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This lecture

Life test → (t1,t2,...,tn)    → Estimate 𝜗 of  𝑓𝑇 𝑡|𝜗

For example:  λ of   fT(t)= λe- λt

• Classical approach (frequentist probability definition)

• 𝜗 is a fixed unknown parameter

• From (t1,t2,...,tn) find an estimator      of  

• Bayesian Approach (subjective probability definition)

̂ 

• 𝜗 is a random quantity (epistemic uncertainty)
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Subjective Definition of Probability

P(A|K) is the degree of belief of the assigner about the occurrence of A 

(numerical encoding of the state of knowledge – K - of the assessor)
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Theorem of Total Probability

• Let us consider a partition of the sample space   into n mutually 
exclusive and exhaustive events. In terms of Boolean events:

• Given any event A in , 

𝐴 =ራ

𝑗=1

𝑛

𝐴 ∩ 𝐸𝑗

𝑃 𝐴 = σ𝑗=1
𝑛 𝑃 𝐴 ∩ 𝐸𝑗 = σ𝑗=1

𝑛 𝑃 𝐴|𝐸𝑗 𝑃(𝐸𝑗)



𝐸1 𝐸2 𝐸3

𝐸4 𝐸5 𝐸6

A
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The Bayesian Subjective Probability Framework

P(E|K) is the degree of belief of the assigner with regard to the occurrence of E 

(numerical encoding of the state of knowledge – K - of the assessor)

When P(E) can be considered ‘objective’ from the scientific point of view? 

• De Finetti: objective=coherent:

• It uses total body of knowledge

• It complies with theory of probability

Bayes Theorem to update the probability assignment in light of new data
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The Bayesian Subjective Probability Framework

Rare events

• Frequentist school: we cannnot associate a probabilty to them

• E.g. a pump of a NPP, constant failure rate, 𝜆, 10000 hours of operation, 0 

failures 

• Bayesian School: we can associate a probability to them based on expert 

judgment, and then, as evidence is collected, we can update the probability using 

the Bayes Theorem

Repeatibility:

• Bayesian school: two assessors can be coherent and … still disagree

መ𝜆𝑀𝐿𝐸=
𝑘

𝑇𝑇𝑇
= 0 ℎ−1
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The Bayesian approach to parameter estimation

• 𝜗 = parameter of the failure time distribution, 𝑓𝑇(𝑡; 𝜗)

• 𝜗 is a random quantity (epistemic uncertainty)

• Assessor provides a probability distribution of 𝜗 based on 
its knowledge, experience,…:

𝑃(𝜗) =  Prior distribution (subjective probability)

• When a sample of failure times E = 𝑡1, 𝑡2, … , 𝑡𝑛
becomes available, the estimate of 𝜗 is updated by 
using the bayes theorem:

𝑃(𝜗|𝐸) = 𝑃(𝜗)
𝑃(𝐸|𝜗)

𝑃(𝐸)
= Posterior distribution

experimental evidence
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•  𝑃 𝐸 𝜗 = 𝐿 𝜗           likelihood of the evidence E

 

• 𝑃 𝐸 =

• 𝑃 𝜗 𝐸 = 𝑘 ∙ 𝑃 𝜗 ∙ 𝐿(𝜗)

 

Bayes Formula

𝑃(𝜗|𝐸) = 𝑃(𝜗)
𝑃(𝐸|𝜗)

𝑃(𝐸)



𝑖

𝑃 𝐸|𝜗𝑖 𝑃 𝜗𝑖

න
𝜗

𝑃 𝐸|𝜗 𝑃 𝜗 𝑑𝜗

Theorem of Total Probability
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• Aleatory uncertainty on the failure time:  𝑡 → 𝑃 𝑡|𝜗

 Example: the failure time distribution is an exponential distribution

  𝑡~𝑓𝑇 𝑡|𝜆 = 𝜆𝑒−𝜆𝑡 

• Epistemic uncertainty on the parameter value, conditional on the 

background knowledge 𝐾 (expert judgment, experimental data,…): 

𝜗 → 𝑃 𝜗|𝐾  

• the epistemic uncertainty can be updated through Bayes 

theorem

• as the evidence increases, the background knowledge 

𝐾 improves and the epistemic uncertainty reduces

Observations: The Two Types of Uncertainty
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Comparing Bayesian and frequentist approaches (parameter estimation)

Frequentist Bayesian

Parameter, 𝜃 fixed, unknown 

number, 𝜃 

random variable

Θ, 𝑃(𝜃|𝐸)

inference ad hoc estimation 

methods (e.g., MLE)

