

(i.e., 14 and 21 days for infrastructures 1 and 2, respectively as in [33]). 

 

We can provide the evolution of the inoperability 𝑞1 and 𝑞2 over discrete time steps, 

using Equation (6): 

 

𝑞1(𝑡 + 1) = 𝑞1(𝑡) − 0.33𝑞1(𝑡) + 0.20𝑞2(𝑡) + 0.33𝑐1(𝑡) 

𝑞2(𝑡 + 1) = 𝑞2(𝑡) − 0.22𝑞2(𝑡) + 0.07𝑞1(𝑡) + 0.22𝑐2(𝑡) 
(6) 

 

The resulting time-dependent inoperability curves 𝑞1 and 𝑞2 are those shown in 

Figure 2. 
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Figure 2 – Inoperability of infrastructure 1 (continuous line) and infrastructure 2 (dashed line) 

Still, like IIM, the DIIM assumes Boolean states for the CIs when defining the degree 

of interdependency between infrastructures, which is not necessarily realistic. To 

address this limitation, in the next Section, we propose a novel approach to extend 

the DIIM for modeling multi-state interdependent CIs.  

3. Modeling multi-state interdependent CIs 

CIs can either be dependent or interdependent. Dependencies involve unidirectional 

influences, whereas interdependencies involve bidirectional relationships where the 

states of the CIs mutually influence each other [34]. In the DIIM, dependencies and 

interdependencies are modeled using the interdependency matrix (𝐴̿). However, this 

is done neglecting the internal structure of the CIs with their subsystems and 

components, which can be in multiple states and have various degrees of dependence. 

This could lead to wrong estimation of the actual damage state of the CIs following 

a cascading failure process through the dependencies and interdependencies, as 

highlighted in [35]. Indeed, dependencies and interdependencies of various degrees 

exist between the subsystems and components of the CIs. This can lead to different 

cascading failure scenarios through the dynamic propagation of a disruption. 

To account for the internal characteristics of the CIs, the interdependency coefficients 

should reflect these relationships and the multiple states of inoperability that emerge 

from the cascading processes. To this aim, the inoperability domain ([0,1]) of each 

CI is discretized into ranges of increasing inoperability and for each range 𝑟𝑗 of the 

𝑗-th CI, an interdependency coefficient  𝑎𝑖𝑗(𝑟
𝑗) is estimated (and correspondingly, 

for each range 𝑟𝑖of the 𝑖-th CI influencing the 𝑗-th CI, i.e., 𝑎𝑗𝑖(𝑟
𝑖)).  
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For example, let us consider a system of systems of interdependent CIs composed of 

a power grid (CI 𝑖) and a telecommunication network (CI 𝑗), whose interdependency 

is shown in Figure 3. The inoperability states of both CIs 𝑖 and 𝑗 are grouped into two 

ranges 𝑟1
𝑖, 𝑟2

𝑖 and 𝑟1
𝑗
, 𝑟2
𝑗
 of small and large inoperability, respectively. When the power 

grid experiences minor inoperability (𝑞𝑖 ∈ 𝑟1
𝑖), the functionality of the 

telecommunication network could be reduced, e.g., by resorting to backup power 

units, which would thus be characterized by a small value of the interdependency 

coefficient 𝑎𝑗𝑖(𝑟1
𝑖), whereas a complete power grid blackout (𝑞𝑖 = 1 ∈ 𝑟2

𝑖) could 

cause the telecommunication network to be completely inoperable, which would 

correspond to a large value of the interdependency coefficient 𝑎𝑗𝑖(𝑟2
𝑖). Conversely, 

the power grid relies on telecommunication for monitoring and control tasks: a minor 

inoperability of the telecommunication network (𝑞𝑗 ∈ 𝑟1
𝑗
), would be corresponding 

to a small interdependency coefficient 𝑎𝑖𝑗(𝑟1
𝑗
), whereas an inoperable 

telecommunication network (𝑞𝑗 = 1 ∈ 𝑟2
𝑗
) would expose the power grid to large-

scale outages, and in this case interdependency is described by a large value of 

interdependency coefficient 𝑎𝑖𝑗(𝑟2
𝑗
). In other words, the interdependency varies with 

the inoperability levels of the involved interdependent CIs and a novel approach is 

needed for interdependency coefficients estimation, realistically modeling 

interdependencies between multi-state CIs, as also argued in [36].  

 

Figure 3 - Example of interdependency coefficients in multi-state interdependent CIs: power 

grid (CI 𝑖) and telecommunication network (CI 𝑗) 

3.1 Extending the interdependency matrix to multi-state CIs  

Power grid
Telecommunication 

network

Small 

external 

perturbation

Large 

external 

perturbation

Small 

external 

perturbation

Large 

external 

perturbation
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To represent the interdependence of multi-state CIs, a multi-state interdependency 

matrix 𝐴̿(𝑡 + 1) of multi-state interdependency coefficients is introduced and 

updated based on the inoperability values of the CIs at each time 𝑡. This allows us to 

retain the high-level interdependency matrix of the traditional DIIM, while 

incorporating detailed information from the internal states of the CIs 

subsystems/components and their dynamic interactions within the system of systems. 

 

Figure 4 illustrates the conceptualization of the modeling of the multi-state 

dependency of a hypothetical 𝑗-th CI on a hypothetical 𝑖-th CI, and the evolution of 

the interdependency coefficients as a function of inoperability intervals, where the 

interdependency coefficient 𝑎𝑗𝑖 takes different values depending on the inoperability 

state of the 𝑖-th CI (at time 𝑡). For this, the inoperability range [0,1] for the 𝑖-th CI is 

partitioned into a set of intervals 𝑟𝑒
𝑖 = {[𝑐𝑒 , 𝑑𝑒]} for 𝑒 = 1,… , 𝑟

𝑖, where 0 = 𝑐1 <

𝑑1 = 𝑐2 < 𝑑2 = ⋯ = 𝑐𝑟𝑖 < 𝑑𝑟𝑖 = 1; then, at any given time 𝑡, the value of the 

coefficient 𝑎𝑗𝑖 is determined by the inoperability value 𝑞𝑖(𝑡). In other words, 𝑎𝑗𝑖 

depends on the interval 𝑟𝑖 in which 𝑞𝑖(𝑡) falls. 

In real-world applications, the range of validity of the 𝑎𝑗𝑖 for each inoperability state 

is to be determined based on empirical data or/and by expert judgment.  
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Figure 4 - Multi-state interdependency for the hypothetical example of two CIs, 𝑖 and 𝑗. 

To detail the modeling framework proposed in this paper, the extension of the 

traditional interdependency matrix to a multi-state involves three phases:  

 

(1) Characterization of the multi-state CIs using network theory; 

(2) Mapping of the interdependencies between the multi-state CIs; 

(3) Estimation of the interdependency coefficients by simulation. 

 

3.2 Characterization of the multi-state CIs  

The first phase involves describing the operational and topological characteristics of 

each CI of the system of systems considered. 

 

The topological structure of each CI can be defined using network theory [37,38]. 

Specifically, each generic 𝑖-th CI (𝑖 = 1,… ,𝑀) is represented as a directed graph 

𝐺𝑖 ≡ (𝑁𝑖 , 𝐸(𝑖,𝑖)), where  𝑁𝑖 = {𝑛1
𝑖 , 𝑛2

𝑖 , … , 𝑛𝑍
𝑖 } are the 𝑍 nodes (subsystems or 

component groups) of the 𝑖-th CI network, and 𝐸(𝑖,𝑖) = {𝑒𝑜𝑝
(𝑖,𝑖)

= (𝑛𝑜
𝑖 , 𝑛𝑝

𝑖 ) ⊆

Minor disruption

 artial disruption

Ma or disruption

Disruption Directly affected elements Indirectly affected elements
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𝑁𝑖 × 𝑁𝑖} is the set of edges 𝑒𝑜𝑝
(𝑖,𝑖)
 connecting the nodes 𝑛𝑜

𝑖  and 𝑛𝑝
𝑖  of the 𝑖-th CI, 𝐺𝑖 

[39]. 

To consider the multiplicity of states, it is necessary to introduce the 𝐾𝑛𝑧𝑖  states for 

each generic 𝑧-th node 𝑛𝑧
𝑖 , (𝑧 = 1,… , 𝑍), and the state variable vector 𝑥̅𝑛𝑧

𝑖
=

[𝑥1
𝑛𝑧
𝑖

, 𝑥2
𝑛𝑧
𝑖

, … , 𝑥𝐾
𝑛𝑧
𝑖

𝑛𝑧
𝑖

], where the variable 𝑥1
𝑛𝑧
𝑖

 corresponds to the perfect functioning 

state of the generic node 𝑛𝑧
𝑖  and 𝑥𝐾

𝑛𝑧
𝑖

𝑛𝑧
𝑖

 represents the complete failure state of the 

generic node 𝑛𝑧
𝑖 . The states of the nodes are mutually exclusive, that is, if the node 

is in one of its possible states, it cannot simultaneously be in another one and 

correspondingly the state variables are binary, taking the value 1 if the node is in the 

respective state and 0 otherwise [40]. For example, the state variable vector 𝑥̅𝑛𝑧
𝑖
=

[0,0,1,0,0] indicates that the generic 𝑧-th node 𝑛𝑧
𝑖  of the 𝑖-th CI, is in its third state 

(𝑥3
𝑛𝑧
𝑖

). 

The state of each node reflects its capability to deliver a specific task. Initially, a node 

operates under a given load, representing the demand it must meet. As failures 

propagate, the initial load on a node can increase and, in some cases, exceed its 

capacity. When this occurs, the node becomes unable to fully meet demand, leading 

to partial or complete failure. See Appendix A for a procedure to estimate the extent 

of unmet demand by a generic CI exposed to disruption.  

Consequently, the state of the generic 𝑖-th CI, 𝐺𝑖, is a function of the states of its 

nodes 𝑁𝑖 and is represented by the CI state variable vector 𝑋̅𝑖 = [𝑋1
𝑖 , 𝑋2

𝑖 , … , 𝑋𝐿
𝑖 ], 

where the generic 𝑙-th element, 𝑙 = 1,2, … , 𝐿, is a function of the nodes states 

variables, 𝑋𝑙
𝑖 = 𝜙 (𝑥̅𝑛1

𝑖
, 𝑥̅𝑛2

𝑖
, … , 𝑥̅𝑛𝑍

𝑖
) ∈ [0,1]. Like for the 𝑁𝑖  nodes, the states of 𝐺𝑖 

are mutually exclusive, meaning that the infrastructure can be in only one state at a 

time. Also, 𝑋1
𝑖  corresponds to the perfect functioning state of 𝐺𝑖 (𝑞𝑖 = 0), and 𝑋𝐿

𝑖  

represents complete failure (𝑞𝑖 = 1). 

The inoperability state of a CI corresponds to a physical state of operation with 

respect to its intended performance. To link inoperability to the CI functioning level, 

we propose using demand satisfaction as a proxy for the overall operational state 

[41]. Based on the objective of demand satisfaction, we introduce the function of 

unmet demand 𝑂(𝑋𝑙
𝑖) as the operational performance metric of the 𝑖-th CI, 𝐺𝑖, in 

state 𝑋𝑙
𝑖, given by: 
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𝑂(𝑋𝑙
𝑖
) =  1 −

𝐷(𝑋𝑙
𝑖)

𝐷(𝑋1
𝑖)

 (7) 

where 𝐷(𝑋𝑙
𝑖) is the demand met by 𝐺𝑖 in state 𝑋𝑙

𝑖, and 𝐷(𝑋1
𝑖) is the attended demand 

of 𝐺𝑖 in perfect functioning state 𝑋1
𝑖 . When 𝐷(𝑋𝑙

𝑖) =  𝐷(𝑋1
𝑖), 𝐺𝑖 is fully functional 

and 𝑂(𝑋𝑙
𝑖) = 0. When 𝐷(𝑋𝑙

𝑖) = 0, 𝐺𝑖  is unable to meet any demand and 𝑂(𝑋𝑙
𝑖) =

1.  

Figure 5 illustrates the characterization phase for the infrastructure 1 and the 

infrastructure 2 of Figure 1.   

