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Data classification and screening

• For the estimation of the parameters of the failure models used in
probabilistic risk assessment, the data sources available are typically of two
kinds:

- generic raw data

- plant specific data.

For the parameters of a common cause failure model, in principle:

1) A complete set of events should be available for each of the common cause
component groups.

2) A complete set of events should be found for each of the common cause
component groups.
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Data classification and screening

▪ Binary Impact Vector for each event that has occurred in a group of size m

e.g. , 2 components have failed in a group of size 3:

▪ Event descriptions are not clear → classification of the event requires 
establishing hypotheses representing different interpretations of the 
event. Probability are associated to the hypotheses.

𝐼 𝑗 = [ 𝐼1 𝑗 , . . , 𝐼𝑚 𝑗 ]

𝐼 𝑗 = [0,1,0]
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Data classification and screening

• Average impact vector (not binary): for a given event j: 

𝑃 𝑗 = [𝑃1 𝑗 , . . , 𝑃𝑚 𝑗 ]

• Several events → computation of nk = the total number of events involving 
the failure of k similar components in the group 
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Parameter estimation

• Task: use the data available on dependent failures to estimate:

1. the basic event probabilities directly (within the basic 

parameter model)

2. the parameters of the common cause failure models (beta 

factor, BFR, etc.). 

The information provided by the set of impact vectors derived 

from recorded data amounts to the number of events in which 

1,2,3,…m components failed.
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Beta-factor estimation for a two-train redundant standby 
safety system tested for failures 

• Available recorded evidence:
▪ n1 failures of single components

▪ n2 failures of both components

▪ : total single component failure probability
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number of tests 

for common-

cause failures 

number  of single-component 

demands to start 

Unknown!

tQ



Prof. Enrico Zio

• Estimation of N (number of single-component demands to start)

• Estimation of N2 → surveillance testing strategy
• Both components are tested at the same time

Beta-factor estimation for a two-train redundant standby 
safety system tested for failures (TEST STRATEGY I)

Total number of failures

Day 0 Day 15 Day 30 Day 45 Day 60

Comp. 1 S S F F S

Comp. 2 S F S F S

N 2 4 6 8 10

N2 1 2 3 4 5

n1 0 1 2 2 2

n2 0 0 0 1 1

Tests = Demands 
to start

N2: number of tests for 

common-cause failures 

n1 : failures of single 

components

n2 : failures of both 

componentsIt is assumed to be known
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Beta-factor estimation for a two-train redundant standby 
safety system tested for failures (TEST STRATEGY I)
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Total number of failure

• Estimation of N (number of single-component demands to start)

• Estimation of N2 → depends on the testing strategy
• Both components are tested at the same time

𝑁 = 2𝑁2

number  of single-component demands to start 

number of tests for 

common-cause failures 
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Beta-factor estimation for a two-train redundant standby 
safety system tested for failures (TEST STRATEGY II)

• The components are tested at staggered intervals, if there is a failure, the 
second component is tested immediately. N2 is known. N is linked to N2 

from:

Number  of single-
component demands to start

212 nnNN ++=

Day 0 Day 15 Day 30 Day 45 Day 60

Comp. 1 S S F F S

Comp. 2 NO TEST NO TEST S F NO TEST

N 1 2 4 6 7

N2 1 2 3 4 5

n1 0 0 1 1 1

n2 0 0 0 1 1

Tests = Demands to start

Number  of tests for 
common-cause failures

Number of failures of a 
single component

Number  of failures 
involving both 
components

If both components are failed is for CCF!
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Beta-factor estimation for a two-train redundant standby 
safety system tested for failures (TEST STRATEGY II)

• The components are tested at staggered intervals, if there is a failure, the 
second component is tested immediately. N2 is known. N is linked to N2 

from:
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Number  of single-component demands to start

212 nnNN ++=

Estimates of β are based 

on the assumptions on 

the testing strategies
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Binomial failure rate (BFR) model

• System composed of m identical components operating for time 𝑇. 

▪ Each component can fail at random times, independently of each other, with 
failure rate .

▪ A common cause shock can hit the system with occurrence rate .