Bayesian updating, 

logical extension of 

the theory of 

probability

Source of 

Information

experimental data expert judgment

+

experimental data 
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Exercise 1: Bayes Theorem

• You feel that the frequency of heads, 𝜗,  on tossing a particular coin is either 0.4, 0.5 or 

0.6. Your prior probabilities are:

  𝑃 𝜗1 = 0.4 = 0.1

𝑃 𝜗2 = 0.5 = 0.7

𝑃 𝜗3 = 0.6 = 0.2 

• You toss the coin just once and the toss results is tail: 𝐸 = ′𝑡𝑎𝑖𝑙′

• Questions:

1. Update the probability of 𝜗

2. Consider the denominator of Bayes’ theorem and interpret it. 
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Exercise 2

▪ Suppose that a production manager is concerned about the items produced by a 

certain manufacturing process. More specifically, he is concerned about the 

proportion of these items that are defective. From past experience with the 

process, he feels that     , the proportion of defectives, can take only four possible 

values: 0.01, 0.05, 0.10 and 0.25. Moreover, he has observed the process and he 

has some information concerning     . This information can be summarized in 

terms of the following probabilities that constitute the production manager’s prior 

distribution of     :

▪ The production manager assumes that the process can be thought of as a 

Bernoulli process, with the assumption of stationarity and independence 

appearing reasonable. That is, the probability that only one item is defective 

remains constant for all items produced and is independent of the past history of 

defectives from the process.

▪ A sample of n = 5 items is taken from the production process, and k = 1 of the 5 is 

found to be defective. How can this information be combined with the prior 

information?



( 0.01) 0.60

( 0.05) 0.30

( 0.10) 0.08

( 0.25) 0.02

P

P

P

P
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Bayesian approach: continuous updating of the parameter distribution

→ 𝑃 𝑅|𝑆, 𝐻 =
𝑃 𝑆 𝑅,𝐻 𝑃 𝑅|𝐻

𝑃 𝑆|𝐻

𝑃 𝑅|𝑆 =
𝑃 𝑅, 𝑆

𝑃(𝑆)
=
𝑃 𝑆 𝑅 𝑃(𝑅)

𝑃(𝑆)

𝑃 𝐴, 𝐵 = 𝑃 𝐴|𝐵 𝑃 𝐵

We know:

Therefore, 

𝑃 𝑅|𝑆, 𝐻 =
𝑃 𝑅, 𝑆, 𝐻

𝑃(𝑆, 𝐻)

=
𝑃 𝑆, 𝑅 𝐻 𝑃(𝐻)

𝑃 𝑆|𝐻 𝑃 𝐻
=
𝑃 𝑆 𝑅,𝐻 𝑃 𝑅|𝐻 𝑃 𝐻

𝑃 𝑆|𝐻 𝑃 𝐻

By implementing conditional probability law 
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• 𝐸𝑛−1 = 𝑡1, 𝑡2, … 𝑡𝑛−1 → 𝑃 𝜗|𝐸𝑛−1    already updated (it will be our prior for 

next updating)

• 𝑡𝑛 = new evidence → 𝐸𝑛 = {𝑡1, 𝑡2, … , 𝑡𝑛}

𝑃 𝜗|𝐸𝑛−1, 𝑡𝑛 =
𝑃 𝜗, 𝐸𝑛−1, 𝑡𝑛
𝑃(𝐸𝑛−1, 𝑡𝑛)

= 𝑃 𝜗, 𝑡𝑛 𝐸𝑛−1
𝑃(𝐸𝑛−1)

𝑃(𝐸𝑛−1, 𝑡𝑛)
=

= 𝑃 𝑡𝑛|𝜗, 𝐸𝑛−1 𝑃 𝜗 𝐸𝑛−1
𝑃 𝐸𝑛−1

𝑃 𝐸𝑛−1, 𝑡𝑛

= 𝑃 𝑡𝑛|𝜗, 𝐸𝑛−1 𝑃 𝜗 𝐸𝑛−1
𝑃 𝐸𝑛−1

𝑃 𝑡𝑛|𝐸𝑛−1 𝑃 𝐸𝑛−1
= 𝑃 𝜗 𝐸𝑛−1

𝑃 𝑡𝑛|𝜗

𝑃 𝑡𝑛|𝐸𝑛−1

𝑃 𝑡𝑛|𝐸𝑛−1 = න𝑃 𝜗|𝐸𝑛−1 ∙ 𝑃 𝑡𝑛|𝜗 𝑑𝜗

Bayesian approach: continuous updating of the parameter distribution

Independent from

 the previous 𝐸𝑛−1

Note: when the 

parameter value is 

known, 𝜗 no longer

depends on T, e.g. 

