

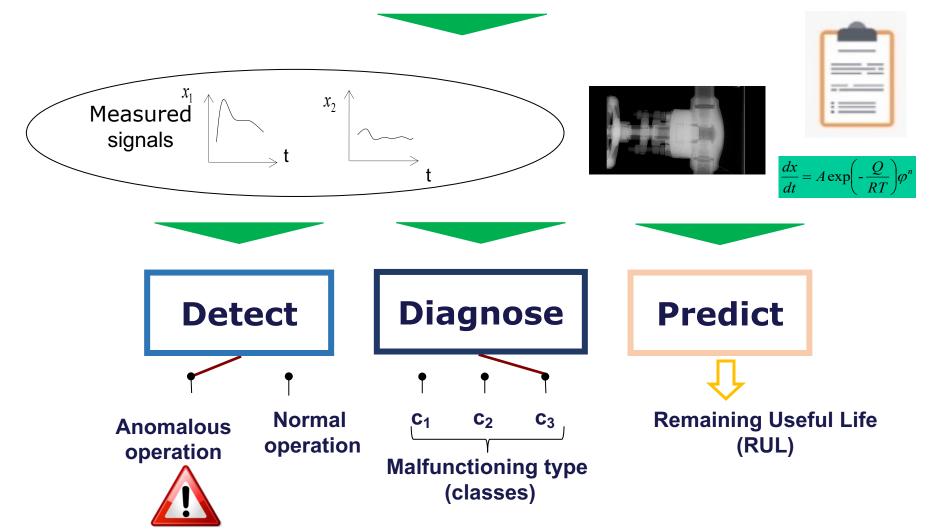
Fault Diagnostics Methods

Joaquín Figueroa Politecnico di Milano, Energy Department joaquineduardo.figueroa@polimi.it

April 14th, 2025

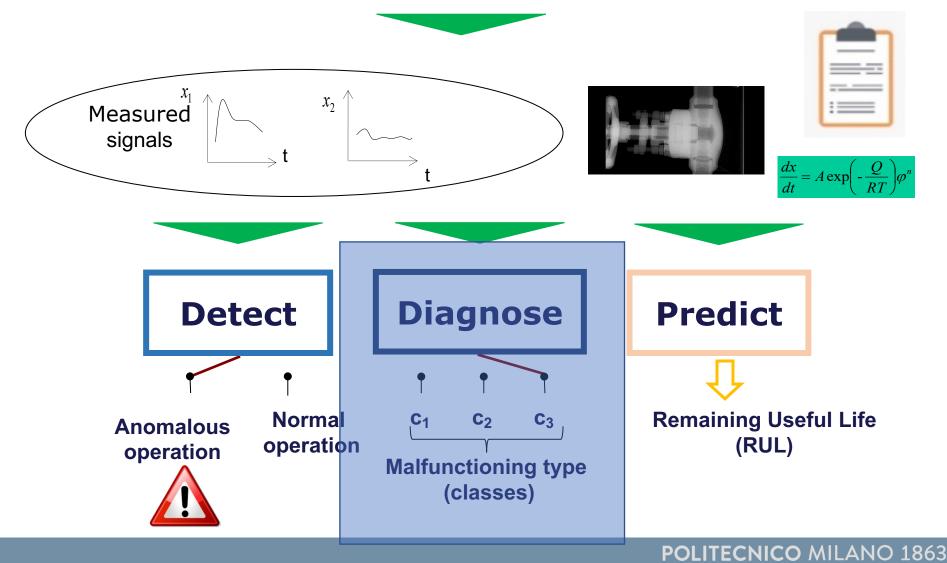
Context: Prognostics and Health Management

Equipment (System, Structure or Component)

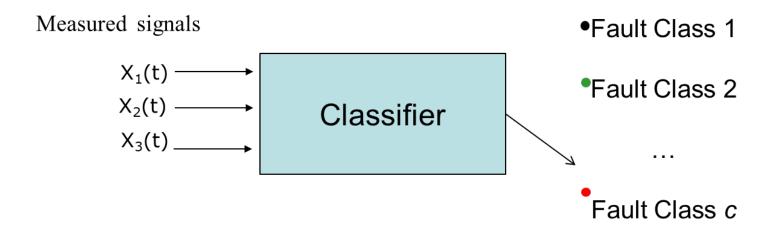


In This Lecture: Fault Diagnostics

Equipment (System, Structure or Component)

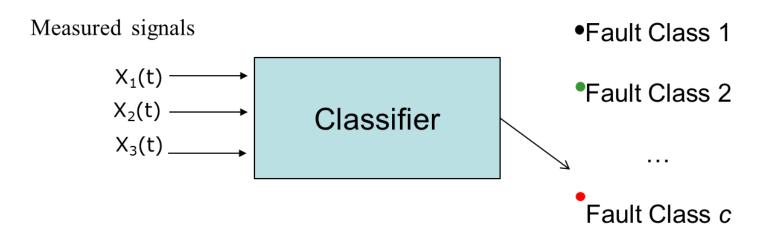


Fault Diagnostics: Objective



Fault Diagnostics: Approaches

- - Model-Based Approaces
 - Inverse Problem \rightarrow Difficult to develop
 - Data-driven Approaches

