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Motivation

Information Decision

Descriptive 
What happened? Why?

Predictive 
What will happen?

Prescriptive
What to do?

World & data
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Motivation

• What to do is often not straightforward, instead very 
complicated, in real industrial systems.

• Decision theory + Optimization

• Maintenance planning of a wind farm

→ Many turbines

→ Limited repair resources

→ Maintenance (preventive, corrective, 
opportunistic) cost v.s. profit

→ Decide maintenance time, spare parts

→ Even with RUL estimated perfectly…
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A bit advertisement 

• Master Operation Research and Risk Analytics at 
CentraleSupélec

→ Related courses: optimization of complex decisions, 
stochastic optimization, decision making and preference 
modelling, predictive maintenance

• Using math and data to solve problems and make smart 
decisions, especially when dealing with uncertainty and risks

Source: CNBC
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Outline

• Risk measures 

• Stochastic decision-making and optimization

→ Optimization model introduction

→ Stochastic optimization formalization

• Sampled average approximation

• Risk-averse stochastic optimization
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St. Petersburg paradox
• From Nicolas Bernoulli’s letter 1713

• St. Petersburg game: flip a fair coin until it comes up heads 
the 1st time. At that point the player wins $2n, where n is the 
number of times the coin was flipped. How much should one 
pay for playing this game?

• Decision theorists’ advice: the expected value
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St. Petersburg paradox

• The “paradox”: it would be rational to pay any finite fee to play 
the game?

• Proposed resolutions, e.g., Daniel Bernoulli’s expected utility

→ utility = log10(2
n)  (diminishing marginal utility)

→expected utility ≈ $4

→satisfactory?

• Why we have the paradox? 

→Expectation neglects the risk of the (bad) outcomes

Loss
a-2a-4a-8a-16

1/2

1/4

1/8
1/16
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Risk attitude 

• Different attitudes towards the risk of the outcomes

• Classifications

→ Risk averse fear loss and seek sureness

→ Risk neutral are indifferent to the degree of risky outcome

→ Risk seeking hope to “win big” and don’t mind losing as 
much

Game A: 
20% +1000€, 80% �100 €

Game B:
100% +120€
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Risk and risk measures

• Random outcomes: r.v.

→ “Cost/loss” oriented �: high outcomes bad, low outcomes 
good

• Risk measure: a quantification be applied to � that elicits 
the level of “cost/loss” in �

• Risk ≠ Uncertainty (statistical dispersion)

The combination of the uncertainty of occurrence of “bad 
outcome”, and the severity of that outcome

Risk:
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Some proposals

• Expectation:

→  ⇔ � ≤ � on average

→ but not risk averse (risk measure?), perhaps too feeble

• Focusing on worst cases:
→ ⇔ � ≤ � almost surely

→ Averse, perhaps overly conservative, infeasible

Cost/loss �
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Some proposals

• Mean variance:

→ Widely used in finance (portfolio optimization, Harry 
Markowitz 1952)

→ Possible drawback: variance is symmetric! penalizes high 
cost as well as low cost (profit?)

Cost/loss �
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Value-at-Risk (VaR), -quantile

• Loss/cost r.v. � associated with CDF �(
)

• For any � ∈ [0, 1], the VaR on � is defined by

• For continuous CDF,

• For strictly increasing and continuous CDF 

• Then
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• Widely used (in Finance)

• VaRα pays no attention to the magnitude 
of losses when the rare event of 
experiencing a loss above the level VaRα
occurs

• Bad mathematical & computational 
behavior: nonconvex, nonlinear 

Value-at-Risk (VaR), -quantile

• J.P. Morgan 95%

• Bank of America 95%

• Citibank 95.4%

• Chase Manhattan 97.5%

• Basel Committee on Bank 

Supervision 99%

Loss

f(
X
)

VaR0.95
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Conditional VaR, -superquantile

• For � ∈ [0, 1], the CVaR on � is defined by

• Or, equivalently

• Good mathematical behaviors

• Measure the 

� ≤ � on average in 

upper �-tail
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Coherent risk measures

Definition

A risk measure       is called coherent if it satisfies the 
following properties:

(A1) Convexity.                   and     random variables ⇒

(A2) Monotonicity.              a.s. ⇒

(A3) Translation invariance. If � is a r.v. and         , then

(A4) Positive homogeneity. 