𝑇|𝜗~ 𝑁(𝜃, 𝜎2)
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Bayesian approach: coherence

Bayesian

updating

𝑃 𝜗 𝑃 𝜗|𝑡1 𝑃 𝜗|𝑡1, 𝑡2 𝑃 𝜗|𝑡1, … , 𝑡𝑛−1 𝑃 𝜗|𝑡1, … , 𝑡𝑛

𝑡1 𝑡2 𝑡𝑛

…Bayesian

updating

Bayesian

updating

𝑃 𝜗
Bayesian

updating

𝑃 𝜗|𝑡1, … , 𝑡𝑛

𝑡1, 𝑡2, … , 𝑡𝑛

Multiple stage updating

Single stage updating
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Bayesian approach: coherence

Bayesian

updating

𝑃 𝜗 𝑃 𝜗|𝑡1 𝑃 𝜗|𝑡1, 𝑡2 𝑃 𝜗|𝑡1, … , 𝑡𝑛−1 𝑃 𝜗|𝑡1, … , 𝑡𝑛

𝑡1 𝑡2 𝑡𝑛

…Bayesian

updating

Bayesian

updating

𝑃 𝜗
Bayesian

updating

𝑃 𝜗|𝑡1, … , 𝑡𝑛

𝑡1, 𝑡2, … , 𝑡𝑛

Multiple stage updating

Single cumulative updating

Same evidence

Same ‘a posteriori’
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Updating on 𝒕𝒏+𝟐 𝐚𝐟𝐭𝐞𝐫 𝒕𝒏+𝟏 (𝐦𝐮𝐥𝐭𝐢𝐩𝐥𝐞 𝐬𝐭𝐚𝐠𝐞 𝐮𝐩𝐝𝐚𝐭𝐢𝐧𝐠)

same as a single 

cumulative updating!

𝑃 𝜗|𝐸𝑛+2 = 𝑃 𝜗|𝐸𝑛+1 ∙
𝑃 𝑡𝑛+2|𝜗

𝑃 𝑡𝑛+2|𝐸𝑛+1

with:

𝑃 𝑡𝑛+2|𝐸𝑛+1 = 𝑃 𝑡𝑛+2|𝐸𝑛, 𝑡𝑛+1 =
𝑃 𝑡𝑛+2, 𝑡𝑛+1|𝐸𝑛
𝑃 𝑡𝑛+1|𝐸𝑛

𝑃 𝜗|𝐸𝑛+1 = 𝑃 𝜗|𝐸𝑛 ∙
𝑃 𝑡𝑛+1|𝜗

𝑃 𝑡𝑛+1|𝐸𝑛
First updating

Conditional

probability

𝑃 𝜗|𝐸𝑛+2 = 𝑃 𝜗|𝐸𝑛+1 ∙
𝑃 𝑡𝑛+2|𝜗

𝑃 𝑡𝑛+2|𝐸𝑛+1
= 𝑃 𝜗|𝐸𝑛 ∙

𝑃 𝑡𝑛+1|𝜗

𝑃 𝑡𝑛+1|𝐸𝑛
∙

𝑃 𝑡𝑛+2|𝜗

𝑃 𝑡𝑛+2, 𝑡𝑛+1|𝐸𝑛
𝑃 𝑡𝑛+1|𝐸𝑛

𝑃 𝜗|𝐸𝑛+2 = 𝑃 𝜗|𝐸𝑛 ∙
𝑃 𝑡𝑛+1|𝜗 ∙ 𝑃 𝑡𝑛+2|𝜗

𝑃 𝑡𝑛+2, 𝑡𝑛+1|𝐸𝑛
= 𝑃 𝜗|𝐸𝑛 ∙

𝑃 𝑡𝑛+1, 𝑡𝑛+2|𝜗

𝑃 𝑡𝑛+2, 𝑡𝑛+1|𝐸𝑛
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Bayesian approach: some observations on the updating process

𝑃 𝜗 𝐸 ∝ 𝑃(𝜗) ∙ 𝑃(𝐸|𝜗)

• In correspondence of values of ϑ for which both prior and likelihood are 

small → the posterior will be small

• bulk of the posterior where prior and likelihood are not negligible

• If the prior is very sharp (strong prior evidence), it will not change much 

unless the evidence is very strong

       

            

Posterior ∝ Prior ∙Likelihood

Which of the two prior will

be more influenced by the

evidence E?