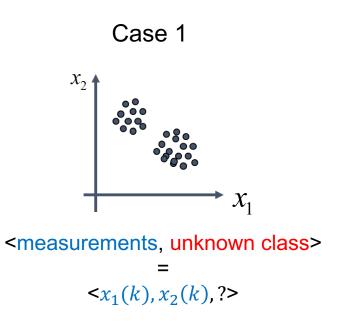


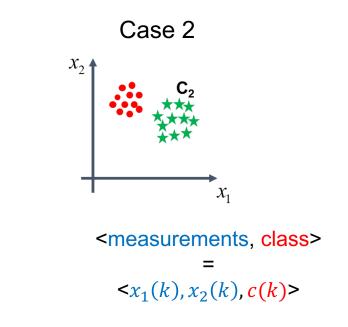
In This Lecture

- - 1. Procedural steps for developing a fault diagnostic system
 - 2. Supervised classification methods for fault diagnostics

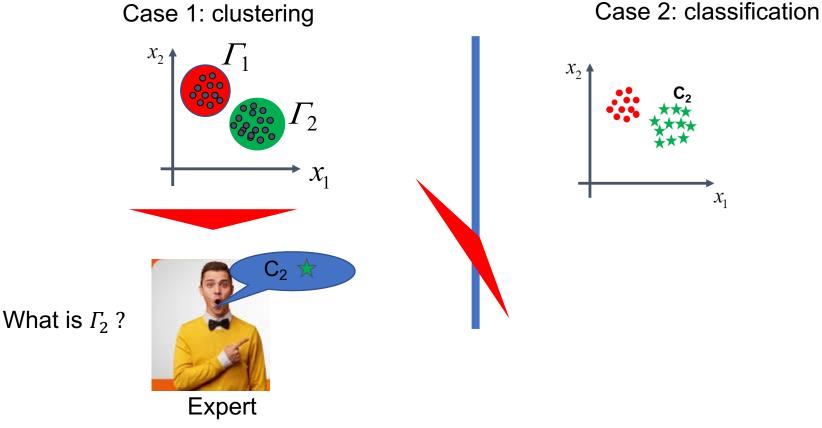
- 1. Identify fault/degradation classes:
 - System Analysis (FMECA, Event Tree Analysis, ...)
 - Good engineering sense of practice

- 1. Identify fault/degradation classes
- 2. Analysis of the historical data

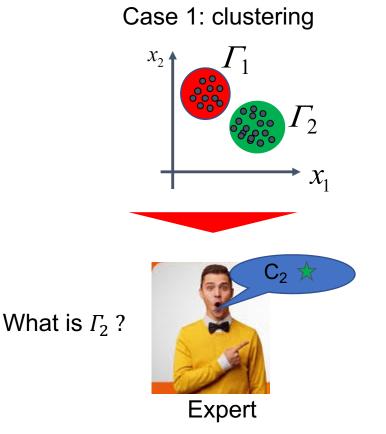




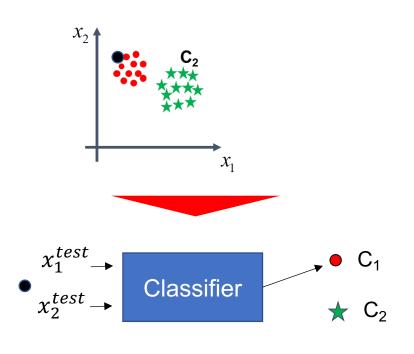
- 1. Identify fault/degradation classes
- 2. Analysis of the historical data
- 3. Develop the clustering and/or classification methods :



- 1. Identify fault/degradation classes
- 2. Analysis of the historical data
- 3. Develop the clustering and/or classification methods :



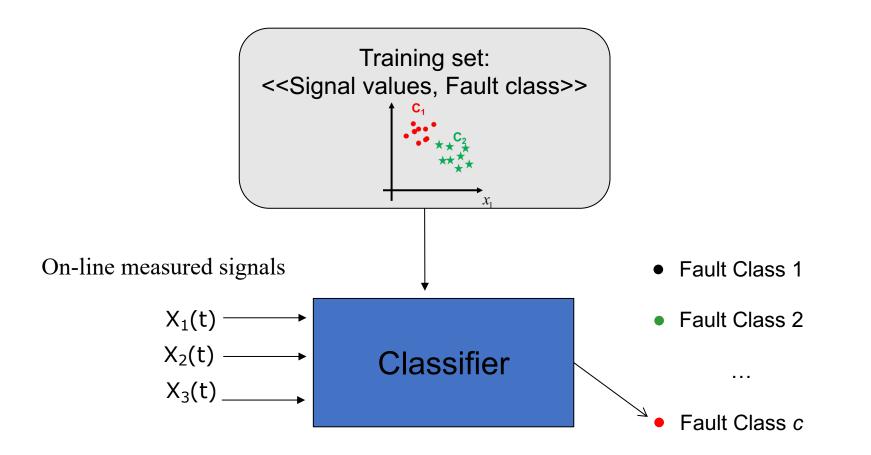
Case 2: classification



In This Lecture

- - 1. Procedural steps for developing a fault diagnostic system
 - 2. Supervised classification methods for fault diagnostics

Supervised Classification



Classification Algorithms

- K-Nearest Neighbor Classifier
- Support Vector Machines
- Fuzzy similarity-based approaches
- Artificial Neural Networks (ANNs)
 - Deep Neural Networks (DNNs)
 - Convolutional Neural Networks (CNNs)
 - Generative Adversarial Networks (GANs)
- Neurofuzzy Systems
- Relevant Vector Machines
- Ensemble Systems

