1863

POLITECNICO

04.04.25 I Luca Pinciroli

11100-00-111

DI MILANO

EXERCISE 1

2

Consider the Weibull distribution:

$$F_T(t) = 1 - e^{-\beta t^{\alpha}}, \quad f_T(t) = \alpha \beta t^{\alpha - 1} e^{-\beta t^{\alpha}}$$

with $\alpha = 1.5, \beta = 1$

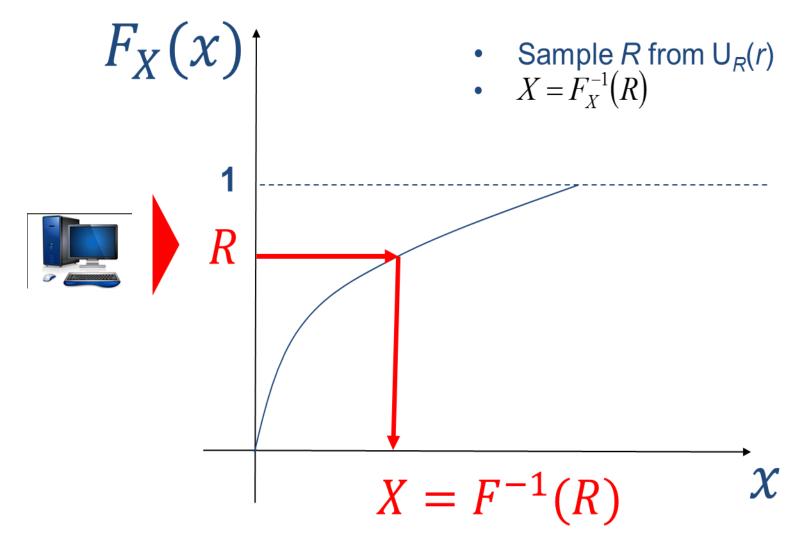
- 1. Sample N=400 values from $f_T(t)$
- 2. Verify whether the obtained distribution provides a good approximation of the Weibull distribution. To this aim, you are required to:
 - A. find the empirical probability density function (pdf) of the sampled value in 1
 - B. compare the empirical pdf found in 2A. with the analytical Weibull distribution.
- 3. Provide an estimate G_N of $\int_0^{+\infty} t f_T(t) dt$
- 4. Estimate the variance of G_N

3

Useful commands

- np.random.rand(N): provides N random numbers sampled from a uniform distribution in the range [0,1)
- num_samples = matplotlib.pyplot.hist(Y, bins) bins the elements of Y into the bins defined by bins and returns the number of elements in each counter.

Sampling random number from $F_x(x)$



Example: Weibull Distribution

• Time-dependent hazard rate $\lambda(t) = \beta \alpha t^{\alpha - 1}$

cdf:

$$F_{T}(t) = P\{T \le t\} = 1 - e^{-\beta t^{\alpha}}$$
pdf:

$$f_{T}(t) \cdot dt = P\{t \le T < t + dt\} = \alpha \beta t^{\alpha - 1} e^{-\beta t^{\alpha}} \cdot dt$$

• Sampling a failure time T (by the inverse transform)

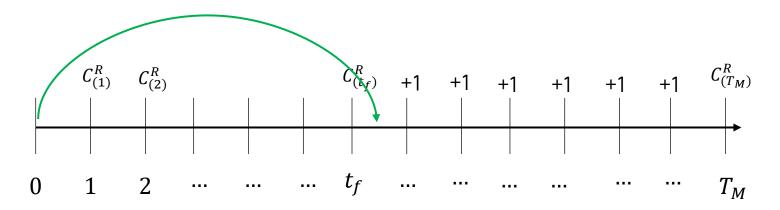
$$R \equiv F_R(r) = F_T(t) = 1 - e^{-\beta t^{\alpha}}$$
$$T = F_T^{-1}(R) = \left(-\frac{1}{\beta}\ln(1-R)\right)^{\frac{1}{\alpha}}$$