References: Artzner et al. (1999), Ruszczynski and Shapiro (2006)
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Properties of risk measures

• Convex? No

• Monotone? Yes

• Translation invariant? Yes

• Positively homogeneous? Yes, if

Mean variance

• Convex? Yes

• Monotone? No

• Translation invariant? Yes

• Positively homogeneous? No
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Nonconvexity of VaR

• Suppose there are three equally likely outcomes (loss)

• 0.5VaR0.6(�
1)+0.5VaR0.6(�

2) < VaR0.6(0.5�1+0.5�2)  
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Nonmonotonicity of mean variance

• Suppose there are two outcomes: �(1) = 0.95, �(2) = 0.05

• �1 � �2 with probability 1, but mean variance (or mean 
standard-deviation) would prefer �1 for modest values of �
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Properties of risk measures

CVaR(·) is coherent (Rockafellar and Uryasev, 2000)

• Convex? Yes

• Monotone? Yes

• Translation invariant? Yes

• Positively homogeneous? Yes
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Outline

• Risk measures 

• Stochastic decision-making and optimization

→ Optimization model introduction

→ Stochastic optimization formalization

• Sampled average approximation

• Risk-averse stochastic optimization
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Stochastic DM problems for resilience

• Mitigate flooding risk of an NPP 

→ Dike, what height? 

→ Uncertain flooding level & outcomes

• Design resilient supply chain under 
unexpected perturbations (e.g., Covid)

→ Backup/secondary suppliers? inventory?

→ Uncertain perturbation type, frequency, 
outcomes

• Maintenance planning of wind farms

→ Maintenance time, spare parts

→ Uncertain lifetimes (RUL) of items
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A simple example 

• Use optimization to plan maintenance actions of a wind farm 
composed of 5 turbines based on their RUL forecasts

• Key question: “When should we schedule maintenance actions 
across time while minimizing cost?” Why:

→ Some turbines are close to failure → act early

→ Resources (technicians/equipment) are limited

→ Other considerations in practice: opportunistic cost, overall 
system performance requirement, etc.
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A simple example 

• Problem setup: we manage 10 turbine over 8 time periods (e.g., 
weeks)

• Each turbine has

→ a predicted RUL"

→ costs to maintain preventively #"

→ a higher cost if it fails $" > #"

• Constraints:

→ max 2 maintenance slots per period

→ Each is maintained at most once in the planning horizon

• Objectives: minimize total maintenance + failure costs
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A simple example

• Decision variables: the quantities you can control or choose to 
achieve the best possible outcome

• Binary decision variables

& = 8765432' = 1

????????M1

????????M2

…

????????M10
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A simple example

• Constraints: on the decision variables

• Maintenance recourses limit per time

• Maintenance window: each turbine must be maintained at most 
once and only within its RUL
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A simple example

• Objective function: the quantities you can control or choose 
to achieve the best possible outcome

• First term = total maintenance cost

• Second term = total penalty for failure
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A simple example

• The whole model:
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Optimization model concepts

• Key elements:

→ Decision variables: the quantities you can control or 
choose (e.g., maintenance time, height of a dike, supplier 
selection, etc.)

→ Constraints: on decision variables (physical, operational, 
economical, etc.)

→ Objective function: rewards (economic gain, system 
performance) or costs/loss

→ Uncertainty: in evaluating the objective and the feasibility of 
constraints under different disruption scenarios



29Resilience of Critical Infrastructures @ Polimi5/8/2025

Optimization model concepts

• Deterministic mathematical optimization problem

• Minimize a “cost” under constraints on the decision, which 
involve bounds on other “costs”

•

•

•

• Feasible solution: 
 that satisfies the ( constraints

• Optimal solution (set) 
⋆ (*⋆) has the smallest objective value 
among all the feasible solutions



30Resilience of Critical Infrastructures @ Polimi5/8/2025

Model classification

• Often classified according to the types of the decision variables, 
constraints, and the objective function

• Integer (binary) linear program: decision variables are 
integers, constraint and objective functions are linear
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Model classification

• Decision variable

→Discrete (integer), continuous, mixed

• Unconstrained vs. constrained

• Constraint and objective function forms

→Linear vs nonlinear

→e.g., quadratic programming has quadratic objective 
function & linear constraints

• Convexity

→Convex vs nonconvex optimization

• Deterministic vs. Stochastic

• Example: mixed integer quadratically constrained quadratic 
programs
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Solving optimization problem 

• General optimization problem

→Very difficult to solve

→Methods involve compromise, e.g., very long computation 
time, or not always finding the optimal solution

• Convex optimization problems: the clearest dividing line 
between efficiently solvable problems and numerical problems 
for which we have no hope to solve it easily, e.g.