 

Figure 5 – Characterization of infrastructure 1 and infrastructure 2 of Figure 1 

3.3 Mapping of the interdependencies between the multi-state CIs 

During the first phase, the focus was on the intra-infrastructure relations among the 

nodes of each single CI. In this phase, we extend the focus to the system of systems 

by identifying all the interdependencies between the 𝑀 CIs. For clarity’s sake the 

bidirectional interdependency (𝑖 ↔ 𝑗) between the generic 𝐺𝑖 and any other generic 

𝐺𝑗 is referred to as 𝑖 → 𝑗 and 𝑗 → 𝑖, when 𝐺𝑖 is the independent CI and 𝐺𝑗 the 

dependent CI, or vice versa, respectively. The identification is based on a given 

taxonomy, such as provided in [42,43]: 
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• Physical interdependencies between 𝐺𝑖 and 𝐺𝑗, originating from a direct 

provision of services or goods from 𝐺𝑖 to 𝐺𝑗, or vice versa; 

• Geographical interdependencies associated to the proximity of geographical 

location of 𝐺𝑖 and 𝐺𝑗, which might expose them to the same hazards; 

• Cyber interdependencies that arise from the sharing of information between 

𝐺𝑖 and 𝐺𝑗; 

• Logical interdependencies that originate from logical relationships or 

functional linkages between 𝐺𝑖 and 𝐺𝑗. 

Once an interdependency 𝑖 ↔ 𝑗 is identified, it is included in the topological graph 

of the system of systems by defining the edges that connect 𝐺𝑖 and 𝐺𝑗, 𝐸(𝑖,𝑗) =

{𝑒𝑜𝑙
𝑖,𝑗
= (𝑛𝑜

𝑖 , 𝑛𝑙
𝑗
) ⊆ 𝑁𝑖 × 𝑁𝑗} for the dependency 𝑖 → 𝑗, and for the dependency 𝑗 →

𝑖, the edges 𝐸(𝑗,𝑖) = {𝑒𝑜𝑙
𝑗,𝑖
= (𝑛𝑜

𝑗
, 𝑛𝑙
𝑖) ⊆ 𝑁𝑗 ×𝑁𝑖}.  

The nodes involved in these interdependencies are those in the node sets 𝑁𝑖→𝑗
𝑖 , 𝑁𝑖→𝑗

𝑗
, 

𝑁𝑗→𝑖
𝑖  and 𝑁𝑗→𝑖

𝑗
, where 𝑁𝑖→𝑗

𝑖 ⊆ 𝑁𝑖 is the set of nodes of 𝐺𝑖 responsible for the 

dependency 𝑖 → 𝑗, and 𝑁𝑖→𝑗
𝑗
⊆ 𝑁𝑗  is the set of nodes in 𝐺𝑗 connected to 𝑁𝑖→𝑗

𝑖 , 

whereas 𝑁𝑗→𝑖
𝑗
⊆ 𝑁𝑗 is the set of nodes of 𝐺𝑗 responsible for the dependency 𝑗 → 𝑖, 

and 𝑁𝑗→𝑖
𝑖 ⊆ 𝑁𝑖 is the set of nodes in 𝐺𝑖 connected to 𝑁𝑗→𝑖

𝑗
. 

Figure 6 exemplifies this step for the infrastructures analyzed in Section 2, 

considering that, according to Figure 1, there is an interdependency relationship 

between infrastructure 1 and infrastructure 2. This means that there exists both a 

dependency 1 → 2 and a dependency 2 → 1. 
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Figure 6 – System of systems: interdependency 1 ↔ 2 (dependencies 1 → 2 and 

2 → 1) 

To quantify the effects of the interdependency 𝑖 ↔ 𝑗, we proceed by analyzing to 

what extent any change in states of the nodes set  𝑁𝑖→𝑗
𝑖  causes changes in the states 

of the nodes set 𝑁𝑖→𝑗
𝑗
, and vice versa for 𝑁𝑗→𝑖

𝑗
 and 𝑁𝑗→𝑖

𝑖 .  For each set 𝑁𝑖→𝑗
𝑖  and 𝑁𝑖→𝑗

𝑗
, 

the sets of node states are identified and denoted as 𝑆𝑖→𝑗
𝑖  and 𝑆𝑖→𝑗

𝑗
, respectively (and 

similarly 𝑆𝑗→𝑖
𝑗
 and 𝑆𝑗→𝑖

𝑖  for 𝑁𝑗→𝑖
𝑗
 and 𝑁𝑗→𝑖

𝑖 ). These sets include all possible states of 

the nodes 𝑁𝑖→𝑗
𝑖  and 𝑁𝑖→𝑗

𝑗
 (𝑁𝑗→𝑖

𝑗
, 𝑁𝑗→𝑖

𝑖 ), and are defined as follows: 

𝑆𝑖→𝑗
𝑖 = {𝑥𝑘

𝑛𝑧
𝑖

|𝑛𝑧
𝑖 ∈ 𝑁𝑖→𝑗

𝑖 ,    𝑥𝑘
𝑛𝑧
𝑖

∈  𝑥̅𝑛𝑧
𝑖

 𝑓𝑜𝑟 𝑘 = 1, … , 𝐾𝑛𝑧𝑖  } 

𝑆𝑖→𝑗
𝑗
= {𝑥𝑘

𝑛𝑧
𝑗

|𝑛𝑧
𝑗
∈ 𝑁𝑖→𝑗

𝑗
,    𝑥𝑘

𝑛𝑧
𝑗

∈  𝑥̅𝑛𝑧
𝑗

 𝑓𝑜𝑟 𝑘 = 1, … , 𝐾
𝑛𝑧
𝑗  } 

𝑆𝑗→𝑖
𝑖 = {𝑥𝑘

𝑛𝑧
𝑖

|𝑛𝑧
𝑖 ∈ 𝑁𝑗→𝑖

𝑖 ,    𝑥𝑘
𝑛𝑧
𝑖

∈  𝑥̅𝑛𝑧
𝑖

 𝑓𝑜𝑟 𝑘 = 1, … , 𝐾𝑛𝑧𝑖  } 

𝑆𝑗→𝑖
𝑗
= {𝑥𝑘

𝑛𝑧
𝑗

|𝑛𝑧
𝑗
∈ 𝑁𝑗→𝑖

𝑗
,    𝑥𝑘

𝑛𝑧
𝑗

∈  𝑥̅𝑛𝑧
𝑗

 𝑓𝑜𝑟 𝑘 = 1, … , 𝐾
𝑛𝑧
𝑗  } 

(8) 

 

𝑆𝑖→𝑗
𝑖  and 𝑆𝑖→𝑗

𝑗
 are used to create the dependency matrix 𝑀̿𝑖→𝑗, where the rows 

correspond to elements in 𝑆𝑖→𝑗
𝑖  and the columns correspond to elements in 𝑆𝑖→𝑗

𝑗
. If a 

state in the row can lead to a state in the column, the value at that row and column is 

1; otherwise, it is 0. Similarly,  𝑆𝑗→𝑖
𝑗
 and 𝑆𝑗→𝑖

𝑖  are used to create 𝑀̿𝑗→𝑖. For the example 

of the interdependency relationships shown in Figure 6, two matrices 𝑀̿1→2 and 𝑀̿2→1 

are created as illustrated in Figure 7.  
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Figure 7 – Matrices 𝑀̿1→2 and 𝑀̿2→1 

The matrix 𝑀̿1→2 maps the effect on the state of node 𝑛1
2 due to a change in the state 

of node 𝑛3
1, when node 𝑛3

1 becomes inoperable (𝑥2
𝑛3
1

= 1), the inoperability 

propagates to infrastructure 2, causing 𝑛1
2 to also become inoperable (𝑥2

𝑛1
2

= 1). 

Similarly, for the dependency 2 → 1, the matrix 𝑀̿2→1 shows that when node 𝑛3
2 

reaches its inoperability state (𝑥2
𝑛3
2

= 1), node 𝑛5
1 achieves a partially inoperable state 

(𝑥3
𝑛5
1

= 1) thanks to its robustness that prevents it reaching full inoperability and 

mitigating the propagation of inoperability to infrastructure 1. 

While this study focuses on physical interdependencies, the proposed methodology 

can be extended to other types of interdependencies with appropriate modifications 

to the respective dependency matrices (𝑀̿𝑖→𝑗 , 𝑀̿𝑗→𝑖): for geographical 

interdependencies, the matrices must capture shared risk exposure to hazard events, 

ensuring that nodes in the same location undergo the same state transitions; for cyber 

interdependencies, the dependency matrices can be structured so that inoperability 

propagates through disrupted communication links, where attacks to one CI node 
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affects its connected nodes in another CI; for logical interdependencies, rule-based 

dependencies can be introduced, modifying the dependency matrices to reflect 

constraints in which the failure of a node in one CI directly limits the functionality 

of another node in the dependent CI according to predefined rules. By adjusting the 

formulation of 𝑀̿𝑖→𝑗 and 𝑀̿𝑗→𝑖 accordingly, the methodology remains adaptable to 

different interdependency types while preserving its core structure. 

3.4 Estimating interdependency coefficients 

To estimate the interdependency coefficients 𝑎𝑗𝑖 due to 𝑖 → 𝑗, and 𝑎𝑖𝑗 due to 𝑗 → 𝑖, 

we simulate 𝑇 operability disruption scenarios in the 𝑖-th CI and analyze their effects 

on the 𝑗-th CI, and vice versa.  

The failure propagation in each disruption scenario follows the procedure detailed in 

Appendix A. In this sense, inoperability of nodes is inherently linked to their physical 

conditions, such as initial load and capacity, reflecting real-world conditions where 

exceeding node capacity can amplify cascading effects in interdependent CIs.   

As we shall see in what follows, more severe disruptions occurring in the 𝑖-th CI 

generate more significant impacts on the 𝑗-th CI operability, and similarly for those 

occurring in the 𝑗-th CI impacting the 𝑖-th CI.  

The outcomes of the simulations allow for the evaluation of the operational 

performance metric in Equation (7), resulting in an inoperability metric that is not 

binary but discretized into multiple intervals within [0,1] for both the 𝑖-th CI and the 

𝑗-th CI; this enables a more granular analysis of the relationships between the 

different operability states of the CIs.  

In practice, let the inoperability domain [0,1] for the 𝑖-th CI be divided into intervals 

𝑟𝑒
𝑖 = {[𝑎𝑒 , 𝑏𝑒]} for 𝑒 = 1,… , 𝑟

𝑖, where 0 = 𝑎1 < 𝑏1 = 𝑎2 < 𝑏2 = ⋯ = 𝑎𝑟𝑖 < 𝑏𝑟𝑖 =

1. Similarly, the inoperability domain [0,1] for the 𝑗-th CI is divided into intervals 

𝑟𝑙
𝑗
= {[𝑐𝑙, 𝑑𝑙]} for 𝑙 = 1,… , 𝑟

𝑗, where 0 = 𝑐1 < 𝑑1 = 𝑐2 < 𝑑2 = ⋯ = 𝑐𝑟𝑗 < 𝑑𝑟𝑗 =

1. 

The values of the intervals 𝑟𝑒
𝑖 and 𝑟𝑙

𝑗
 define the rows and columns of the conditional 

probability matrix 𝑅̿𝑖→𝑗, and the columns and rows of the conditional probability 

matrix 𝑅̿𝑗→𝑖, respectively. Each entry of these matrices is the probability that the 

inoperability of the dependent infrastructure (𝑗/𝑖) is in a specific inoperability 

interval (𝑟𝑙
𝑗
/𝑟𝑒
𝑖), given that the inoperability of the independent infrastructure (𝑖/𝑗) is 

in a specific inoperability interval (𝑟𝑒
𝑖/𝑟𝑙

𝑗
). 



18  

Monte Carlo simulation is used to generate the set of 𝑇 scenarios (the pseudocode is 

given in Figure 8 for 𝑖 → 𝑗). For each scenario 𝑠 (𝑠 = 1, … , 𝑇), the initial states 𝑠𝑜 of 

𝐺𝑖, 𝑋𝑠𝑜
𝑖 , are set by random generation of operational disruptions, i.e., by uniform 

random sampling 𝑛𝑟 nodes from 𝑁
𝑖 to form the subset 𝑁𝑟

𝑖, and by uniform random 

sampling their inoperability states 𝑥𝑘
𝑛𝑧
𝑖

= 1, 𝑘 ≠ 1 ∀𝑛𝑧
𝑖 ∈ 𝑁𝑟

𝑖.  