EXERCISE 2

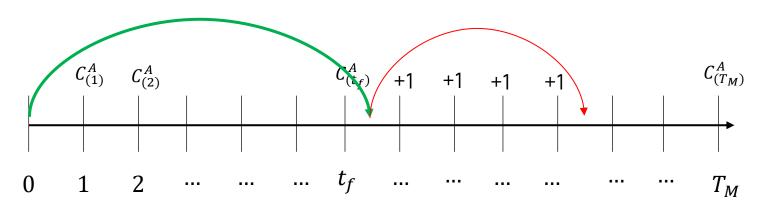
Write the MC code for the estimation of the **time dependent reliability** and **instantaneous availability** of a continuously monitored component with constant failure (λ) and repair (μ) rates

- You can assume a mission time of 10³ time units
- You can compute the time dependent reliability and the instantaneous availability at all times: 0,1,2,3,...10³

Estimation of the System Reliability



Estimation of the System Availability



ໄດ້ ເດີ້ ເ

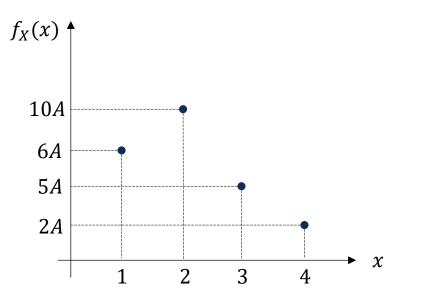
POLITECNICO MILANO 1863

EXERCISE 3

10

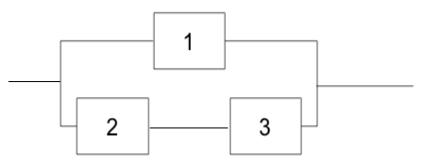
Consider the discrete probability distribution $f_X(x)$ in the graph:

- 1) Identify the value of the parameter A;
- 2) Compute the corresponding cumulative distribution;
- 3) Write a Matlab/Python code to sample N=10000 values from $f_X(x)$;
- 4) Verify that the samples are distributed according to $f_X(x)$.