Classification Algorithms

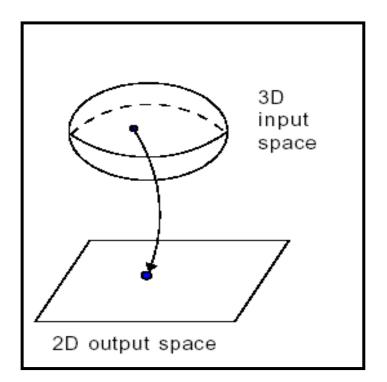
- K-Nearest Neighbor Classifier
- Support Vector Machines
- Fuzzy similarity-based approaches
- Artificial Neural Networks (ANNs)
 - Deep Neural Networks (DNNs)
 - Convolutional Neural Networks (CNNs)
 - Generative Adversarial Networks (GANs)
- Neurofuzzy Systems
- Relevant Vector Machines
- Ensemble Systems

FAULT DIAGNOSTICS METHODS

Artificial Neural Networks (ANNs)

The problem

 $\boldsymbol{t} = g(\boldsymbol{x})$



g is unknown!

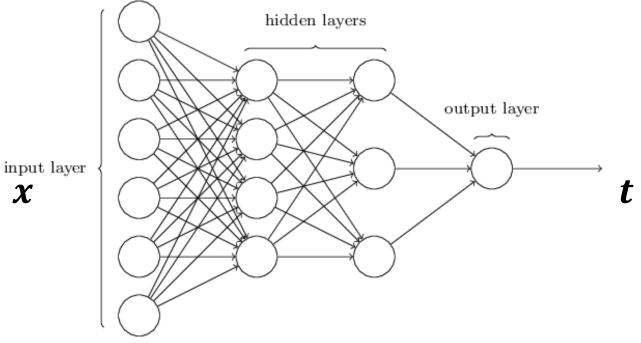
- g is highly non linear
- g is complex

How to build an empirical model using input/output data?

 $x_1^{(1)}, x_2^{(1)}, x_3^{(1)} | t_1^{(1)}, t_2^{(1)}$ $x_1^{(2)}, x_2^{(2)}, x_2^{(2)} | t_1^{(2)}, t_2^{(2)}$

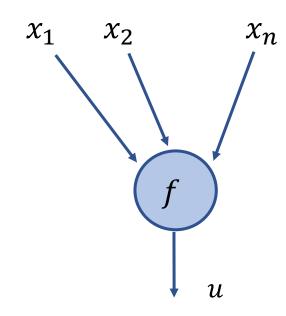
What Are (Artificial) Neural Networks?

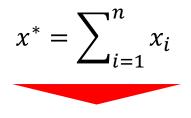
An artificial neural network is composed by several simple computational units (also called nodes or neurons) directionally connected by weighted connections organized in a proper architecture



The computational unit

Computational unit (node, neuron) The output (u) of a node is the result of a (possibly nonlinear) transformation f on the input variables ($x_1, x_2, ..., x_n$) transmitted along the links of the graph.





$$u = f(x^*)$$

Activation function *f* :

• Linear $f(x^*) = x^*$

. . .

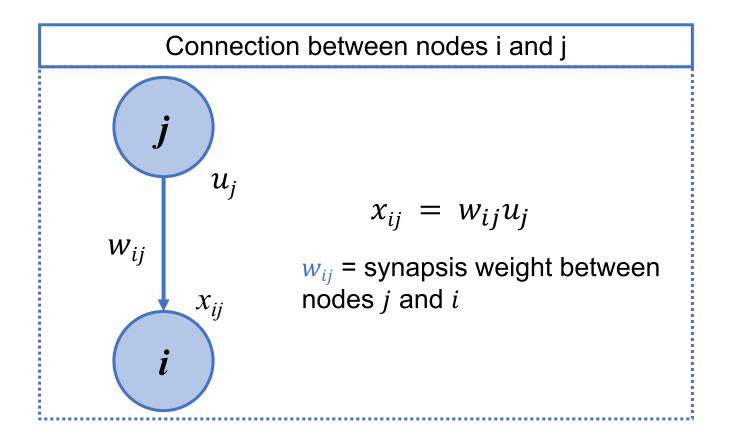
• Sigmoid $f(x^*) = 1/(1 + e^{-x^*})$

f' = f(1-f)

• ReLU $f(x) = \max(0, x)$

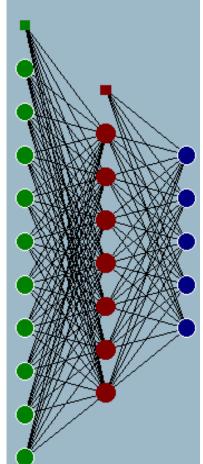
The weighted connection

An artificial neural network is composed by several simple computational units (also called nodes or neurons) directionally connected by weighted connections