The disruption is, then, propagated through the 𝑖-th CI (for example as proposed by 

[44] and [45]), and the operational performance of 𝐺𝑖 is estimated based on the final 

state of the nodes 𝑁𝑖 of 𝐺𝑖, which reaches the final 𝑠𝑓 state, 𝑋
𝑠𝑓
𝑖 . The operational 

performance for the 𝑖-th CI (𝑂(𝑋
𝑠𝑓
𝑖 )) is, then, calculated as in Equation (7), classified 

in the appropriate range 𝑟𝑒
𝑖 and recorded. The final state 𝑋

𝑠𝑓
𝑖  of the 𝑖-th CI cascades 

on the 𝑗-th CI, as defined by the matrix 𝑀̿𝑖→𝑗, whose initial nodes states 𝑋𝑐𝑜
𝑗
  of the 

set 𝑁𝑖→𝑗
𝑗
, denoted as 𝑐0, reach the final state 𝑋

𝑐𝑓
𝑗
 , whose performance 𝑂(𝑋

𝑐𝑓
𝑗
) is 

classified in the appropriate column range 𝑟𝑙
𝑗
. From the 𝑇 simulations, the 

frequencies of occurrence of each inoperability interval of the 𝑖-th CI (row in 𝑅̿𝑖→𝑗), 

for each corresponding inoperability interval of the 𝑗-th CI (column in 𝑅̿𝑖→𝑗) are 

calculated to estimate the corresponding entry of 𝑅̿𝑖→𝑗. Similarly, Monte Carlo 

sampling are used to estimate the frequency of the elements of 𝑅̿𝑗→𝑖 for the 

dependency 𝑗 → 𝑖, using the corresponding intervals and initial conditions set in the 

nodes 𝑁𝑗 of the generic 𝑗-th CI, 𝐺𝑗, and propagating the disruption effects back to 

the 𝑖-th CI as defined by the matrix 𝑀̿𝑗→𝑖. 

Inputs for analyzing the dependency 𝒊 → 𝒋 in scenario 𝒔: 

Nodes in the 𝑖-th CI, 𝑁𝑖 
Nodes in the 𝑗-th CI, 𝑁𝑗  

Nodes in the 𝑖-th CI connected to the 𝑗-th CI, 𝑁𝑖→𝑗
𝑖  

Nodes in the 𝑗-th CI connected to the 𝑖-th CI, 𝑁𝑖→𝑗
𝑗

 

Dependency matrix, 𝑀̿𝑖→𝑗 

Intervals of operational domain of the 𝑖-th CI, 𝑟𝑖 
Intervals of operational domain of the 𝑗-th CI, 𝑟𝑗 

Demand met by the 𝑖-th CI in perfect state, 𝐷(𝑋1
𝑖) 

Demand met by the 𝑗-th CI in perfect state, 𝐷(𝑋1
𝑗
) 

1 define 𝑛𝑟 as a random integer from 1 to |𝑁𝑖| 

2 select randomly 𝑛𝑟 nodes from 𝑁𝑖 to form the subset 𝑁𝑟
𝑖 

3 for each node 𝑛𝑧
𝑖 ∈ 𝑁𝑟

𝑖:  

4 

 

update 𝑥1
𝑛𝑧
𝑖

= 0 to deactivate the perfect functioning state  

5 

 

select a random integer 𝑘 from 2 to |𝑥𝐾
𝑛𝑧
𝑖

𝑛𝑧
𝑖

|, choosing a random state other than perfect functioning 

6 

 

set 𝑥𝑘
𝑛𝑧
𝑖

= 1 to activate the randomly chosen state 

7 end  

8 set 𝑋𝑠𝑜
𝑖  as the initial state condition 𝑠𝑜 in the 𝑖-th CI 

9 run operational disruption in the 𝑖-th CI 
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10 define 𝑠𝑓 as the final state of nodes in 𝑁𝑖  

11 define 𝑋𝑠𝑓
𝑖  as the final state of the 𝑖-th CI 

12 set 𝐷(𝑋𝑠𝑓
𝑖 ) as the met demand of the 𝑖-th CI in state 𝑋𝑠𝑓

𝑖  

13 set 𝑂(𝑋𝑠𝑓
𝑖 ) as the operational performance of the 𝑖-th CI for scenario 𝑠 

14 determine the interval 𝑟𝑒
𝑖 from 𝑟𝑖 such that 𝑎𝑒 ≤ 𝑂(𝑋𝑠𝑓

𝑖 ) ≤ 𝑏𝑒  

15 store 𝑟𝑒
𝑖 

16 for each node 𝑛𝑧
𝑗
∈ 𝑁𝑖→𝑗

𝑗
: 

17  update 𝑥̅𝑛𝑧
𝑗

 according to 𝑀̿𝑖→𝑗 

18 end   

19 set 𝑋𝑐𝑜
𝑗
 as the initial state conditions 𝑐𝑜 in the 𝑗-th CI 

20 run operational disruption in the 𝑗-th CI 

21 define 𝑐𝑓 as the final state of nodes in 𝑁𝑗 
22 define 𝑋

𝑐𝑓
𝑗
 as the final state of the 𝑗-th CI 

23 set 𝐷(𝑋
𝑐𝑓
𝑗
) as the met demand of the 𝑗-th CI in state 𝑋

𝑐𝑓
𝑗

 

24 set 𝑂(𝑋
𝑐𝑓
𝑗
) as the operational performance of the 𝑗-th CI for scenario 𝑠 

25 determine the interval 𝑟𝑙
𝑗
 from 𝑟𝑗 such that 𝑐𝑙 ≤ 𝑂(𝑋𝑐𝑓

𝑗
) ≤ 𝑑𝑙 

26 store 𝑟𝑙
𝑗
 

Output: 𝑟𝑘
𝑖  and 𝑟𝑙

𝑗
, operational performance ranges for the 𝑖-th CI and the 𝑗-th CI under scenario 𝑠, respectively 

Figure 8 - Pseudocode to analyze the dependency 𝒊 → 𝒋 under scenario 𝒔 

The frequency-estimated elements of 𝑅̿𝑖→𝑗 for the dependency 𝑖 → 𝑗 represent the 

probabilities of the 𝑗-th CI being in each of its inoperability intervals (columns), 

given that the 𝑖-th CI is in the corresponding row interval, expressed as: 

𝑃(𝑂(𝑋𝑢
𝑗
) ∈  𝑟𝑙

𝑗
|𝑂(𝑋𝑝

𝑖
) ∈ 𝑟𝑒

𝑖) (9) 

where 𝑃(𝑂(𝑋𝑢
𝑗
) ∈  𝑟𝑙

𝑗
|𝑂(𝑋𝑝

𝑖 ) ∈ 𝑟𝑒
𝑖) is the conditional probability that the operational 

performance of the 𝑗-th CI in a disrupted state denoted as 𝑋𝑢
𝑗
 falls within the range 

𝑟𝑙
𝑗
, given that the operational performance of the 𝑖-th CI, represented by 𝑂(𝑋𝑝

𝑖 ) for 

the disrupted state 𝑋𝑝
𝑖 , is within the range 𝑟𝑒

𝑖. 

Likewise, for the dependency 𝑗 → 𝑖, the frequency-estimated elements of 𝑅̿𝑗→𝑖 

represent the probabilities of the 𝑖-th CI being in each of its inoperability ranges 

(columns), given that the 𝑗-th CI is in the inoperability ranges corresponding to the 

row interval: 

𝑃(𝑂(𝑋𝑢
𝑖
) ∈  𝑟𝑒

𝑖|𝑂(𝑋𝑝
𝑗
) ∈ 𝑟𝑙

𝑗
) (10) 

where 𝑃(𝑂(𝑋𝑢
𝑖 ) ∈  𝑟𝑒

𝑖|𝑂(𝑋𝑝
𝑗
) ∈ 𝑟𝑙

𝑗
) is the conditional probability that the operational 

performance of the 𝑖-th CI in a disrupted state denoted as 𝑋𝑢
𝑖  falls within the range 

𝑟𝑒
𝑖, given that the operational performance of the 𝑗-th CI, represented by 𝑂(𝑋𝑝

𝑗
) for 

the disrupted state 𝑋𝑝
𝑗
, is within the range 𝑟𝑙

𝑗
. 

Finally, the interdependency coefficients 𝑎𝑗𝑖(𝑟𝑒
𝑖) ∀𝑟𝑒

𝑖  ∈ 𝑟𝑖 and 𝑎𝑖𝑗(𝑟𝑙
𝑗
) ∀𝑟𝑙

𝑗
 ∈ 𝑟𝑗 are 
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calculated as: 

𝑎𝑗𝑖(𝑟𝑒
𝑖) =∑𝑃(𝑂(𝑋𝑢

𝑗
) ∈  𝑟𝑙

𝑗
|𝑂(𝑋𝑝

𝑖
) ∈ 𝑟𝑒

𝑖) ∙ 𝑑𝑙

𝑟𝑗

𝑙=1

 

𝑎𝑖𝑗(𝑟𝑙
𝑗
) =∑𝑃(𝑂(𝑋𝑢

𝑖
) ∈  𝑟𝑒

𝑖|𝑂(𝑋𝑝
𝑗
) ∈ 𝑟𝑙

𝑗
) ∙ 𝑏𝑒

𝑟𝑖

𝑒=1

 

(11) 

where 𝑑𝑙 corresponds to the upper limit of the range 𝑟𝑙
𝑗
, defining the maximum 

potential impact on the 𝑗-th CI’s operational performance, and 𝑏𝑒 corresponds to the 

upper limit of the range 𝑟𝑒
𝑖, defining the maximum potential impact on the 𝑖-th CI’s 

operational performance. 

Figure 9 exemplifies the estimation of interdependency coefficient 𝑎21 for the 

dependency (2 → 1) between infrastructure 1 and infrastructure 2 shown in Figure 

4. For infrastructure 1, four intervals are defined: 𝑟1 =

{[0,0.2], (0.2, 0.6],(0.6, 0.9], (0.9,1]}, and for infrastructure 2, three intervals are 

created:  𝑟2 = {[0,0.3], (0.3, 0.8], (0.8,1]}. The Monte Carlo sampling yield 𝑅̿1→2, 

enabling the estimation of interdependency coefficient 𝑎21 for each interval of 

infrastructure 1. For example, in the interval (0.2, 0.6], the probabilities of 

infrastructure 2 being in the inoperability ranges [0,0.3], (0.3, 0.8], and (0.8,1] are 

0.35, 0.55, and 0.10, respectively. Thus, the interdependency coefficient 

𝑎21(0.2, 0.6], representing the inoperability contribution from infrastructure 1 to 

infrastructure 2 when infrastructure 1 is inoperable between 0.2 and 0.6, is calculated 

as: 

𝑎21(0.2, 0.6] = 0.35 × 0.3 + 0.55 × 0.8 + 0.1 × 1 = 0.65 (12) 
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Figure 9 - Estimation of interdependency coefficient 𝑎21 

For the generic 𝑖-th CI, the matrix 𝐴̿𝑖 is finally obtained, where each row corresponds 

to the inoperability intervals 𝑟𝑖 and the columns to all the CIs that depend on the 𝑖-

th CI. Similarly, for the 𝑗-th CI, 𝐴̿𝑗 contains the interdependency coefficients of the 

other CIs that depend on the 𝑗-th CI. 

The DIIM of Equation (4) can be ultimately applied, fed by the multi-state 

interdependency matrix 𝐴̿(𝑡 + 1), which updates based on the actual inoperability 

values of the CIs at time 𝑡. Figure 10 exemplifies the DIIM application for the 

interdependency 𝑖 ↔ 𝑗.  

Scenario 

Scenario 

Generation and propagation of operability disruptions

Estimation of values in the conditional probability 

matrix 

 uantification of interdependency coefficients 
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Figure 10 - DIIM with multi-state interdependency matrix for interdependency 1 ↔ 2 

4. Case study 

We present a case study concerning a system of systems made by an interdependent 

water CI and power CI: the power network (PN) is based on the IEEE57-bus test 

system and the water supply network (WN) topology is taken from the IEEE85-bus 

system of [46]. 

 

We distinguish the nodes of these CIs as supplier and demand nodes, based on their 

role in the flow of commodities [47,48]. In the PN, supplier nodes represent power 

plants or substations that generate or distribute electricity, whereas demand nodes 

correspond to loads such as homes, businesses, water treatment plants and pumping 

stations. In the WN, supplier nodes are water treatment facilities that provide clean 

water, and demand nodes represent residential, commercial and industrial users, as 

well as pumping stations that distribute it further [49].  

 

Supplier nodes can be in one of four states: perfect functioning, disconnected (due to 

loss of edges connecting to demand nodes), overloaded (required to supply more than 

capacity) or inoperable. Demand nodes can be in one of three states: perfect 

functioning, disconnected (due to loss of edges connecting to supplier nodes) or 

inoperable (illustrated in Figure 11). Note that it is important to distinguish between 

the states ‘inoperable’ and ‘disconnected’, because the recovery action related to the 

former requires maintenance or repair, whereas the recovery of a disconnection 

amounts to connecting or reconnecting neighbor nodes of the disconnected node. 

 

DIIMwith Multi-state interdependency matrix 
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Figure 11 - States of supplier and demand nodes 

The PN topology, denoted as 𝐺𝑃𝑁, includes seven supply nodes providing electricity 

to fifty demand nodes. In its perfect functioning state, 𝑋1
𝑃𝑁, it meets a demand of 

𝐷(𝑋1
𝑃𝑁) = 428.8 MW. The WN, denoted as 𝐺𝑊𝑁, in its perfect functioning state 

𝑋1
𝑊𝑁 delivers 𝐷(𝑋1

𝑊𝑁) = 2514.28 𝑚3/ℎ of water from one supply node to eighty-

four demand nodes. Figure 12 shows the topological structure of 𝐺𝑃𝑁 and 𝐺𝑊𝑁. 