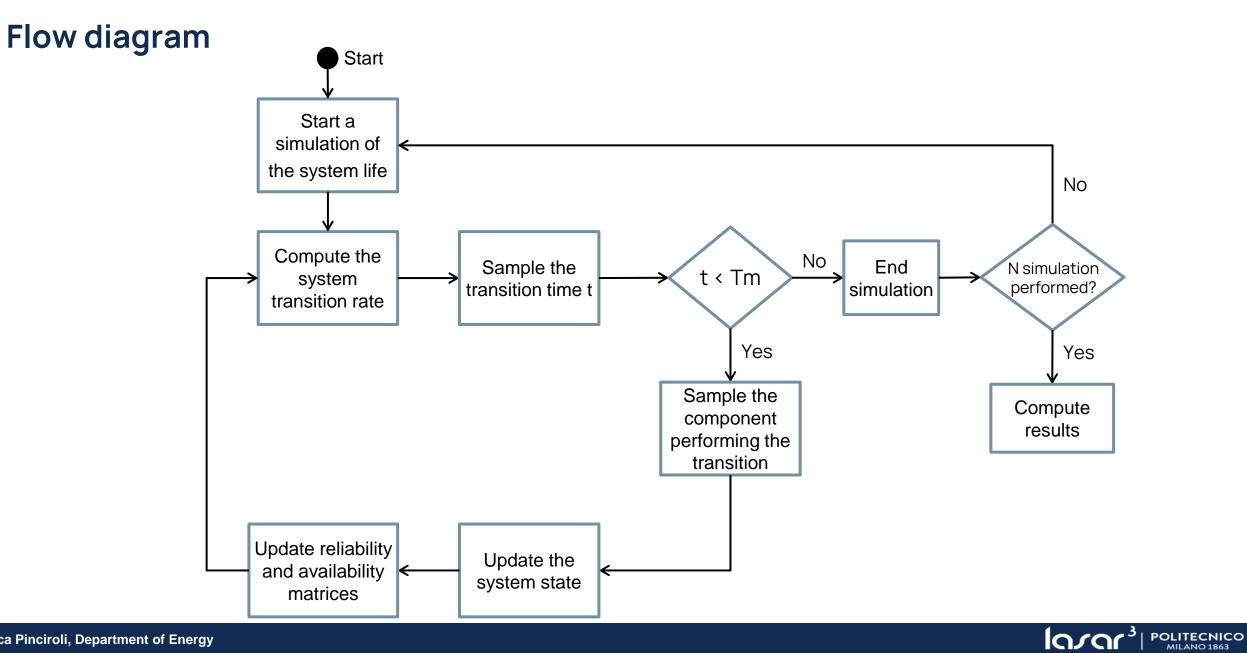


EXERCISE 4

- Consider the system in figure composed of three components (A, B, C). Each component can be in two different health states (1-nominal, 2-failed) with exponentially distributed transition times between them. Assuming a mission time T = 500 hours, write the MC code for the estimation of:
 - The time dependent reliability
 - The instantaneous availability.
 - The estimators uncertainty



	1	2	3
λ	1.10 ⁻³ h ⁻¹	2∙10 ⁻² h ⁻¹	5∙10 ⁻² h ⁻¹
μ	3•10 ⁻² h ⁻¹	5∙10 ⁻² h ⁻¹	5•10 ⁻³ h ⁻¹



Sampling the time of transition

- The rate of transition of the system out of its current configuration
- (1, 1, 1) is:

$$\lambda^{(1,1,1)} = \lambda_{1\to2}^A + \lambda_{1\to3}^A + \lambda_{1\to2}^B + \lambda_{1\to3}^B + \lambda_{1\to2}^C + \lambda_{1\to3}^C$$

 We are now in the position of sampling the first system transition time t₁, by applying the inverse transform method:

$$t_1 = t_0 - \frac{1}{\lambda^{(1,1,1)}} \ln(1 - R_t)$$

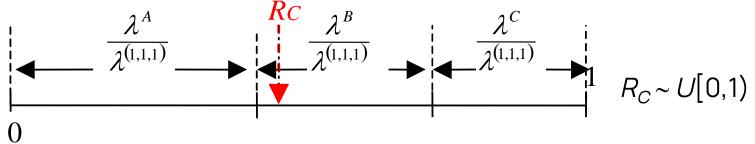
where $R_t \sim U[0,1)$

Sampling the component performing the Transition

- Assuming that $t_1 < T_M$ (otherwise we would proceed to the successive trial), we now need to determine which component has undergone the transition
- The probabilities of components A, B, C undergoing a transition out of their initial nominal states 1, given that a transition occurs at time t₁, are:

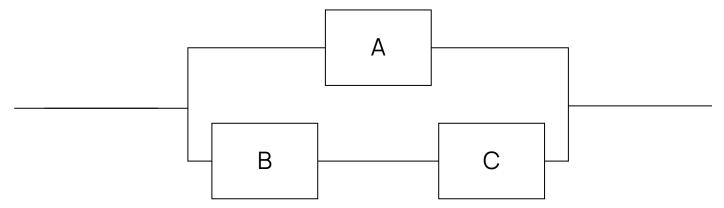
$$\frac{\lambda^{A}}{\lambda^{(1,1,1)}}, \quad \frac{\lambda^{B}}{\lambda^{(1,1,1)}}, \quad \frac{\lambda^{C}}{\lambda^{(1,1,1)}}$$
$$\lambda^{A} = \lambda^{A}_{1 \to 2} + \lambda^{A}_{1 \to 3} \qquad \lambda^{B} = \lambda^{B}_{1 \to 2} + \lambda^{B}_{1 \to 3} \qquad \lambda^{C} = \lambda^{C}_{1 \to 2} + \lambda^{C}_{1 \to 3}$$