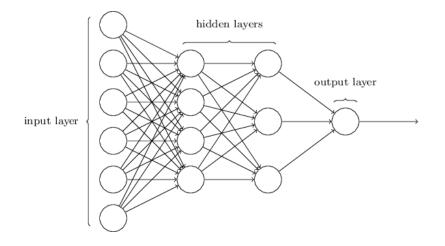


Architecture

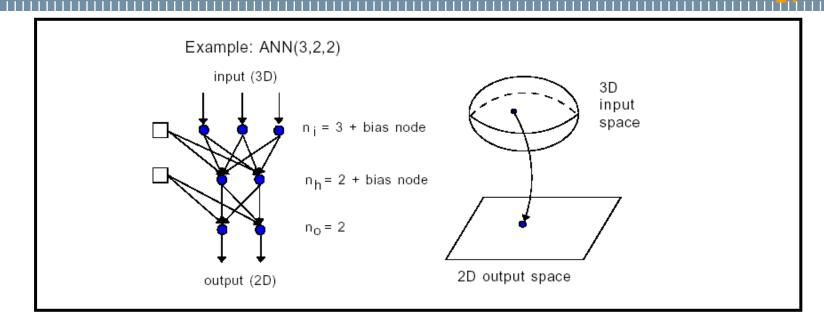
1 hidden layer feedforward ANN



Multilayered Feedforward ANN



1 Hidden Layer ANN: Forward Calculation (input-hidden)



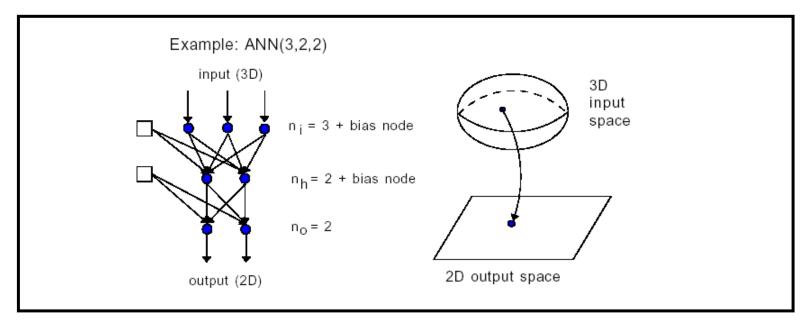
INPUT LAYER:

Each *k*-th node ($k = 1, 2, ..., n_i$) receives the value of the *k*-th component of the input vector x and delivers the same value

HIDDEN LAYER:

Each *j*-th node $(j = 1, 2, ..., n_h)$ receives: $x_1 w_{j1}, ..., x_i w_{ji}, ..., x_{n_i} w_{jn_i}, w_{j^0}$ and delivers $u_j^h = f^h (\sum_{k=1}^{n_i} x_k w_{jk} + w_{j0})$ with f^h typically sigmoidal/ReLU

1 Hidden Layer ANN: Forward Calculation (hidden-output)



OUTPUT LAYER:

Each *l*-th node (*l*=1, 2, ..., n_o) receives: $u_1^h w_{l1}, ..., u_j^h w_{lj}, ..., u_{n_h}^h w_{ln_h}, w_{l0}$ and delivers $u_l^o = f^o \left(\sum_{j=1}^{n_h} u_j^h w_{lj} + w_{l0} \right)$ f^o typically linear or sigmoidal

What are the mathematical bases behind Artificial Neural Networks?

Cybenko Theorem

Let $\sigma(\bullet)$ be a sigmoidal continuous function. The linear combinations:

$$\sum_{j=1}^{N} \alpha_j \sigma \left(\sum_{k=1}^{n} x_k w_{kj} + \vartheta_{k0} \right)$$

are dense in $[0,1]^n$

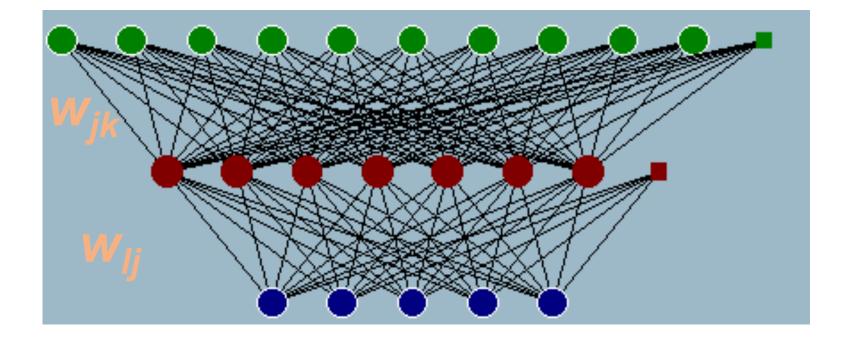
Any function $f: [0,1]^n \to \mathcal{R}$ can be approximated by a linear combinations of sigmoidal functions

Notice that the theorem does not specify the values of N, w_{ij} and $\alpha_j!$

How to train an Artificial Neural Networks?

ANN Training: the ANN parameters to be estimated

Once the ANN architecture has been fixed (number of layers, number of nodes for layer), the only parameters to be set are the **synapsis** weights (w_{jk}, w_{lj})