Appendix B details the demand for each demand node, as well as the initial load and 

capacity of the supplier nodes in each CI.  

 

 

Figure 12 - Characterization of 𝐺𝑃𝑁 and 𝐺𝑊𝑁 

As said, PN and WN are interdependent, i.e., 𝑃𝑁 ↔ 𝑊𝑁: in the following, such 

dependencies are described in detail.  

 

4.1 Dependency of water network on power network: 𝑷𝑵 → 𝑾𝑵  

The dependency 𝑃𝑁 → 𝑊𝑁 means that water treatment and distribution processes 

require electricity to function. To model 𝑃𝑁 → 𝑊𝑁, 15 nodes in 𝐺𝑃𝑁 supply 11 

demand nodes in 𝐺𝑊𝑁. The nodes involved are as follows: 

 

𝑁𝑃𝑁→𝑊𝑁
𝑃𝑁 = {

𝑛4
𝑃𝑁 , 𝑛5

𝑃𝑁 , 𝑛7
𝑃𝑁 , 𝑛10

𝑃𝑁 , 𝑛11
𝑃𝑁 , 𝑛13

𝑃𝑁 , 𝑛14
𝑃𝑁 , 𝑛15

𝑃𝑁 , 𝑛16
𝑃𝑁 , 𝑛17

𝑃𝑁 ,

𝑛41
𝑃𝑁 , 𝑛42

𝑃𝑁 , 𝑛43
𝑃𝑁 , 𝑛56

𝑃𝑁 , 𝑛57
𝑃𝑁 } 

𝑁𝑃𝑁→𝑊𝑁
𝑊𝑁 = {

𝑛1
𝑊𝑁 , 𝑛16

𝑊𝑁 , 𝑛17
𝑊𝑁 , 𝑛23

𝑊𝑁 , 𝑛36
𝑊𝑁 , 𝑛39

𝑊𝑁 , 𝑛47
𝑊𝑁 , 𝑛50

𝑊𝑁 , 𝑛63
𝑊𝑁 ,

𝑛74
𝑊𝑁 , 𝑛75

𝑊𝑁 } 

(13) 

 

The number of nodes differs between the sets 𝑁𝑃𝑁→𝑊𝑁
𝑃𝑁  and 𝑁𝑃𝑁→𝑊𝑁

𝑊𝑁  because five 

power supply nodes are required to ensure continuous electricity supply to a single 

Demand node 1: 

inoperable

  

Supplier node 1: 

perfect functioning

Supplier node 1:

disconnected

  

Supplier node 1: 

overload

  

Supplier node 1: 

inoperable

  

Demand node 1: 

perfect functioning

Demand node 1:

disconnected

D D D 
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supplier node in the WN, as illustrated in Figure 13. 

 
Figure 13 - System of systems: dependency 𝑃𝑁 → 𝑊𝑁 

To map the effects on 𝐺𝑊𝑁 of the dependency 𝑃𝑁 → 𝑊𝑁, the state relations between 

nodes in 𝑁𝑃𝑁→𝑊𝑁
𝑃𝑁  with nodes in 𝑁𝑃𝑁→𝑊𝑁

𝑊𝑁  are analyzed. The direct effects of 

propagation occur through the specific connections between nodes, i.e., each node in 

𝑁𝑃𝑁→𝑊𝑁
𝑃𝑁  directly influences only the nodes in 𝑁𝑃𝑁→𝑊𝑁

𝑊𝑁  to which it is directly 

connected.  

 

All nodes in 𝑁𝑃𝑁→𝑊𝑁
𝑃𝑁  are multi-state demand nodes: perfect functioning, 

disconnected or inoperable. Cascading effects in 𝐺𝑊𝑁 due to inoperability 

disruptions in 𝐺𝑃𝑁 occur when nodes in 𝑁𝑃𝑁→𝑊𝑁
𝑃𝑁  are in a state other than perfect 

functioning. Consequently, the unavailability of these demand nodes causes the 

connected nodes in 𝐺𝑊𝑁 to transition from perfect functioning to any inoperability 

state. 

 

The inoperability states of nodes in 𝑁𝑃𝑁→𝑊𝑁
𝑊𝑁  follow specific rules. Demand nodes 

become inoperable when their corresponding nodes in 𝑁𝑃𝑁→𝑊𝑁
𝑃𝑁  are in any 

inoperability state (disconnected or inoperable). The supplier node in 𝑁𝑃𝑁→𝑊𝑁
𝑊𝑁 , 

supported by five dedicated nodes in 𝑁𝑃𝑁→𝑊𝑁
𝑃𝑁 , becomes inoperable only when all 

five nodes are in any inoperability state (disconnected or inoperable).  

 

To estimate the interdependency coefficient 𝑎𝑊𝑁𝑃𝑁, the inoperability domain of each 

4
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CI is divided into five intervals with increasing inoperability values, as follows. 

 

𝑟𝑃𝑁 = {[0], (0, 0.3], (0.3, 0.5], (0.5,0.7], (0.7,1]} 
                        𝑟𝑊𝑁 = {[0], (0, 0.2], (0.2, 0.6], (0.6,0.8], (0.8,1]} 

(14) 

 

Then, the conditional probability matrix 𝑅̿𝑃𝑁→𝑊𝑁 of Figure 14 is calculated, with 

rows corresponding to 𝑟𝑃𝑁 and columns to 𝑟𝑊𝑁. To estimate these values a Monte 

Carlo sampling with 𝑇 = 1000 runs is performed according to the pseudocode of 

Figure 8.  

 

Figure 14 - Conditional probability matrix 𝑅̿𝑃𝑁→𝑊𝑁 

The interdependency coefficients for each inoperability range of PN (𝑎𝑊𝑁𝑃𝑁[𝑟𝑘
𝑃𝑁],

∀𝑟𝑘
𝑃𝑁 ∈ 𝑟𝑃𝑁) are calculated and reported in Figure 15 (last column) by using 

Equation (11) and the frequencies plotted in the histogram (left of Figure 15). 

  

 

Figure 15 - Interdependency coefficient estimation 𝑎𝑊𝑁𝑃𝑁(𝑟𝑘
𝑃𝑁)  ∀𝑘 ∈ 𝑟𝑃𝑁 
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4.2 Dependency of power network on water network: 𝑾𝑵 → 𝑷𝑵  

Cooling and other essential processes in power plants and substations rely on water 

supply. To represent the dependency of PN on WN (𝑊𝑁 → 𝑃𝑁), in this case study, 

we select 14 nodes in 𝐺𝑊𝑁 as water suppliers to the 7 power supplier nodes in 𝐺𝑃𝑁. 

The nodes involved are as follows: 

 

𝑁𝑊𝑁→𝑃𝑁
𝑃𝑁 = {𝑛1

𝑃𝑁 , 𝑛2
𝑃𝑁 , 𝑛3

𝑃𝑁 , 𝑛6
𝑃𝑁 , 𝑛8

𝑃𝑁 , 𝑛9
𝑃𝑁 , 𝑛12

𝑃𝑁}                               

𝑁𝑊𝑁→𝑃𝑁
𝑊𝑁 = {

𝑛4
𝑊𝑁 , 𝑛18

𝑊𝑁 , 𝑛19
𝑊𝑁 , 𝑛26

𝑊𝑁 , 𝑛28
𝑊𝑁 , 𝑛38

𝑊𝑁 , 𝑛51
𝑊𝑁 , 𝑛54

𝑊𝑁 , 𝑛55
𝑊𝑁 ,

𝑛61
𝑊𝑁 , 𝑛64

𝑊𝑁 , 𝑛72
𝑊𝑁 , 𝑛80

𝑊𝑁 , 𝑛82
𝑊𝑁 } 

(15) 

 

The nodes in the set 𝑁𝑊𝑁→𝑃𝑁
𝑊𝑁  are double of those in 𝑁𝑊𝑁→𝑃𝑁

𝑃𝑁  because the water 

supply nodes to PN are redundant, i.e., each node in PN is supplied by two nodes 

from WN. This is illustrated in Figure 16, where it is seen that the redundant water 

supply nodes are not geographically close to each other, so as to reduce the risk of 

losing water supply to PN nodes due to a local disruption in the WN.  

 

Like the dependency 𝑃𝑁 → 𝑊𝑁, the propagation of the direct effects from 𝐺𝑊𝑁 to 

𝐺𝑃𝑁 occurs through the direct links between nodes in 𝑁𝑊𝑁→𝑃𝑁
𝑊𝑁  and nodes in 

𝑁𝑃𝑁→𝑊𝑁
𝑃𝑁 , i.e., cascading failures are observed in 𝐺𝑃𝑁 from 𝐺𝑊𝑁 when nodes in 

𝑁𝑊𝑁→𝑃𝑁
𝑊𝑁  are not in perfect functioning state. This leads the corresponding nodes in 

𝑁𝑃𝑁→𝑊𝑁
𝑃𝑁  to transition from perfect functioning to inoperable state. Particularly, in 

this case study, nodes in 𝑁𝑊𝑁→𝑃𝑁
𝑃𝑁  become inoperable only when they lose both 

redundant water supply nodes that should provide water to them. 
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Figure 16 - System of systems: dependency 𝑊𝑁 → 𝑃𝑁 

Following the methodology presented, Monte Carlo simulation is used to estimate 

the interdependency coefficients 𝑎𝑃𝑁𝑊𝑁 for each inoperability interval of WN 

(∀𝑟𝑖
𝑊𝑁 ∈ 𝑟𝑊𝑁), as defined in Equation (14). Figure 17 shows the conditional 

probability matrix 𝑅̿𝑊𝑁→𝑃𝑁, obtained following the pseudocode outlined in Figure 8, 

with 𝑇 = 1000 iterations. 

 

Figure 17 - Conditional probability matrix 𝑅̿𝑊𝑁→𝑃𝑁 
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Finally, the interdependency coefficients for each inoperability range of WN 

(𝑎𝑃𝑁𝑊𝑁[𝑟𝑘
𝑊𝑁], ∀𝑟𝑘

𝑊𝑁 ∈ 𝑟𝑊𝑁) are determined and presented in the last column of  

Figure 18. These values are calculated using Equation (11) and the frequencies 

shown in the histogram on the left of Figure 18. 

 
Figure 18 - Interdependency coefficient estimation 𝑎𝑃𝑁𝑊𝑁(𝑟𝑘

𝑊𝑁)  ∀𝑘 ∈ 𝑟𝑊𝑁 

The computation of interdependency coefficients was performed on an Intel Core i5-

11400H CPU with 16 GB RAM. The Monte Carlo simulation with 1000 iterations 

required 92.82 seconds for 𝑎𝑊𝑁𝑃𝑁(𝑟𝑘
𝑃𝑁) and 89.61 seconds for 𝑎𝑃𝑁𝑊𝑁(𝑟𝑘

𝑊𝑁). 
 

5. Results and discussion 

This section presents the results of the proposed methodology to assess the 

inoperability dynamics of the interdependent CIs described in the case study. The 

analysis is structured as follows: Subsection 5.1 compares the outcomes of the DIIM 

and the Multi-state DIIM. Subsection 5.2 focuses on identifying critical nodes within 

the system of systems, specifically those driving cascading effects between CIs. 

Subsection 5.3 evaluates mitigation strategies, highlighting the impact of resilience 

investments that CI owners can adopt to reduce inoperability. 

 

5.1 Comparison between DIIM and Multi-state DIIM 

The inoperability of the CIs described in Section 4 is evaluated using the multi-state 

interdependent matrix (Equation (16)): 

 

𝐴̿(𝑡 + 1) = (
0 𝑎𝑊𝑁𝑃𝑁(𝑞𝑃𝑁(𝑡))

𝑎𝑃𝑁𝑊𝑁(𝑞𝑊𝑁(𝑡)) 0
) 

 

(16) 

where 𝑎𝑊𝑁𝑃𝑁(𝑞𝑃𝑁(𝑡)) is updated according to the inoperability of PN at time 𝑡, 

whereas 𝑎𝑃𝑁𝑊𝑁(𝑞𝑊𝑁(𝑡)) is updated based on the inoperability of WN. 
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Two distinct operability disruption scenarios are considered: medium impact with an 

external shock resulting in 50% of PN inoperability, and high impact with 80% of 

PN inoperability.  