→Least square (LS) problems

→Linear programming (LP) problems
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Convex optimization

• Objective and constraint functions are convex:

For all 
, + ∈ ,-. $,  0 ≤ / ≤ 1

(
, $(
)) (+, $(+))
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Convex optimization

• Solving convex optimization
→ No analytical solution

→ Reliable and efficient algorithms

→ Almost a technology

• Using convex optimization

→ Often difficult to recognize

→ Many tricks for transforming problems into convex form

→ Surprisingly, many problems can be solved via convex 
optimization
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The power of convexity

• First-order condition: differentiable $ with convex domain is 
convex iff 

• Theorem: any locally optimal point of a convex problem is 
(globally) optimal

First-order approximation of $ is 
global underestimator
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Least squares

• Solving LS problems:

→ Analytical solution: 
⋆ = (0&0)−�0&�

→ Reliable and efficient algorithms and software

→ A mature technology

• Using LS: 

→ LS problems are easy to recognize
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Linear programming

• Solving LP:

→ No analytical formula for solution

→ Reliable and efficient algorithms and software

→ A mature technology a mature technology, especially for 
problems of reasonable size

• Using LP:

→ Not as easy to recognize as LS problems, e.g., problems 
involving piecewise-linear functions
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Outline

• Risk measures 

• Stochastic decision-making and optimization

→ Optimization model introduction

→ Stochastic optimization formalization

• Sampled average approximation

• Risk-averse stochastic optimization
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Optimization under uncertainty

• A stand optimization problem with uncertainty

• Decision 
 must be made with uncertain parameter 2

• Objective            cost/loss function (to be minimized), 
depending on our decision 
, and the realization of uncertain 
nature 2

• Same to the constraint functions
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Optimization under uncertainty

• Example: 

→ 
 the height of a dike to be constructed

→ 2 = heights of the possible flooding

→ the economic loss associated with a given (
, 2)

• How to model the uncertainty 2?

• The Stochastic Programming (SP) approach

→ 2 ∈ Ξ = random variable with known probability law

→ Then,           are random variables for any given 
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Formulation challenges

• Outcome < 0, if any, correspond to “reward/profit”


• The distribution of can only be shaped by the choice of 


• How then can constraints and minimization be understood?

Key issue in problem formulation
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Remedy: risk measures

• Constraints: keeping $"(
, 2) “acceptably” ≤ �"

modeled as: constraint

• Objective: keeping 4
�
(
, 2) “as reasonably low as possible”

modeled as: minimizing

• Key assumption: the probability distribution P of 2 is known 

(e.g., estimated from historical data)

$(
, 2)• Articulate r.v. $(
, 2) numerically as               for a chosen 

risk measure

Systematic prescription
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SP with the expectation

• Objective is small on average

• Constraints are satisfied on average

• The expectation is suitable for “soft” constraint, e.g., quality 
of service, whose violation is tolerable

• �" have analytical expressions only in very few cases; mostly, 

need to solve the problem approximately, e.g., sample average 

approximation (SAA) (Monte Carlo sampling)
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SP example

Problem: protect a power plant from potential river flooding by 
building a dike with a height 
 meter

5




• Linear investment cost # ⋅ 
 (annualized)

• Uncertain annual maximum flooding 
water height 5

• Annual loss is linear related to the height 
of overflow 5 − 
 when it’s positive 
with uncertain coefficient �

• Objective: minimize investment cost + expected economic 
loss
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Outline

• Risk measures 

• Stochastic decision-making and optimization

→ Optimization model introduction

→ Stochastic optimization formalization

• Sampled average approximation

• Risk-averse stochastic optimization
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Sampled approximation

• Idea: replace the expectation with a sampled model when the 
support Ξ is continuous

• Generate 6 i.i.d samples 2
�
, 2

�
,… , 26, each with 89 = 1/6

• Now solve the finite event deterministic SAA problem

• Now, a deterministic optimization model
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Sampled approximation

• Denote by      the optimal value of the SAA problem and 
6
⋆ ∈

*6
⋆ an optimal solution (set)

• How good is the quality of the sampled SAA solution

• Does it approach the true optimal value ;⋆ and the true set of 

optimal solution *⋆ (as N increases)?