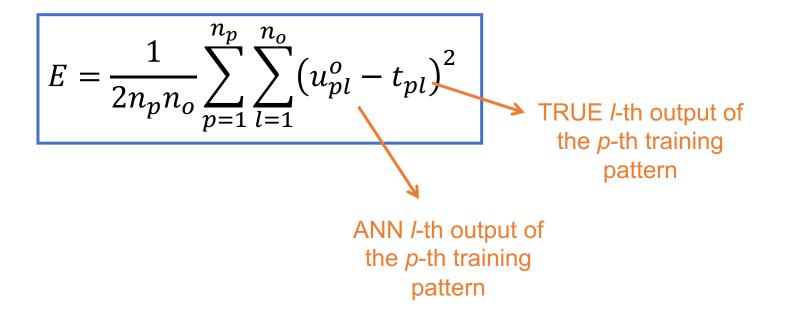


Setting the ANN Parameters: Available Information

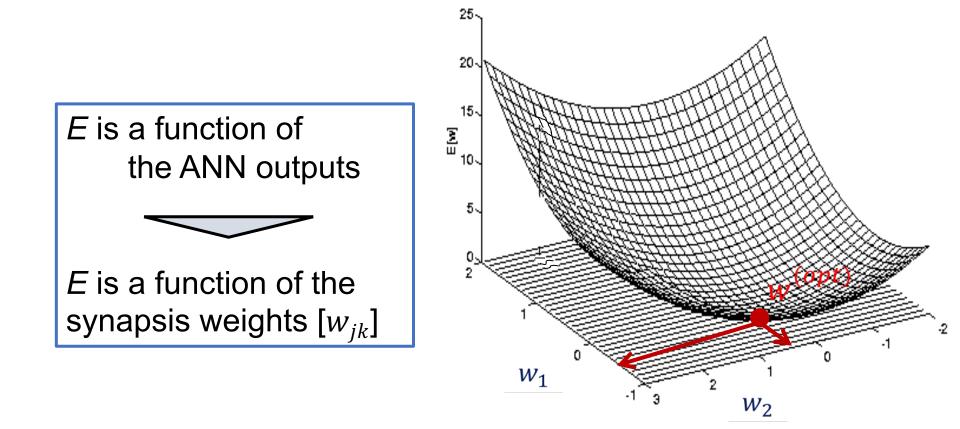
Available input/output patterns

 $x_1^{(1)}, x_2^{(1)} \mid t_{(1)}$ Synapsis $x_1^{(2)}, x_2^{(2)} \mid t_{(2)}$ Weights $x_1^{(p)}, x_2^{(p)} \mid t_{(p)}$ $x_1^{(np)}, x_2^{(np)} | \mathbf{t}_{(np)}$

Training Objective: minimize the *average squared output deviation error* (also called Energy Function):



The Training objective: graphical representation



The Error Backpropagation Algorithm

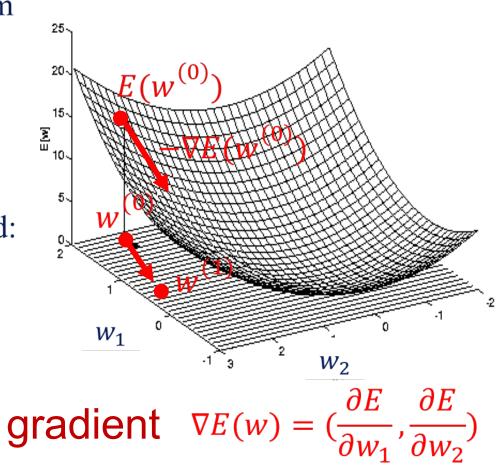
1. Initialize weights to random values:

$$w_{jk}^{(0)} = rand$$

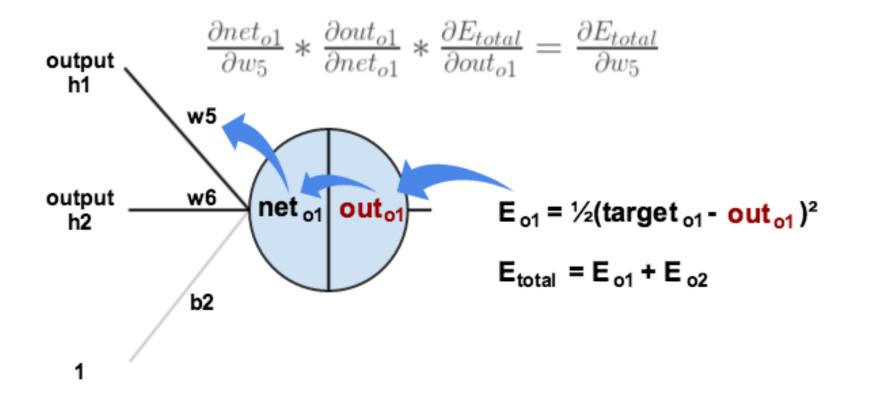
- 2. While E is small:
 - Update $w_{jk}^{(i)}$ using the gradient descent method:

$$w_{jk}^{(i+1)} = w_{jk}^{(i+1)} - \eta \frac{\partial E}{\partial w_{jk}}$$

Learning coefficient



The Error Backpropagation Algorithm



• Updating of w_{lj} :

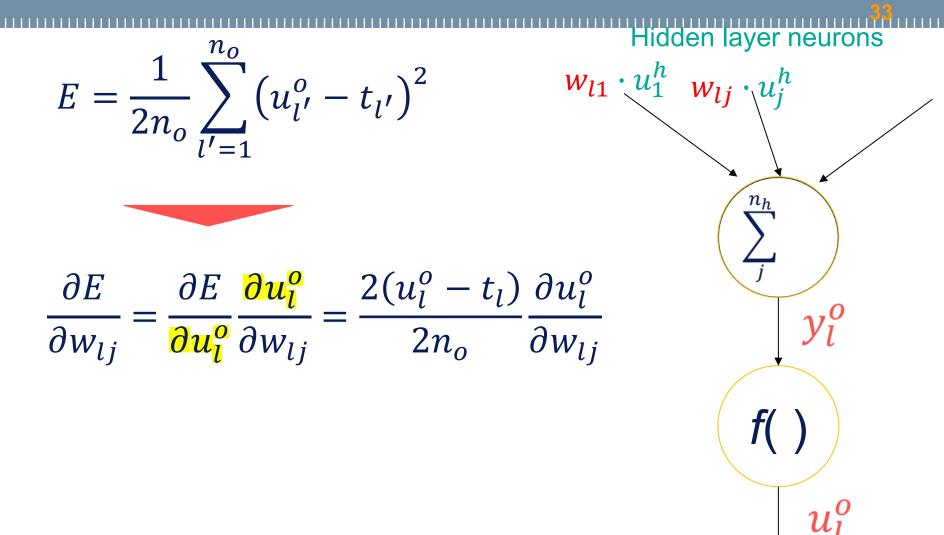
$$w_{lj}^{(i+1)} = w_{lj}^{(i)} - \eta \frac{\partial E}{\partial w_{lj}}$$