 

The DIIM assumes a static interdependency matrix (Equation (17)). To ensure a 

consistent comparison, 𝐴̿ is conservatively defined using the most probable 

inoperability ranges of PN and WN. These ranges are derived from the histograms in 

Figure 15 and Figure 18, with the last row (𝑟5
𝑃𝑁 = (0.7,1] and 𝑟5

𝑊𝑁 = (0.8,1]) used 

to define the coefficients in 𝐴̿ for PN and WN, respectively. Thus, 𝐴̿ is set as:  
 

𝐴̿ = (
0 0.93
0.99 0

) (17) 

 

Note that the 0.93 coefficient for the dependency 𝑃𝑁 → 𝑊𝑁 is slightly lower than 

0.99 for the dependency 𝑊𝑁 → 𝑃𝑁 due to differences in CIs topologies. As shown 

in Figure 19 (a), PN can reach its highest inoperability range (𝑟5
𝑃𝑁) without 

necessarily disabling any node in 𝑁𝑃𝑁→𝑊𝑁
𝑃𝑁 , preventing cascading effects in WN. In 

contrast, WN failures leading to (𝑟5
𝑊𝑁) inevitably involve nodes in 𝑁𝑊𝑁→𝑃𝑁

𝑊𝑁 , causing 

cascading failures in PN as illustrated in Figure 19 (b).  

 

Figure 19 – Examples of disruption operational scenarios resulting in 𝑟5
𝑃𝑁 (a), and 𝑟5

𝑊𝑁 (b) 

Table 1 summarizes the results of estimating the inoperability of WN for the two 

scenarios. Both the static and the multi-state interdependent CIs approaches provide 

the same results (
𝑞𝑊𝑁
𝑞𝑃𝑁

) = (
0.74
0.8

) in high operability disruption scenarios. However, 

in medium operability disruption scenarios, the static interdependency matrix 

overestimates WN inoperability due to its conservative dependency on PN (reflected 

in the constant 𝑎𝑊𝑁𝑃𝑁).  

 

This indicates that whereas both approaches align under high operability disruptions, 

the traditional static interdependency matrix (𝐴̿) fails to capture the dynamic 

 a  b 



30  

interactions between CIs in low and medium-disruption scenarios. In contrast, the 

multi-state approach updates the interdependency coefficient (𝑎𝑊𝑁𝑃𝑁) based on the 

actual inoperability value of PN at each time 𝑡, better reflecting the evolving 

interdependencies of CIs. These differences become more pronounced over time as 

the disruption and recovery process progresses.  

Table 1 - Inoperability estimation for two perturbation scenarios 

 IIM based on 𝐴̿ IIM based on 𝐴̿(𝑡 + 1) 

 𝑞𝑊𝑁 = (0.93 × 𝑞𝑃𝑁 + 𝑐𝑊𝑁) 𝑞𝑊𝑁 = (𝑎𝑊𝑁𝑃𝑁(𝑞𝑃𝑁(0)) × 𝑞𝑃𝑁 + 𝑐𝑊𝑁) 

Medium 

impact 

𝑞𝑃𝑁 = 0.5 

𝑞𝑊𝑁 = (0.47) 𝑞𝑊𝑁 = (0.19) 

High 

impact 

𝑞𝑃𝑁 = 0.8 

𝑞𝑊𝑁 = (0.74) 𝑞𝑊𝑁 = (0.74) 

 

To further illustrate this, Figure 20 shows the inoperability curves for each CI using 

DIIM (recovery considered). The left column represents the inoperability behavior 

of the WN, whereas the right column corresponds to the PN. The first row of plots 

represents the high operability disruption scenario, whereas the second row 

corresponds to the medium operability disruption scenario.  

 

In all plots, the multi-state DIIM (dotted line) shows a faster reduction in 

inoperability compared to the traditional DIIM (solid line). This is because the multi-

state DIIM updates the interdependency coefficients (𝑎𝑊𝑁𝑃𝑁 and 𝑎𝑃𝑁𝑊𝑁) based on 

the current inoperability values of the CIs. Meanwhile, the traditional DIIM uses 

static coefficients, which do not adjust 𝐴̿ to model decreasing inoperability associated 

with recovery over time. 

 

For initial inoperability values, both approaches produce identical results in the high-

impact scenario, as the multi-state DIIM starts with the same values as the traditional 

DIIM. However, in the medium impact disruption scenario, the multi-state approach 

adjusts 𝑎𝑊𝑁𝑃𝑁 to 0.37 for 50% inoperability of PN (i.e., PN presents an unmet 

demand of 50% and falls in inoperability range 𝑟3
𝑃𝑁). The interdependency 

coefficient 𝑎𝑃𝑁𝑊𝑁 is also updated to 0.02, given that WN inoperability corresponds 

to inoperability range 𝑟2
𝑊𝑁. By comparison, the Boolean model uses static values of 

𝑎𝑊𝑁𝑃𝑁 = 0.93 and 𝑎𝑃𝑁𝑊𝑁 = 0.99, based on the most likely state condition, which 

overestimates inoperability.  
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Figure 20 - DIIM vs Multi-state DIIM for two perturbation scenarios 

5.2 Identification of critical nodes in the system of systems 

Along with inoperability estimation, the proposed methodology enables the 

identification of critical nodes, offering insights into the key nodes that most 

influence cascading failures in the system of systems. By focusing on high impact 

disruption scenarios, it is possible to find the most relevant nodes for each 

dependency under study.  

 

Analyzing the 𝑃𝑁 → 𝑊𝑁 dependency, the most critical nodes in 𝑁𝑃𝑁→𝑊𝑁
𝑊𝑁  are those 

more frequently affected by cascading failures from 𝐺𝑃𝑁: 𝑛1
𝑊𝑁 , 𝑛50

𝑊𝑁 and 𝑛16
𝑊𝑁. 

Among these, 𝑛1
𝑊𝑁 is the most critical for WN, as its failure alone can cause complete 

inoperability of the infrastructure, as shown in Figure 21. This finding can help 

effectively plan a resilience-improvement strategy for the interdependent CIs.  

 

Similarly, the analysis of the 𝑊𝑁 → 𝑃𝑁 dependency in high disruption scenarios 

shows that all nodes in 𝑁𝑊𝑁→𝑃𝑁
𝑃𝑁  are equally affected by cascading failures from 𝐺𝑊𝑁, 

as shown in the histogram in Figure 22. The failure of any single node in 𝑁𝑊𝑁→𝑃𝑁
𝑃𝑁  

results in the same inoperability range of PN (𝑟2
𝑃𝑁) — for example, nodes 𝑛1

𝑃𝑁 , 𝑛3
𝑃𝑁 

and 𝑛8
𝑃𝑁 in Figure 22. This suggests that significant effects on PN occur only when 

multiple supplier nodes fail simultaneously. 
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Figure 21 – Dependency 𝑃𝑁 → 𝑊𝑁: analysis of critical nodes in 𝐺𝑊𝑁 

 

Figure 22 – Dependency 𝑊𝑁 → 𝑃𝑁: analysis of critical nodes in 𝐺𝑃𝑁 
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5.3 Adoption of mitigation strategies 

 

Once critical nodes are identified, better informed mitigation strategies can be 

selected. For example, the owner of the WN might consider equipping the most 

critical node with a backup power supply, such as an emergency generator at 𝑛1
𝑊𝑁, 

to ensure the continued operation of the water treatment facility (𝑛1
𝑊𝑁) during power 

outages in PN.  

 

To reflect this retrofitting in the interdependency coefficient 𝑎𝑊𝑁𝑃𝑁, the 𝑃𝑁 → 𝑊𝑁 

dependency changes. Specifically, 𝑛1
𝑊𝑁 is removed from 𝑁𝑃𝑁→𝑊𝑁

𝑊𝑁  as well as its 

corresponding power supply nodes in 𝑁𝑃𝑁→𝑊𝑁
𝑃𝑁 , since 𝑛1

𝑊𝑁 is now independent of 

PN. The proposed methodology is then applied to this new dependency relation.  

 

Similarly, the owner of PN could invest in a robust water supply system, such as a 

dedicated backup water reservoir for the highest capacity supplier nodes (𝑛1
𝑃𝑁, 𝑛8

𝑃𝑁 

and 𝑛12
𝑃𝑁), ensuring their continued operation during disruptions in WN. With this 

retrofitting, the highest capacity PN supplier nodes become independent of WN. 

Consequently, they are removed from 𝑁𝑊𝑁→𝑃𝑁
𝑃𝑁  and their respective water supplier 

nodes from 𝑁𝑊𝑁→𝑃𝑁
𝑊𝑁 . This modifies the 𝑊𝑁 → 𝑃𝑁 dependency, requiring a new 

estimation of interdependency coefficient 𝑎𝑃𝑁𝑊𝑁, which is done using the proposed 

methodology.  

 

Then, assuming the suggested retrofitting for the previously identified critical nodes, 

the new interdependency coefficients for each inoperability range of PN and WN 

(𝑎𝑊𝑁𝑃𝑁[𝑟𝑘
𝑃𝑁], ∀𝑟𝑘

𝑃𝑁 ∈ 𝑟𝑃𝑁 and 𝑎𝑃𝑁𝑊𝑁[𝑟𝑘
𝑊𝑁], ∀𝑟𝑘

𝑊𝑁 ∈ 𝑟𝑊𝑁) are presented in 

Figure 23.  

 

After 

Retrofitting

Before 

Retrofitting
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Figure 23 - Interdependency coefficients 𝑎𝑊𝑁𝑃𝑁 and 𝑎𝑃𝑁𝑊𝑁, before and after retrofitting in 

each CI 

To show the effects of CIs retrofitting on the inoperability of the system of systems, 

two scenarios are simulated using DIIM. The first scenario (left plot in Figure 24) 

simulates an initial inoperability of 80% in PN to show the inoperability behavior of 

the dependent WN. The second scenario (right plot in Figure 24) simulates an 80% 

initial inoperability in WN. Figure 24 illustrates the inoperability behavior of WN 

and PN before and after retrofitting.  

 

The initial inoperability of WN decreases from 0.75 to 0.45, achieving a 30% 

reduction in the initial effects, demonstrating the reduced dependency 𝑃𝑁 → 𝑊𝑁 

(left subplot). The initial inoperability of PN reduces from 0.78 to 0.24, achieving a 

54% reduction (right subplot).  

 

 
Figure 24 – Inoperability comparison before and after investments in PN and WN  

These results demonstrate that targeted resilience-guided investments and retrofitting 

significantly enhance the resilience of both CIs, leading to substantial reductions in 

inoperability.  

 

Alternatively, to mitigate inoperability following operational disruptions, enhancing 
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the recovery by reducing the recovery time can also serve the scope of a resilience-

guided CI retrofitting [50]. Figure 20 compares the results when the matrix 𝐾̿ 

assumes 14 days of recovery for WN and 21 days for PN (continuous dark line) with 

those of a recovery time decreased (continuous light line) by 30%, from 14 to 10 

days for WN and from 21 to 15 days for PN.  

 

 
Figure 25 – Impact of 30% reduction in recovery times on inoperability curves for WN and PN 

under high and medium operability disruptions  

6. Conclusions 

This paper introduces a novel approach for modeling interdependencies between 

multi-state interdependent CIs in a system of systems. By considering the dynamic 

nature of disruption cascades in multi-state interdependent CIs, the proposed 

approach accounts for varying degrees of operability and inoperability between the 

multi-state CIs.  

 

The approach unfolds in three phases: (i) delineating the structure and operational 

characteristics of each CI using network theory, (ii) mapping the interdependencies 

between CIs based on the combination of subsystems/components’ inoperability 

states in individual CIs that lead the dependent CIs to a specific state of inoperability 
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upon disruption and, (iii) estimating the interdependency coefficients of the DIIM by 

simulation. The approach involves a stochastic exploration of scenarios to mine out 

multi-state interdependent CIs. Unlike traditional DIIM, this structured procedure 

reduces the expert judgment and the subjectivity of the results when updating the 

interdependency coefficients, reflecting the current inoperability state of CIs. 

 

A case study has been presented concerning a system of systems of a power network 

and a water network, each one with five possible inoperability ranges. A comparative 

analysis with the traditional DIIM approach shows the benefits of the multi-state 

methodology. In addition, the proposed methodology allows for an in-depth analysis 

of the internal state of CIs, providing relevant information to owner and managers. 

This includes the identification of critical nodes in the interdependency relation with 

other CIs and the effects of investing in the robustness of these nodes. Thus, the 

traditional DIIM (holistic approach), which provides valuable insights for planners 

of system of systems, is complemented with network theory (reductionist approach) 

and this combination delivers relevant operational information to the operators of the 

infrastructures. 