• Thus, we can apply the inverse transform method to the discrete distribution



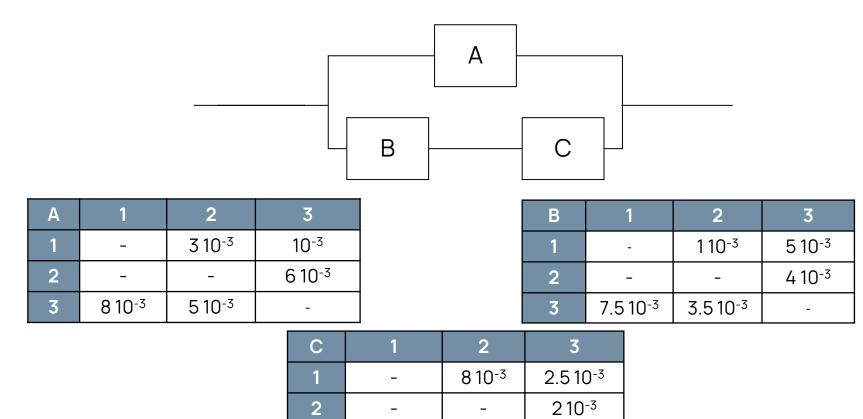
ໄດ້ໄດ

EXERCISE 5



• Components can be in three states and the time of transition from one state to another is exponentially distributed:

Arrival Initial	1	2	3
1(nominal)	0	$\lambda_{1 \to 2}^{A(B,C)}$	$\lambda_{1 \to 3}^{A(B,C)}$
2 (degraded)	0	0	$\lambda_{2 \to 3}^{A(B,C)}$
3 (failed)	$\lambda_{3 \to 1}^{A(B,C)}$	$\lambda_{3 \to 2}^{A(B,C)}$	0



• Estimate the **reliability** of the system at T_{miss} = 4000

4 10⁻³

1.5 10⁻³

-

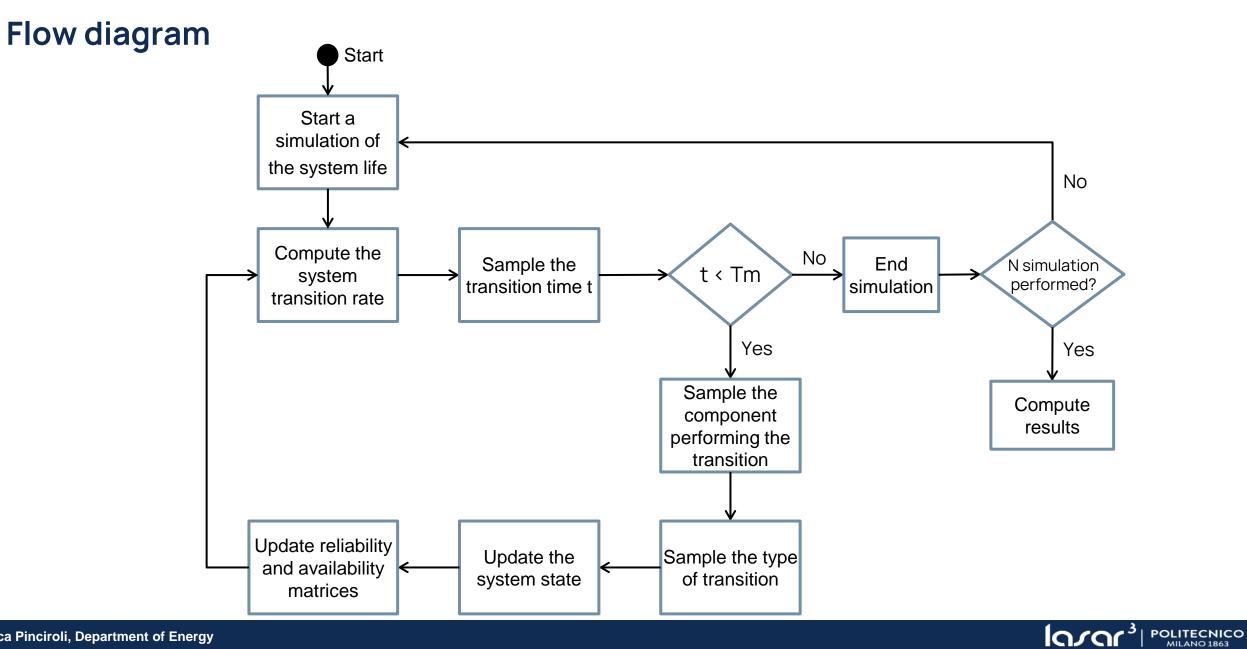
• Estimate the time dependent reliability R(t)