with

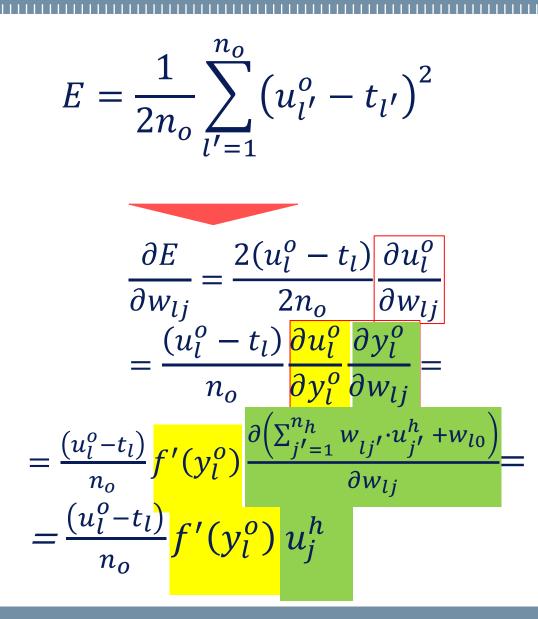
$$E = \frac{1}{2n_p n_o} \sum_{p=1}^{n_p} \sum_{l=1}^{n_0} \left(u_{pl}^o - t_{pl} \right)^2$$

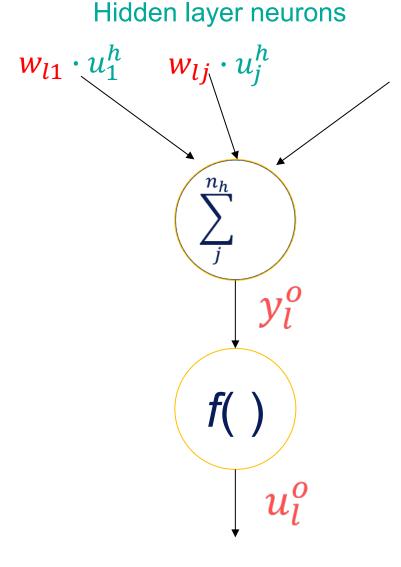
• Without loss of generality, set $n_p=1$

$$E = \frac{1}{2n_o} \sum_{l=1}^{n_o} (u_l^o - t_l)^2 \qquad \frac{\partial E}{\partial w_{lj}} = ?$$



Output layer neuron



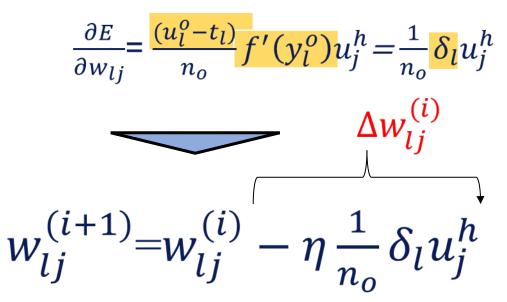


Output layer neuron POLITECNICO MILANO 1863

• Updating of w_{lj} :

$$w_{lj}^{(i+1)} = w_{lj}^{(i+1)} - \eta \frac{\partial E}{\partial w_{lj}}$$

with



$$\delta_l = (u_l^o - t_l) f'(y_l^o)$$

• Updating of w_{lj} :

$$w_{lj}^{(i+1)} = w_{lj}^{(i+1)} - \eta \frac{\partial E}{\partial w_{lj}}$$

with
$$\frac{\partial E}{\partial w_{lj}} = \frac{(u_l^o - t_l)}{n_o} f'(y_l^o) u_j^h = \frac{1}{n_o} \delta_l u_j^h$$

momentum
$$w_{lj}^{(i+1)} = w_{lj}^{(i)} + \Delta w_{lj}^{(i)} + \alpha \Delta w_{lj}^{(i-1)}$$

Error Backpropagation (input-hidden)

• Updating of w_{kj} :