 

It is interesting to observe that the values of the interdependency coefficients in our 

case study, especially for the highest inoperability ranges of CIs (𝑟5
𝑃𝑁 for PN and 

𝑟5
𝑊𝑁 for WN), are significantly larger than those reported in other DIIM applications 

(e.g., [18,21,28]). This difference arises because previous studies make use of a 

single lumped interdependency coefficient, which averages best- and worst-case 

scenarios, shadowing the differences among the coefficients of the (realistically) 

different multi-states of inoperability.  

 

Specifically, our findings highlight that Equation (4) is sensible to high 

interdependency coefficients in 𝐴̿: when one CI is heavily dependent on another 

impacted CI, the inoperability reduction is prolonged as the interdependency effects 

are compounded over time, making individual recovery efforts insufficient without 

significant recovery of the dependent CI.  

 

As future research, while the proposed approach efficiently estimates 

interdependency coefficients, further advancements in scenario generation could 

enhance computational efficiency even more. The authors aim to develop advanced 

Monte Carlo simulation and artificial intelligence approaches for generating, 

exploring and analyzing operational disruption scenarios in complex CIs, where the 

number of possible combinations of the states of the nodes between interdependent 

multi-state CIs become large. Also, the recovery matrix level will be further analyzed 

for a more comprehensive representation of the actual management of multi-state 
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elements of CIs.  
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Appendix A: Operational disruption propagation in a generic 𝒌 CI  

This appendix details the propagation of operational disruption within a generic 𝑘 

CI, where nodes 𝑁𝑘 are classified as either supplier nodes 𝑁𝑆
𝑘 or demand nodes 𝑁𝐷

𝑘, 

thus 𝑁𝑘 = 𝑁𝑆
𝑘⋃𝑁𝐷

𝑘. 

 

The states of generic 𝑧 demand node 𝑛𝑧
𝑘 ∈ 𝑁𝐷

𝑘, and generic 𝑢 supplier node 𝑛𝑢
𝑘 ∈ 𝑁𝑆

𝑘, 

along with the states of the edges connecting these nodes, are exposed in  

Table A. 1.  

Table A. 1. Node and edge states of the generic k CI 

Entity  tate description 

Generic demand node 

𝑛𝑧
𝑘 ∈ 𝑁𝐷

𝑘 

Perfect functioning (𝑥1
𝑛𝑧
𝑘

) 

Disconnected (𝑥2
𝑛𝑧
𝑘

) 

Inoperable (𝑥3
𝑛𝑧
𝑘

) 

Generic supplier node 

𝑛𝑢
𝑘 ∈ 𝑁𝑆

𝑘 

Perfect functioning (𝑥1
𝑛𝑢
𝑘

) 

Disconnected (𝑥2
𝑛𝑢
𝑘

) 

Overload (𝑥3
𝑛𝑢
𝑘

) 

Inoperable (𝑥4
𝑛𝑢
𝑘

) 

Generic edge 𝑒𝑜𝑝
(𝑘,𝑘)

∈ 𝐸(𝑘,𝑘) 

𝑒𝑜𝑝
(𝑘,𝑘)

= (𝑛𝑜
𝑘, 𝑛𝑝

𝑘) ⊆ 𝑁𝑘 × 𝑁𝑘 

Available (𝑥1
𝑒𝑜𝑝
(𝑘,𝑘)

) 

Unavailable (𝑥2
𝑒𝑜𝑝
(𝑘,𝑘)

) 

 

Each 𝑛𝑧
𝑘 ∈ 𝑁𝐷

𝑘 has a nominal demand 𝑑̂𝑛𝑧
𝑘
, and each supplier node 𝑛𝑢

𝑘 ∈ 𝑁𝑆
𝑘 has an 

initial load 𝑙𝑛𝑢
𝑘
 and a maximum load capacity 𝑐𝑛𝑢

𝑘
. 

 

When all nodes of the 𝑘 CI are in the perfect functioning state 𝑥1
𝑛𝑧
𝑘

= 1 ∀𝑛𝑧
𝑘 ∈ 𝑁𝑘, 

the 𝑘 CI itself is in perfect functioning state (𝑋1
𝑘). The demand met in this state is 

denoted by 𝐷(𝑋1
𝑘), and can be estimated as: 
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𝐷(𝑋1
𝑘) = ∑ 𝑑̂𝑛𝑧

𝑘

𝑛𝑧
𝑘∈𝑁𝐷

𝑘

 
(18) 

 

Upon the occurrence of an operational disruption scenario 𝑠, the state of the nodes 

𝑁𝑘 undergoes changes, thereby altering the state of the infrastructure to 𝑋s
𝑘. The met 

demand in this scenario, denoted as 𝐷(𝑋s
𝑘), can be estimated by accounting for 

reductions due to various effects on the infrastructure: 

𝐷(𝑋s
𝑘) =  𝐷(𝑋1

𝑘) − 𝐷̃(𝑋s
𝑘)𝑟 − 𝐷̃(𝑋s

𝑘)𝑑 − 𝐷̃(𝑋s
𝑘)𝑜 (19) 

 

Where 𝐷̃(𝑋s
𝑘)𝑟 represents the unmet demand due to nodes becoming inoperable as 

direct effects of the disruption, 𝐷̃(𝑋s
𝑘)𝑑 is the demand unmet due to disconnections, 

and 𝐷̃(𝑋s
𝑘)𝑜 denotes the unmet demand resulting from overload supplier nodes.   

 

To estimate 𝐷̃(𝑋s
𝑘)𝑟, nodes directly impacted by the disruption are assumed to be in 

an inoperable state, and the demand from these nodes is summed as follows: 

𝐷̃(𝑋s
𝑘)𝑟 =∑𝑑̂𝑛𝑧

𝑘
    ∀ (𝑛𝑧

𝑘 ∈ 𝑁𝐷
𝑘|𝑥3

𝑛𝑧
𝑘

= 1) (20) 

 

Furthermore, the edges from nodes directly affected are marked as unavailable: 

 

𝑥2
𝑒𝑜𝑝
(𝑘,𝑘)

= 1,    ∀ (𝑛𝑜
𝑘 ∈ 𝑁𝑘|𝑥3

𝑛𝑜
𝑘

= 1) (21) 

 

This unavailability affects the topology of the network, leading to loss of certain 

connections  [51,52]. To estimate 𝐷̃(𝑋s
𝑘)𝑑 we follow the approach proposed by 

[46,53], which involves identifying the largest connected subgraph 𝐺̃𝑠
𝑘 under 

scenario 𝑠. Nodes and edges not included in 𝐺̃𝑠
𝑘 are updated to a disconnected state: 

 

𝑥2
𝑛𝑧
𝑘

= 1,    ∀𝑛𝑧
𝑘 ∉ 𝐺̃𝑠

𝑘 

 

𝑥2
𝑒𝑧𝑝
(𝑘,𝑘)

= 1,    ∀ (𝑛𝑧
𝑘|𝑥2

𝑛𝑧
𝑘

= 1) 

(22) 

 

𝐷̃(𝑋s
𝑘)𝑑 is the total demand of all demand nodes in a disconnected state, computed 

as: 

 

𝐷̃(𝑋s
𝑘)𝑑 =∑𝑑̂𝑛𝑧

𝑘
    ∀ (𝑛𝑧

𝑘 ∈ 𝑁𝐷
𝑘|𝑥2

𝑛𝑧
𝑘

= 1) (23) 

 

The impact of overload supplier nodes necessitates assessing the capacity of 

operational supplier nodes within 𝐺̃𝑠
𝑘, denoted as 𝐶(𝐺̃𝑠

𝑘), and the demand 
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requirements within the cluster, denoted as 𝐷(𝐺̃𝑠
𝑘). These metrics are estimated based 

on the operational supplier and demand nodes within the cluster, as follows: 

 

𝐶(𝐺̃𝑠
𝑘 ) = ∑𝑐𝑛𝑢

𝑘
    ∀ (𝑛𝑢

𝑘 ∈ 𝑁𝑆
𝑘 ∩ 𝐺̃𝑠

𝑘|𝑥1
𝑛𝑢
𝑘

= 1) (24) 

𝐷(𝐺̃𝑠
𝑘 ) =∑𝑑̂𝑛𝑧

𝑘
    ∀ (𝑛𝑧

𝑘 ∈ 𝑁𝐷
𝑘 ∩ 𝐺̃𝑠

𝑘|𝑥1
𝑛𝑧
𝑘

= 1) (25) 

 

Based on the calculated capacity 𝐶(𝐺̃𝑠
𝑘 ) and demand 𝐷(𝐺̃𝑠

𝑘 ) within the cluster, a 

redistribution of load among the operational supplier nodes is executed. This 

redistribution prioritizes supplier nodes with greater capacities to handle increased 

demands, in alignment with the methodology proposed by [53]. The estimated final 

load for each operational supplier node 𝑛𝑢
𝑘, denoted as  𝑙𝑛𝑢

𝑘
 is calculated as: 

𝑙𝑛𝑢
𝑘
= 𝑙𝑛𝑢

𝑘
+ [𝐷(𝐺̃𝑠

𝑘 ) ×
𝑐𝑛𝑢

𝑘

𝐶(𝐺̃𝑠
𝑘 )
] (26) 

 

Should the final load 𝑙𝑛𝑢
𝑘
 of a supplier node 𝑛𝑢

𝑘  exceeds its capacity, the node’s state 

transitions from operational (𝑥1
𝑛𝑢
𝑘

) to overload (𝑥3
𝑛𝑢
𝑘

). In such cases, the node’s final 

load is adjusted to its maximum capacity: 

 

𝑙𝑛𝑢
𝑘
= 𝑐𝑛𝑢

𝑘
 ∀ (𝑛𝑢

𝑘 ∈ 𝑁𝑆
𝑘 ∩ 𝐺̃𝑠

𝑘|𝑙𝑛𝑢
𝑘
> 𝑐𝑛𝑢

𝑘
)  (27) 

To determine 𝐷̃(𝑋s
𝑘)𝑜, the total load across the cluster 𝐿(𝐺̃𝑠

𝑘 ) is assessed, calculated 

as the sum of the final loads of operational supplier nodes not in an inoperable state: 

 

𝐿(𝐺̃𝑠
𝑘 ) =∑𝑙𝑛𝑢

𝑘
    ∀ (𝑛𝑢

𝑘 ∈ 𝑁𝑆
𝑘 ∩ 𝐺̃𝑠

𝑘|𝑥4
𝑛𝑢
𝑘

≠ 1) (28) 

 

𝐷̃(𝑋s
𝑘)𝑜 quantifies the lost demand given overload, representing the difference 

between the required demand in the cluster compared and the effective load 

supported by the operational supplier nodes: 

𝐷̃(𝑋s
𝑘)𝑜  = 𝐷(𝐺̃𝑠

𝑘 ) − 𝐿(𝐺̃𝑠
𝑘 ) (29) 

 

This difference, 𝐷̃(𝑋s
𝑘)𝑜, is zero if the operational load suffices to meet the cluster’s 

demand. However, should supplier nodes enter an overload state, a discrepancy 

emerges between the required and available capacities. 

 

Given the final state of all nodes, the overall met demand 𝐷(𝑋s
𝑘) can be estimated. 

Table A. 2 presents a pseudocode summarizing this process.  