3

• Estimate the instataneous availability A(t)

larar

POLITECNICO MILANO 1863



Sampling the time of transition

- The rate of transition of the system out of its current configuration
- (1, 1, 1) is:

$$\lambda^{(1,1,1)} = \lambda_{1\to2}^A + \lambda_{1\to3}^A + \lambda_{1\to2}^B + \lambda_{1\to3}^B + \lambda_{1\to2}^C + \lambda_{1\to3}^C$$

 We are now in the position of sampling the first system transition time t₁, by applying the inverse transform method:

$$t_1 = t_0 - \frac{1}{\lambda^{(1,1,1)}} \ln(1 - R_t)$$

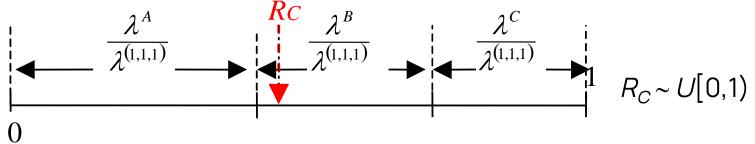
where $R_t \sim U[0,1)$

Sampling the component performing the Transition

- Assuming that $t_1 < T_M$ (otherwise we would proceed to the successive trial), we now need to determine which component has undergone the transition
- The probabilities of components A, B, C undergoing a transition out of their initial nominal states 1, given that a transition occurs at time t₁, are:

$$\frac{\lambda^{A}}{\lambda^{(1,1,1)}}, \quad \frac{\lambda^{B}}{\lambda^{(1,1,1)}}, \quad \frac{\lambda^{C}}{\lambda^{(1,1,1)}}$$
$$\lambda^{A} = \lambda^{A}_{1 \to 2} + \lambda^{A}_{1 \to 3} \qquad \lambda^{B} = \lambda^{B}_{1 \to 2} + \lambda^{B}_{1 \to 3} \qquad \lambda^{C} = \lambda^{C}_{1 \to 2} + \lambda^{C}_{1 \to 3}$$

• Thus, we can apply the inverse transform method to the discrete distribution



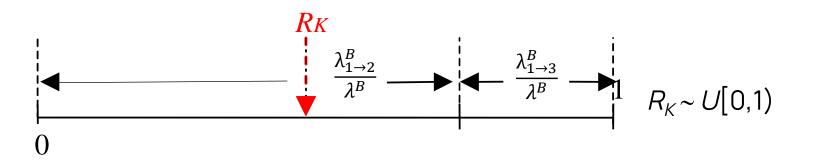
ໄດ້ໄດ

Sampling the kind of Transition

- Since component B is the one undergoing the transition we need to sample the new state of component B.
- The probabilities of components B undergoing a transition out of their initial nominal states 1 given that a transition occurs at time t₁, are:

$$\frac{\lambda^B_{1\to 2}}{\lambda^B} \qquad \qquad \frac{\lambda^B_{1\to 3}}{\lambda^B}$$

• Thus, we can apply the inverse transform method to the discrete distribution



23

Thank you for your kind attention

Contacts

in

Building B12 Campus Bovisa, Via La Masa 34, 20156, Milan, Italy. 02 2399 6349 Iuca.pinciroli@polimi.it www.lasar.polimi.it Follow LASAR³ LinkedIn page for updates on activities, workshops and available thesis

https://www.linkedin.com/company/lasar-polimi