$$w_{kj}^{(i+1)} = w_{kj}^{(i)} - \eta \frac{\partial E}{\partial w_{kj}}$$

with

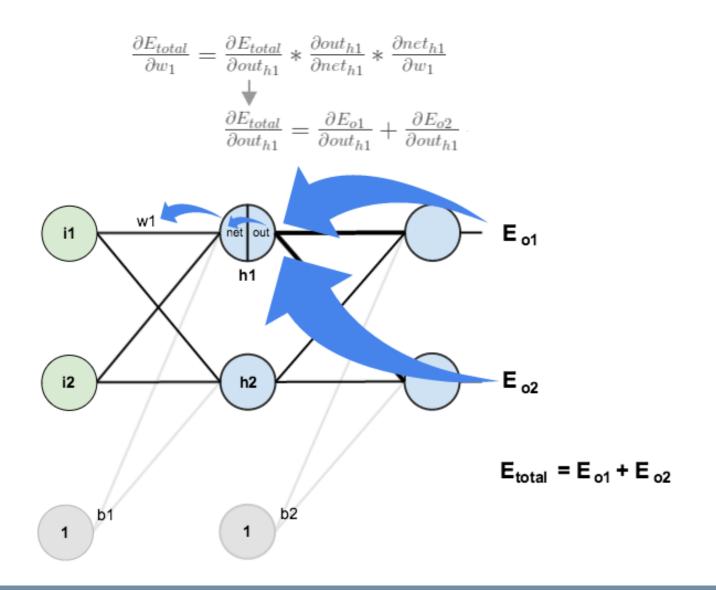
$$E = \frac{1}{2n_p n_o} \sum_{p=1}^{n_p} \sum_{l=1}^{n_0} \left(u_{pl}^o - t_{pl} \right)^2$$

• Without loss of generality, set $n_p=1$

$$\frac{\partial E}{\partial w_{kl}} = \frac{1}{2n_o} \sum_{l=1}^{n_o} \frac{2(u_l^o - t_l)}{2n_o} \frac{\partial u_l^o}{\partial w_{kj}} = \frac{1}{n_o} \sum_{l=1}^{n_o} (u_l^o - t_l) \frac{\partial u_l^o}{\partial y_l^o} \frac{\partial y_l^o}{\partial u_j^h} \frac{\partial u_j^h}{\partial y_j^h} \frac{\partial y_j^h}{\partial w_{kj}} = \sum_{l=1}^{n_o} \frac{(u_l^o - t_l)}{n_o} f'(y_l^o) w_{jl} f'(y_j^h) u_k^i = u_k^i f'(y_j^h)$$

1.

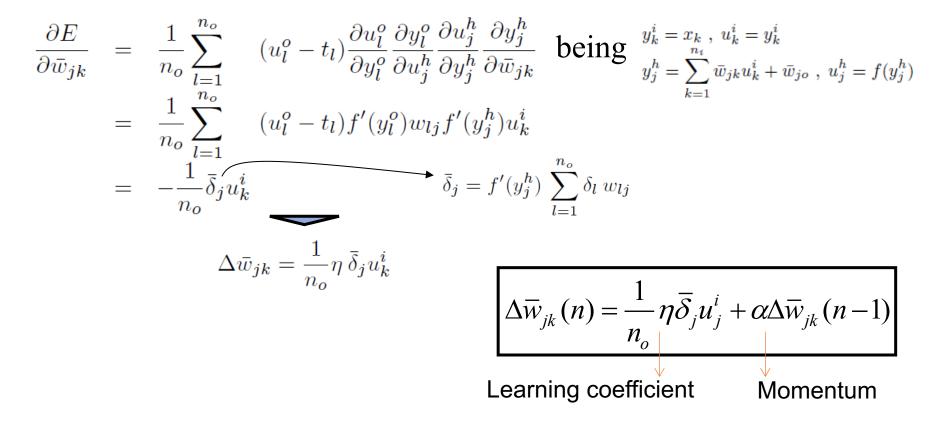
Error Backpropagation (input-hidden)



Error Backpropagation (hidden-input)

Similarly to the updating of the output-hidden weigths,

Updating weight w_{jk} (hidden-input connections) $\Delta \bar{w}_{jk} = -\eta \frac{\partial E}{\partial \bar{w}_{jk}}$



Advantages:

- No physical/mathematical modelling efforts
- Able to learn nonlinear mappings

Disadvantages:

• "black box" : difficulties in interpreting the underlying physical model.

Application

• Objective:

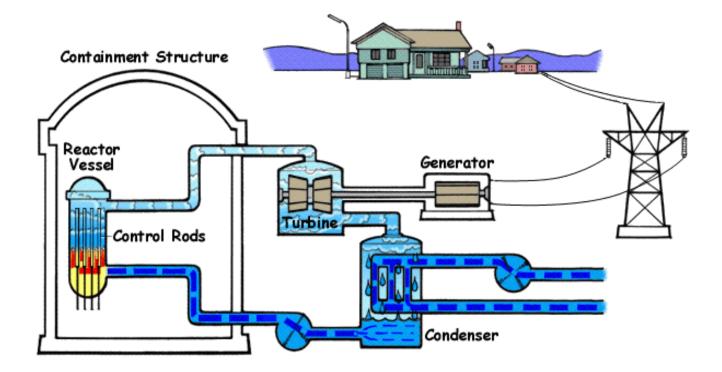
Build and train a neural network to classify different types of malfunctions of plant components

Input/Output patterns

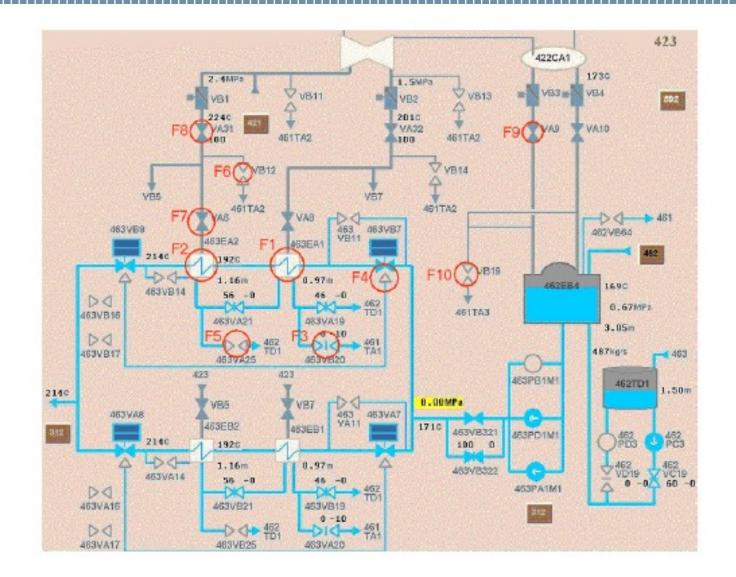
Input: signal measurements Output: number (label) of the class of the failure