 



40  

Table A. 2. Pseudocode of operability disruption propagation in a generic k CI 

Inputs for operability disruption in a generic 𝒌 CI: 

Nodes in the 𝑘-th CI, 𝑁𝑘 

Supplier nodes in the 𝑘-th CI, 𝑁𝑆
𝑘 

Demand nodes in the 𝑘-th CI, 𝑁𝐷
𝑘 

Demand of demand nodes in the 𝑘-th CI, 𝑑̂𝑛𝑧
𝑘
 ∀𝑛𝑧

𝑘 ∈ 𝑁𝐷
𝑘 

Initial load of supplier nodes in the 𝑘-th CI, 𝑙𝑛𝑢
𝑘
 ∀𝑛𝑢

𝑘 ∈ 𝑁𝑆
𝑘 

Capacity of supplier nodes in the 𝑘-th CI, 𝑐𝑛𝑢
𝑘
 ∀𝑛𝑢

𝑘 ∈ 𝑁𝑆
𝑘 

Initial state conditions for scenario 𝑠, 𝑋𝑠𝑜
𝑘  

Demand met by the 𝑘-th CI in perfect state, 𝐷(𝑋1
𝑘) 

1 for each node (𝑛𝑧
𝑘 ∈ 𝑁𝐷

𝑘|𝑥3
𝑛𝑧
𝑘

= 1): 

2 

 

set 𝐷̃(𝑋𝑆𝑂
𝑘 )

𝑟
= 𝐷̃(𝑋𝑆𝑂

𝑘 )
𝑟
+ 𝑑̂𝑛𝑧

𝑘
 unmet demand given demand node’s remotion  

3 

 

update 𝑥2
𝑒𝑧𝑝
(𝑘,𝑘)

= 1 to deactivate the edges of removed demand nodes 

4 end 

5 for each node (𝑛𝑢
𝑘 ∈ 𝑁𝑆

𝑘|𝑥4
𝑛𝑢
𝑘

= 1): 

6  
update 𝑥2

𝑒𝑢𝑝
(𝑘,𝑘)

= 1 to deactivate the edges of removed supplier nodes 

7 end 

8 define 𝐺̃𝑠𝑜
𝑘  as the largest connected cluster under initial conditions of scenario 𝑠𝑜 in the 𝑘 CI 

9 for each node 𝑛𝑧
𝑘 ∉  𝐺̃𝑠𝑜

𝑘  and 𝑥1
𝑛𝑧
𝑘

= 1: 

10  set 𝐷̃(𝑋𝑆𝑂
𝑘 )

𝑑
= 𝐷̃(𝑋𝑆𝑂

𝑘 )
𝑑
+ 𝑑̂𝑛𝑧

𝑘
 unmet demand given demand node’s disconnection 

11  update 𝑥2
𝑛𝑧
𝑘

= 1 to activate disconnection state for those nodes 

12 end  

13 set 𝐷( 𝐺̃𝑠𝑜
𝑘  ) required demand in the largest connected cluster 

14 set 𝐶( 𝐺̃𝑠𝑜
𝑘  ) supplier capacity in the largest connected cluster 

15 for each node 𝑛𝑢
𝑘 ∈ 𝑁𝑆

𝑘 and  𝐺̃𝑠𝑜
𝑘  

16  set 𝑙𝑛𝑢
𝑘
 final load of supplier nodes 

17  if 𝑙𝑛𝑢
𝑘
> 𝑐𝑛𝑢

𝑘
: 

18   set 𝑙𝑛𝑢
𝑘
= 𝑐𝑛𝑢

𝑘
 final load of node as its maximum capacity 

19   set 𝐿( 𝐺̃𝑠𝑜
𝑘  ) = 𝐿( 𝐺̃𝑠𝑜

𝑘  ) + 𝑙𝑛𝑢
𝑘
 supplier capacity in the largest connected cluster 

20  else: 

21   set 𝐿( 𝐺̃𝑠𝑜
𝑘  ) = 𝐿( 𝐺̃𝑠𝑜

𝑘  ) + 𝑙𝑛𝑢
𝑘
 supplier capacity in the largest connected cluster 

22  end 

23 end 

24 set 𝐷̃(𝑋𝑆𝑂
𝑘 )

𝑜
= 𝐷( 𝐺̃𝑠𝑜

𝑘  ) − 𝐿( 𝐺̃𝑠𝑜
𝑘  ) unmet demand given supplier node’s overload 

25 set final state of the 𝑘 CI under scenario 𝑠, 𝑋𝑠𝑓
𝑘  

26 set 𝐷(𝑋
𝑠𝑓
𝑘 ) = 𝐷(𝑋1

𝑘) − 𝐷̃(𝑋𝑆𝑂
𝑘 ) − 𝐷̃(𝑋𝑆𝑂

𝑘 )
𝑑
− 𝐷̃(𝑋𝑆𝑂

𝑘 )
𝑜
 

27 store 𝐷(𝑋𝑠𝑓
𝑘 ) and 𝑋𝑠𝑓

𝑘  

Output: 𝐷(𝑋𝑠𝑓
𝑘 ) and 𝑋𝑠𝑓

𝑘 , the attended demand of the 𝑘 CI and the final state of the infrastructure under scenario 𝑠, 

respectively 

 

Appendix B: Characterization of nodes in 𝑮𝑷𝑵 and 𝑮𝑾𝑵 

The demand for each node in 𝐺𝑃𝑁 and 𝐺𝑊𝑁 is based on the initial bus demands 

reported in the IEEE datasets for the IEEE57-bus test system and the IEEE85-bus 

system, respectively [54,55]. This data is detailed for each demand node in Table 

Table B. 1. For the supplier nodes, both the initial load and capacity are derived from 

these datasets, with the capacity corresponding to the maximum reported output. This 
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information is summarized in Table B. 2. 

Table B. 1. Demand for demand nodes in 𝐺𝑃𝑁 and 𝐺𝑊𝑁 

Demand of nodes in 𝑮𝑷𝑵 [MW] 
Node Demand Node Demand Node Demand Node Demand 
𝑛4
𝑃𝑁 0 𝑛21

𝑃𝑁 0 𝑛34
𝑃𝑁 0 𝑛46

𝑃𝑁 0 
𝑛5
𝑃𝑁 13 𝑛22

𝑃𝑁 0 𝑛35
𝑃𝑁 6 𝑛47

𝑃𝑁 29.7 
𝑛7
𝑃𝑁 0 𝑛23

𝑃𝑁 6.3 𝑛36
𝑃𝑁 0 𝑛48

𝑃𝑁 0 
𝑛10
𝑃𝑁 5 𝑛24

𝑃𝑁 0 𝑛37
𝑃𝑁 0 𝑛49

𝑃𝑁 18 
𝑛11
𝑃𝑁 0 𝑛25

𝑃𝑁 6.3 𝑛38
𝑃𝑁 14 𝑛50

𝑃𝑁 21 
𝑛13
𝑃𝑁 18 𝑛26

𝑃𝑁 0 𝑛39
𝑃𝑁 0 𝑛51

𝑃𝑁 18 
𝑛14
𝑃𝑁 10.5 𝑛27

𝑃𝑁 9.3 𝑛40
𝑃𝑁 0 𝑛52

𝑃𝑁 4.9 
𝑛15
𝑃𝑁 22 𝑛28

𝑃𝑁 4.6 𝑛41
𝑃𝑁 6.3 𝑛53

𝑃𝑁 20 
𝑛16
𝑃𝑁 43 𝑛29

𝑃𝑁 17 𝑛42
𝑃𝑁 7.1 𝑛54

𝑃𝑁 4.1 
𝑛17
𝑃𝑁 42 𝑛30

𝑃𝑁 3.6 𝑛43
𝑃𝑁 2 𝑛55

𝑃𝑁 6.8 
𝑛18
𝑃𝑁 27.2 𝑛31

𝑃𝑁 5.8 𝑛44
𝑃𝑁 12 𝑛56

𝑃𝑁 7.6 
𝑛19
𝑃𝑁 3.3 𝑛32

𝑃𝑁 1.6 𝑛45
𝑃𝑁 0 𝑛57

𝑃𝑁 6.7 
𝑛20
𝑃𝑁 2.3 𝑛33

𝑃𝑁 3.8     

Demand of nodes in 𝑮𝑾𝑵  [
𝒎𝟑

𝒉
] 

Node Demand Node Demand Node Demand Node Demand 
𝑛2
𝑊𝑁 0 𝑛23

𝑊𝑁 56 𝑛44
𝑊𝑁 35.28 𝑛65

𝑊𝑁 0 
𝑛3
𝑊𝑁 0 𝑛24

𝑊𝑁 35.28 𝑛45
𝑊𝑁 35.28 𝑛66

𝑊𝑁 56 
𝑛4
𝑊𝑁 56 𝑛25

𝑊𝑁 35.28 𝑛46
𝑊𝑁 35.28 𝑛67

𝑊𝑁 0 
𝑛5
𝑊𝑁 0 𝑛26

𝑊𝑁 56 𝑛47
𝑊𝑁 14 𝑛68

𝑊𝑁 0 
𝑛6
𝑊𝑁 35.28 𝑛27

𝑊𝑁 0 𝑛48
𝑊𝑁 0 𝑛69

𝑊𝑁 56 
𝑛7
𝑊𝑁 0 𝑛28

𝑊𝑁 56 𝑛49
𝑊𝑁 0 𝑛70

𝑊𝑁 0 
𝑛8
𝑊𝑁 35.28 𝑛29

𝑊𝑁 0 𝑛50
𝑊𝑁 36.28 𝑛71

𝑊𝑁 35.28 
𝑛9
𝑊𝑁 0 𝑛30

𝑊𝑁 35.28 𝑛51
𝑊𝑁 56 𝑛72

𝑊𝑁 56 
𝑛10
𝑊𝑁 0 𝑛31

𝑊𝑁 35.28 𝑛52
𝑊𝑁 0 𝑛73

𝑊𝑁 0 
𝑛11
𝑊𝑁 56 𝑛32

𝑊𝑁 0 𝑛53
𝑊𝑁 35.28 𝑛74

𝑊𝑁 56 
𝑛12
𝑊𝑁 0 𝑛33

𝑊𝑁 14 𝑛54
𝑊𝑁 56 𝑛75

𝑊𝑁 35.28 
𝑛13
𝑊𝑁 0 𝑛34

𝑊𝑁 0 𝑛55
𝑊𝑁 56 𝑛76

𝑊𝑁 56 
𝑛14
𝑊𝑁 35.28 𝑛35

𝑊𝑁 0 𝑛56
𝑊𝑁 14 𝑛77

𝑊𝑁 14 
𝑛15
𝑊𝑁 35.28 𝑛36

𝑊𝑁 35.28 𝑛57
𝑊𝑁 56 𝑛78

𝑊𝑁 56 
𝑛16
𝑊𝑁 35.28 𝑛37

𝑊𝑁 56 𝑛58
𝑊𝑁 0 𝑛79

𝑊𝑁 35.28 
𝑛17
𝑊𝑁 112 𝑛38

𝑊𝑁 56 𝑛59
𝑊𝑁 56 𝑛80

𝑊𝑁 56 
𝑛18
𝑊𝑁 56 𝑛39

𝑊𝑁 56 𝑛60
𝑊𝑁 0 𝑛81

𝑊𝑁 0 
𝑛19
𝑊𝑁 56 𝑛40

𝑊𝑁 35.28 𝑛61
𝑊𝑁 56 𝑛82

𝑊𝑁 56 
𝑛20
𝑊𝑁 35.28 𝑛41

𝑊𝑁 0 𝑛62
𝑊𝑁 56 𝑛83

𝑊𝑁 35.28 
𝑛21
𝑊𝑁 35.28 𝑛42

𝑊𝑁 35.28 𝑛63
𝑊𝑁 14 𝑛84

𝑊𝑁 14 
𝑛22
𝑊𝑁 35.28 𝑛43

𝑊𝑁 35.28 𝑛64
𝑊𝑁 0 𝑛85

𝑊𝑁 35.28 

 

Table B. 2. Initial load and capacity for supplier nodes in 𝐺𝑃𝑁 and 𝐺𝑊𝑁 

 upplier nodes in 𝑮𝑷𝑵  upplier nodes in 𝑮𝑾𝑵 

Node 

Initial 

load 

[MW] 

Capacity 

[MW] 
Node 

Initial load 

[
𝒎𝟑

𝒉
] 

Capacity 

[
𝒎𝟑

𝒉
] 

𝑛1
𝑃𝑁 0 575.88 𝑛1

𝑊𝑁 2514.28 2639.99 

𝑛2
𝑃𝑁 0 100    

𝑛3
𝑃𝑁 21.4 140    

𝑛6
𝑃𝑁 0 100    

𝑛8
𝑃𝑁 241.2 550    
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𝑛9
𝑃𝑁 0 100    

𝑛12
𝑃𝑁 166.2 410    

 

References  

[1] Wells EM, Boden M, Tseytlin I, Linkov I. Modeling critical infrastructure resilience under 

compounding threats: A systematic literature review. Progress in Disaster Science 

2022;15:100244. https://doi.org/10.1016/j.pdisas.2022.100244. 
[2] Huang CN, Liou JJH, Chuang YC. A method for exploring the interdependencies and 

importance of critical infrastructures. Knowl Based Syst 2014;55:66–74. 

https://doi.org/10.1016/j.knosys.2013.10.010. 

[3] Pant R, Barker K, Zobel CW. Static and dynamic metrics of economic resilience for 

interdependent infrastructure and industry sectors. Reliab Eng Syst Saf 2014;125:92–102. 

https://doi.org/10.1016/j.ress.2013.09.007. 

[4] Kujawski E. Multi-period model for disruptive events in interdependent systems. Systems 

Engineering 2006;9:281–95. https://doi.org/10.1002/sys.20057. 

[5] Mendelssohn IA, Andersen GL, Baltz DM, Caffey RH, Carman KR, Fleeger JW, et al. Oil 

Impacts on Coastal Wetlands: Implications for the Mississippi River Delta Ecosystem 

after the Deepwater Horizon Oil Spill. Bioscience 2012;62:562–74. 

https://doi.org/10.1525/bio.2012.62.6.7. 

[6] Fan C, Mostafavi A. A graph‐based method for social sensing of infrastructure disruptions 

in disasters. Computer-Aided Civil and Infrastructure Engineering 2019;34:1055–70. 

https://doi.org/10.1111/mice.12457. 