• How fast?

• How to validate the approximation in practice?
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SAA and out-of-sample example

• Annual cost function of the dike design problem

• We solve SAA with 6 = 10, 100, 1000, validation set uses 
<=100k

• Solved by LP (piecewise min can be transformed to LP)
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SAA and out-of-sample example

100010010N

1.821.871.86
6
⋆

2.1012.1721.859=6

2.1022.1062.104=val

• N � 1000 is probably 

fine

• Computational cost 
increases very quickly 
along with 6

→ Better sampling

→ Decomposition
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Outline

• Risk measures 

• Stochastic decision-making and optimization

→ Optimization model introduction

→ Stochastic optimization formalization

• Sampled average approximation

• Risk-averse stochastic optimization
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Risk averse stochastic optimization

• To control of the tail risk in risk averse situations

4(	
1
, 2)

4(	
�
, 2)

Cost / loss
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VaR and chance constraints

• Let 4(
, 2) represent a random loss function by definition:

• Chance constraint:

• VaR in the objective function

• In general, chance constraints are nonconvex and non-smooth, 

very difficult to optimize 
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CVaR optimization

• For � ∈ [0, 1], the CVaR on � is defined by

• Computing CVaR generally requires the computation of VaR

• CVaR-minimization might be even harder than VaR-
minimization problem?

Under quite reasonable modeling assumptions, the opposite 
is true because that CVaR is coherent!
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VaR vs CVaR in risk optimization

CVaR is superior to VaR in risk optimization

• VaR is difficult to optimize numerically when losses are not 
normally distributed 

• CVaRα preserves convexity and can be expressed as a 
mimimization formulation

• CVaRα ≥ VaRα always holds, CVaR is a conservative 
approximation of VaR

• Able to control the expected tail risk
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CVaR optimization

• Recall 4(
, 2) represents a random loss function

• Consider the auxiliary function
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CVaR optimization

Proof: i) Since [4 
, 2 − C]� is a convex function in C, it is 

true that this convexity is preserved by integrals and linear 

combination (Page 79, Boyd, S. and Vandenberghe, L., 

2004. Convex optimization. Cambridge university press)

ii) Since minC �� 
, C is convex based on theorem 1(i), the 

KKT conditions are sufficient for optimality, i.e., we only need 

to check that �� 
, C is stationary at C � VaRα(
)
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CVaR optimization

ii) Based on the following Proposition (Shapiro & Wardi 1994):

G′[$(
)] = G[$′(
)] when the function $(
) is convex w.p.1

Shapiro, A., and Y. Wardi. "Nondifferentiability of the steady-state function in discrete event dynamic systems." IEEE 

transactions on Automatic Control 39, no. 8 (1994): 1707-1711.

we have
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CVaR optimization

iii) We have
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CVaR optimization

The theorems imply

• If the loss function 4(
, 2) is convex in 
, then            is 

convex in 
 and C, the problem is convex optimization that 

can be well solved

•
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CVaR optimization

• If CVaR is in the constraint

• Thus, 

• Convex optimization when 4(
, 2) is convex in 
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CVaR optimization

• In the discrete case (e.g., sampling)

• Replace                    by additional variables IJ,   

• When 4(
, 2) affine in 
, the CVaR minimization is an LP

• When 4(
, 2) convex in 
, convex optimization



62Resilience of Critical Infrastructures @ Polimi5/8/2025

CVaR optimization example

• Optimal dike construction
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CVaR optimization example


 [m](6 = 2000)

1.80SAA

2.78CVaR0.85

2.95CVaR0.9

3.00CVaR0.95
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Exercises

• Decision analysis and risk-informed optimization for resilience
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