Posterior depends on the relative

strength of prior and likelihood

𝑃(𝐸|𝜃) 
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BAYESIAN APPROACH:

LARGE EVIDENCE
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Bayesian approach to parameter estimation: Large evidence - Example
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Normal distribution as a limit of the binomial distribution (𝝑 = 𝟎. 𝟏)
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Bayesian approach to parameter estimation: Large evidence - Example
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Likelihood behavior when 𝒏 → ∞, assuming 𝒏/𝒌 = 𝟎. 𝟏
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Bayesian approach to parameter estimation: Large evidence - Example
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Bayesian approach to parameter estimation: Large evidence

Evidence becomes stronger and stronger

 

 

 The likelihood tends to a delta function

  

 

 The posterior tends to a delta as well, centered around the only value which is 

now the true value (perfect knowledge)

The classical and bayesian statistics become identical in the results (not 

conceptually)        
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Confidence intervals vs Credible intervals

• Classical statistics: 

a 90% confidence interval means that there is a 0.9 probability that the interval contains the 

parameter which is a fixed value, although unknown. 

•    Bayesian statistics:

the parameter is a random variable with a given distribution and the 90% credible interval 

tells me that right now, with my current knowledge, I am 90% confident that the true value 

(which I will discover when I gain perfect knowledge) will fall within these bounds.

Sample 1

n=100

=0.9

Sample 2

n=100

=0.9

Sample 10

n=100

=0.9



̂
2

1
11

22
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Confidence intervals vs Credible intervals

• Classical statistics: 

Confidence intervals capture the uncertainty about the interval we have obtained (i.e., whether 

it contains the true value or not). Thus, they cannot be interpreted as a probabilistic statement 

about the true parameter values.

•    Bayesian statistics:

Credible intervals capture our current uncertainty in the location of the parameter values and 

thus can be interpreted as probabilistic statement about the parameter
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Conjugate distributions

• The likelihood 𝐿(𝜗) and the prior f(𝜗) are called conjugate 
distributions if the posterior 𝜋(𝜗|𝐸) is in the same family of the prior 
distribution

• Example:
• Likelihood: binomial distribution Posterior = Beta distribution (different

parameters)

• Prior = Beta Distribution(q,r)
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Conjugate distributions

• The likelihood 𝐿(𝜗) and the prior f(𝜗) are called conjugate 
distributions is the posterior 𝜋(𝜗|𝐸) is in the same family of the prior 
distribution

• Example:
• Likelihood: binomial distribution Posterior = Beta distribution (different

parameters)

• Prior = Beta Distribution
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• Conjugate distributions characteristics:

• posterior ≡ prior with updated parameters

• estimates ≡ simple analytical (mean and variance)

Bayesian approach to parameter estimation: Families of conjugate distributions
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Exercise 3: failure rate of a motor-driven pump of a NPP

• Assume that the failure rate of the pump is constant, 𝜆

• Assume the following three types of relevant information on this machine:

• E1: engineering knowledge (description of the design and construction of the pump)

• E2: past performance of similar pumps in similar plants

• E3: performance of the specific machine = 0 failures in t = 1000h

Questions:

1) Use E1 and E2 to build the prior of the failure rate distribution, 𝑃 𝜆

2) Update the prior using the information in E3. Determine the point estimator of 𝜆 and its 95 

percentile

' 5 1

' 5 1

3 10 h

7.4 10 h





− −

− −

= 

= 
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▪ As already pointed out, the results of the Bayesian and classical analyses 

converge with large amounts of data. The influence of the prior parameters α’, β’ 

decreases. 

▪ Thus for large amounts of data, the posterior distribution will be highly peaked 

around the MLE estimate 

▪ It can also be shown that the Bayesian and frequentist 95 percentiles will 

converge; one should, however, keep in mind the differences:

▪ BAYESIAN = analyst’s subjective uncertainty concerning the value of the 

random variable λ

▪ FREQUENTIST = variability in the estimation of λ (true value)   

▪ Finally, note that as the evidence increases our state of knowledge on the 

parameter increases and at ‘perfect knowledge’ (∞ evidence) the uncertainty on its 

value is zero: however, the failure process remains inherently aleatory.

Bayesian Vs Frequentist for large amount of data

'' '
''

MLE'' '

'' '
''

'' '
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