▪ Whenever a shock occurs, each of the m individual components may fail with 
probability p, independent of the states of the other components (p=1→-
model)

▪ Shocks and individual failures occur independently of each other;

▪ All failures are immediately discovered and repaired, with negligible repair time

• 𝑁𝑖 random number of occurrences of 𝑖 simultaneous failures

𝑁𝑖~𝑃𝑜𝑖𝑠𝑠𝑜𝑛 𝜆𝑖𝑇 , 𝑖 = 1, … , 𝑚
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Binomial failure rate (BFR) model

• 𝑁𝑖 random number of occurrences of 𝑖 simultaneous failures

𝑁𝑖~𝑃𝑜𝑖𝑠𝑠𝑜𝑛 𝜆𝑖𝑇 , 𝑖 = 1, . . , 𝑚

with
𝜆1 = 𝑚𝜆 + 𝜇𝑟1

and
𝜆𝑖 = 𝜇𝑟𝑖  𝑖 = 2, … , 𝑀

𝑟𝑖 =
𝑚

𝑖
𝑝𝑖 1 − 𝑝 𝑚−𝑖 , 𝑖 = 1, . . , 𝑚
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Total contibution due to

 independent failure

Rate of single –unit 

failures from common 

cause shocks

Rate of i –unit failures 

from common cause 

shocks

Probability that 𝑖 on 𝑚 component ,where  each 

component can fail with probability 𝑝
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Binomial failure rate model parameter estimation 

• Parameter to be estimated: 𝑝, 𝜇, 𝜆1

•  is not directly available because:

▪ Shocks that do not cause any failure are not observable 

▪ Single failures from common-cause shocks may not be distinguishable 
from single independent failures 

• Let introduce the random variable 𝑁+ which counts the number of 
dependent failures of any multiplicity order

𝑁+ = ෍

𝑖=2

𝑚

𝑁𝑖

𝑁+~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆+𝑇)

𝜆+ = ෍

𝑖=2

𝑚

𝜆𝑖 = 𝜇[1 − 𝑟0 − 𝑟1]
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Binomial failure rate model parameter estimation

• Observation available

𝑛1, . . 𝑛𝑚 , 𝑛+ = ෍

𝑖=2

𝑚

𝑛𝑖

• Method for the estimation: maximizing the likelihood

ℙ 𝑁1 = 𝑛1, … , 𝑁𝑚 = 𝑛𝑚 = ℙ 𝑁1 = 𝑛1 ℙ 𝑁2 = 𝑛2, . . , 𝑁𝑚 = 𝑛𝑚 =
= ℙ 𝑁1 = 𝑛1  ℙ 𝑁2 = 𝑛2, . . , 𝑁𝑚 = 𝑛𝑚 𝑁+ = 𝑛+  ℙ(𝑁+ = 𝑛+)

▪ 𝑁1~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆1𝑇)

▪ 𝑁+~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆+𝑇)

▪ 𝑁2 = 𝑛2, . . , 𝑁𝑚 = 𝑛𝑚|𝑁+~𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙 𝑛+, 𝑧2, … , 𝑧𝑚  𝑧𝑖 = 𝑟𝑖/(1 − 𝑟0 − 𝑟1)
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𝐿1(𝜆1)
𝐿2(𝑝) 𝐿3(𝜆+)
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Binomial failure rate model parameter estimation

𝐿𝑜𝑔 𝐿 = log 𝐿1(𝜆1) + log 𝐿2(𝑝) + log 𝐿3(𝜆+)

• One can find that

መ𝜆1 =
𝑛1

𝑇
, መ𝜆+ =

𝑛+

𝑇

• To find, Ƹ𝑝 one have to solve numerically the following equation in 𝑝

𝑑𝑙𝑜𝑔(𝐿2)

𝑑𝑝
= 𝑆 −

𝑚𝑛+ 1 − 1 − 𝑝 𝑚−1

1 − 1 − 𝑝 3 − 𝑚𝑝 1 − 𝑝 𝑚−1 = 0 𝑚 > 2, 𝑆 = ෍

𝑖=2

𝑚

𝑖𝑛𝑖

• From 𝜆1, 𝜆+ 𝑎𝑛𝑑 𝑝 it is possible to estimate 𝜇 from

𝜆+ = ෍

𝑖=2

𝑚

𝜆𝑖 = 𝜇[1 − 𝑟0 − 𝑟1]
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3 independent maximization!
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