[7] Ouyang M. Review on modeling and simulation of interdependent critical infrastructure 

systems. Reliab Eng Syst Saf 2014;121:43–60. https://doi.org/10.1016/j.ress.2013.06.040. 

[8] Johansson J, Hassel H. An approach for modelling interdependent infrastructures in the 

context of vulnerability analysis. Reliab Eng Syst Saf 2010;95:1335–44. 

https://doi.org/10.1016/j.ress.2010.06.010. 

[9] Chang SE, McDaniels T, Fox J, Dhariwal R, Longstaff H. Toward disaster‐resilient cities: 

Characterizing resilience of infrastructure systems with expert judgments. Risk Analysis 

2014;34:416–34. https://doi.org/10.1111/risa.12133. 

[10] Bakhtiari S, Najafi MR, Goda K, Peerhossaini H. A dynamic Bayesian network approach 

to characterize multi-hazard risks and resilience in interconnected critical infrastructures. 

Reliab Eng Syst Saf 2025;257:110815. https://doi.org/10.1016/j.ress.2025.110815. 

[11] Cheng Q, Xie L, Wang Z, Liu Z, Lu X, Wang X. Multilevel assessment method for post-

earthquake functionality of medical buildings considering component–department–floor 

interdependencies. Reliab Eng Syst Saf 2024;251:110379. 

https://doi.org/10.1016/j.ress.2024.110379. 

[12] Sharma N, Gardoni P. Mathematical modeling of interdependent infrastructure: An object-

oriented approach for generalized network-system analysis. Reliab Eng Syst Saf 

2022;217:108042. https://doi.org/10.1016/j.ress.2021.108042. 

[13] Sharma N, Tabandeh A, Gardoni P. Regional resilience analysis: A multiscale approach 

to optimize the resilience of interdependent infrastructure. Computer-Aided Civil and 

Infrastructure Engineering 2020;35:1315–30. https://doi.org/10.1111/mice.12606. 

[14] Gong S, Chen L, Zhou Q, Gao X, Shen F. Vulnerability evolution of critical 

infrastructures: A multidimensional environment-integrated system dynamics analysis. 

Reliab Eng Syst Saf 2025;256:110719. https://doi.org/10.1016/j.ress.2024.110719. 

[15] Zhou S, Ng ST, Yang Y, Xu JF. Delineating infrastructure failure interdependencies and 

associated stakeholders through news mining: The case of Hong Kong’s water pipe bursts. 

Journal of Management in Engineering 2020;36. 



43  

https://doi.org/10.1061/(ASCE)ME.1943-5479.0000821. 

[16] Sun W, Bocchini P, Davison BD. Overview of Interdependency Models of Critical 

Infrastructure for Resilience Assessment. Nat Hazards Rev 2022;23. 

https://doi.org/10.1061/(asce)nh.1527-6996.0000535. 

[17] Setola R, Rosato V, Kyriakides E, Rome E. Managing the complexity of critical 

infrastructures: A modelling and simulation approach. 2016. 

[18] Jonkeren O, Giannopoulos G. Analysing critical infrastructure failure with a resilience 

inoperability input-output model. Economic Systems Research 2014;26:39–59. 

https://doi.org/10.1080/09535314.2013.872604. 

[19] Haimes YY, Jiang P. Leontief-based model of risk in complex interconnected 

infrastructures. Journal of Infrastructure Systems 2001;7:1–12. 

[20] Setola R, De Porcellinis S, Sforna M. Critical infrastructure dependency assessment using 

the input-output inoperability model. International Journal of Critical Infrastructure 

Protection 2009;2:170–8. https://doi.org/10.1016/j.ijcip.2009.09.002. 

[21] Jin J, Zhou H. A Demand-side inoperability Input–Output Model for strategic risk 

management: insight from the COVID-19 outbreak in Shanghai, China. Sustainability 

2023;15:4003. https://doi.org/10.3390/su15054003. 

[22] Santos J, Roquel KIDZ, Lamberte A, Tan RR, Aviso KB, Tapia JFD, et al. Assessing the 

economic ripple effects of critical infrastructure failures using the dynamic inoperability 

input-output model: a case study of the Taal Volcano eruption. Sustain Resilient 

Infrastruct 2023;8:68–84. https://doi.org/10.1080/23789689.2022.2127999. 

[23] Oosterhaven J. On the limited usability of the inoperability IO model*. Economic Systems 

Research 2017;29:452–61. https://doi.org/10.1080/09535314.2017.1301395. 

[24] Barker K, Rocco SCM. Evaluating uncertainty in risk-based interdependency modeling 

with interval arithmetic. Economic Systems Research 2011;23:213–32. 

https://doi.org/10.1080/09535314.2011.572064. 

[25] Setola R, Oliva G, Conte F. Time-Varying Input-Output Inoperability Model. Journal of 

Infrastructure Systems 2013;19:47–57. https://doi.org/10.1061/(asce)is.1943-

555x.0000099. 

[26] Barker K, Haimes YY. Assessing uncertainty in extreme events: Applications to risk-

based decision making in interdependent infrastructure sectors. Reliab Eng Syst Saf 

2009;94:819–29. https://doi.org/10.1016/j.ress.2008.09.008. 

[27] Galbusera L, Azzini I, Jonkeren O, Giannopoulos G. Inoperability Input-Output Modeling: 

Inventory Optimization and Resilience Estimation during Critical Events. ASCE ASME J 

Risk Uncertain Eng Syst A Civ Eng 2016;2. https://doi.org/10.1061/AJRUA6.0000861. 

[28] Lian C, Halmes YY. Managing the risk of terrorism to interdependent infrastructure 

systems through the Dynamic Inoperability Input-Output Model. Systems Engineering 

2006;9:241–58. https://doi.org/10.1002/sys.20051. 

[29] Santos JR, Yu KDS, Pagsuyoin SAT, Tan RR. Time-varying disaster recovery model for 

interdependent economic systems using hybrid input-output and event tree analysis. 

Economic Systems Research 2014;26:60–80. 

https://doi.org/10.1080/09535314.2013.872602. 

[30] Ramos Carvajal M del C, Blanc Díaz M. The foundations of dynamic input-output 

revisited: ¿Does dynamic input-output belong to growth theory? 

Https://DialnetUniriojaEs/Servlet/Extart?Codigo=1252455 2002. 

[31] Wang Y, Gao S, Wang F. Measurement of Power Grid Resilience Based on a Dynamic 

Inoperability Input–Output Model. Front Phys 2022;10. 

https://doi.org/10.3389/fphy.2022.895267. 

[32] He X, Cha EJ. Modeling the damage and recovery of interdependent critical infrastructure 

systems from natural hazards. Reliab Eng Syst Saf 2018;177:162–75. 



44  

https://doi.org/10.1016/j.ress.2018.04.029. 

[33] Xu W, Wang Z, Hong L, He L, Chen X. The uncertainty recovery analysis for 

interdependent infrastructure systems using the dynamic inoperability input-output model. 

Int J Syst Sci 2015;46:1299–306. https://doi.org/10.1080/00207721.2013.822121. 

[34] Johansson J, Hassel H, Zio E. Reliability and vulnerability analyses of critical 

infrastructures: Comparing two approaches in the context of power systems. Reliab Eng 

Syst Saf 2013;120:27–38. https://doi.org/10.1016/j.ress.2013.02.027. 

[35] Mühlhofer E, Koks EE, Kropf CM, Sansavini G, Bresch DN. A generalized natural hazard 

risk modelling framework for infrastructure failure cascades. Reliab Eng Syst Saf 

2023;234:109194. https://doi.org/10.1016/j.ress.2023.109194. 

[36] Kelly S. Estimating economic loss from cascading infrastructure failure: a perspective on 

modelling interdependency. Infrastructure Complexity 2015;2:7. 

https://doi.org/10.1186/s40551-015-0010-y. 

[37] Salomon J, Broggi M, Kruse S, Weber S, Beer M. Resilience Decision-Making for 

Complex Systems. ASCE-ASME Journal of Risk and Uncertainty in Engineering 

Systems, Part B: Mechanical Engineering 2020;6. https://doi.org/10.1115/1.4044907. 

[38] Zhang C, Wang Y, Zheng T, Wang C, Zhang K. Identifying critical weak points of power-

gas integrated energy system based on complex network theory. Reliab Eng Syst Saf 

2024;246:110054. https://doi.org/10.1016/j.ress.2024.110054. 

[39] Bompard E, Pons E, Di Wu. Extended topological metrics for the analysis of power grid 

vulnerability. IEEE Syst J 2012;6:481–7. https://doi.org/10.1109/JSYST.2012.2190688. 

[40] Salomon J, Behrensdorf J, Winnewisser N, Broggi M, Beer M. Multidimensional 

resilience decision-making for complex and substructured systems. Resilient Cities and 

Structures 2022;1:61–78. https://doi.org/10.1016/j.rcns.2022.10.005. 

[41] Wang K, Xu Z, Liu Y, Fang Y. Resilience enhancement for multistate interdependent 

infrastructure networks: from a preparedness perspective. IEEE Trans Reliab 

2023;72:190–203. https://doi.org/10.1109/TR.2021.3132774. 

[42] Rinaldi SM, Peerenboom JP, Kelly TK. Identifying, understanding, and analyzing critical 

infrastructure interdependencies. IEEE Control Syst 2001;21:11–25. 

https://doi.org/10.1109/37.969131. 

[43] Wolfgang Kroger, Enrico Zio. Chapter 2: Properties of critical infrastructures. Vulnerable 

Systems, 2011, p. 9–30. 

[44] Wang Y, Guo P, Wu Y, Chen Y, Zio E. Vulnerability assessment of interdependent 

infrastructures based on a cascading failure model. 2022 6th International Conference on 

System Reliability and Safety (ICSRS), IEEE; 2022, p. 40–4. 

https://doi.org/10.1109/ICSRS56243.2022.10067571. 

[45] Enrico Zio, Giovanni Sansavini. Modeling failure cascades in critical infrastructures with 

physically-characterized components and interdependencies. ESREL 2010 Annual 

Conference, 2010, p. 652–61. 

[46] Wu Y, Guo P, Wang Y, Du M, Wang X, Zhang D. Vulnerability Analysis of 

Interdependent Infrastructures Considering the Sensitivity of Components to Different 

Risks. 2023 IEEE International Conference on Systems, Man, and Cybernetics (SMC), 

IEEE; 2023, p. 2403–8. https://doi.org/10.1109/SMC53992.2023.10394131. 

[47] Popov I. Multi-supplier power grid framework based on multicommodity routing. 2015 

International Energy and Sustainability Conference (IESC), IEEE; 2015, p. 1–7. 

https://doi.org/10.1109/IESC.2015.7384387. 

[48] Rubido N, Grebogi C, Baptista MS. Resiliently evolving supply-demand networks. Phys 

Rev E 2014;89:012801. https://doi.org/10.1103/PhysRevE.89.012801. 

[49] Almoghathawi Y, Barker K, Albert LA. Resilience-driven restoration model for 

interdependent infrastructure networks. Reliab Eng Syst Saf 2019;185:12–23. 



45  

https://doi.org/10.1016/j.ress.2018.12.006. 

[50] Johansen C, Tien I. Probabilistic multi-scale modeling of interdependencies between 

critical infrastructure systems for resilience. Sustain Resilient Infrastruct 2018;3:1–15. 

https://doi.org/10.1080/23789689.2017.1345253. 

[51] Li D, Zhang Q, Zio E, Havlin S, Kang R. Network reliability analysis based on percolation 

theory. Reliab Eng Syst Saf 2015;142:556–62. https://doi.org/10.1016/j.ress.2015.05.021. 

[52] Zhang D, Du F, Huang H, Zhang F, Ayyub BM, Beer M. Resiliency assessment of urban 

rail transit networks: Shanghai metro as an example. Saf Sci 2018;106:230–43. 

https://doi.org/10.1016/j.ssci.2018.03.023. 

[53] Wang S, Lv W, Zhao L, Nie S, Stanley HE. Structural and functional robustness of 

networked critical infrastructure systems under different failure scenarios. Physica A: 

Statistical Mechanics and Its Applications 2019;523:476–87. 

https://doi.org/10.1016/j.physa.2019.01.134. 

[54] MATPOWER. Case 57 Power flow data for IEEE 57 bus test case. 

Https://MatpowerOrg/Docs/Ref/Matpower50/Case57Html 2014. 

[55] Medina-Quesada Á, Montoya OD, Hernández JC. Derivative-Free Power Flow Solution 

for Bipolar DC Networks with Multiple Constant Power Terminals. Sensors 

2022;22:2914. https://doi.org/10.3390/s22082914. 

  