ANN Example: Boiling Water Reactor

Transient classification in a Feedwater System of a Boiling Water Reactor (BWR)



ANN Example: Secondary System

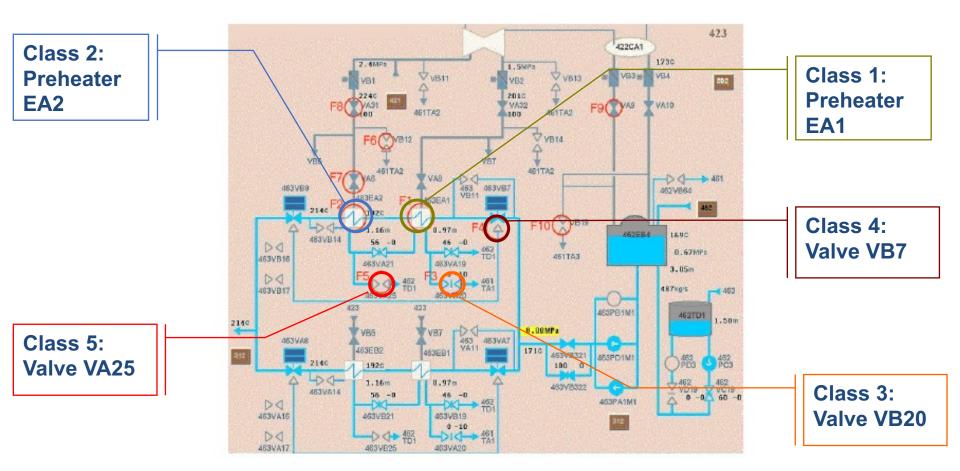


POLITECNICO MILANO 1863

.44

- Class 1: Leakage through the second high-pressure preheater
- Class 2: Leakage in the first high-pressure preheater to the drain tank
- Class 3: Leakage through the first high-pressure preheater drain back-up valve to the condenser
- Class 4: Leakage through high-pressure preheaters bypass valve
- Class 5: Leakage through the second high-pressure preheater drain back-up valve to the feedwater tank

ANN Example: Faults



POLITECNICO MILANO 1863

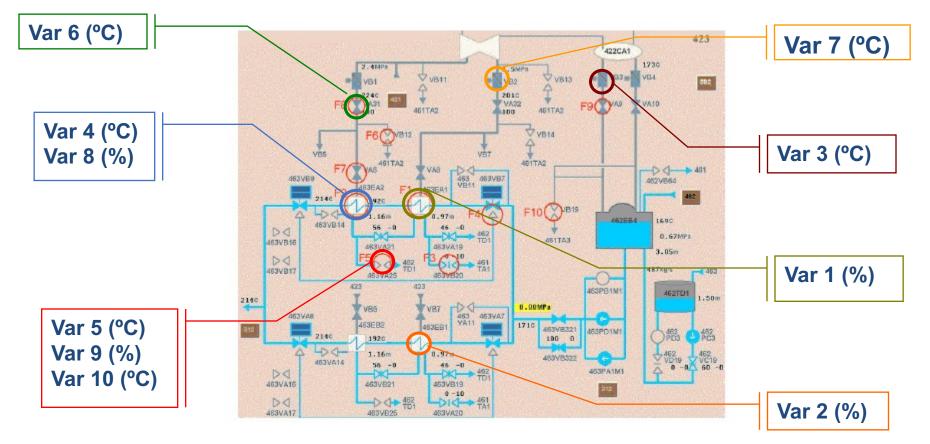
.<mark>46</mark>.

Variables inputs

Variable	Signal	Unit		
1	Position level for control valve EA1	%		
2	Position level for control valve EB1	%		
3	3 Temperature drain before VB3			
4	Temperature feedwater after EA2 train A	°C		
5	Temperature feedwater after EB2 train B	°C		
6	Temperature drain 6 after VB1	°C		
7	Temperature drain 5 after VB2	°C		
8	Position level control valve before EA2	%		
9	Position level control valve before EB2	%		
10	Temperature feedwater before EB2 train B	°C		

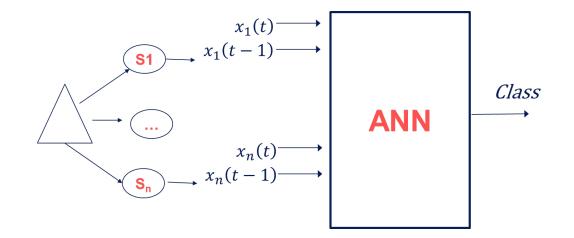
.<mark>47</mark>.

Measurement: 36 sampling instants in [80, 290]s, one each 6s.



Input/Output patterns

- Input: a two-step time window of the measured signals at times t-1 and t
- Output: label of the class to which the transient belongs



Training set

- A training set was constructed containing 8 transients for each class.
- For a transient of a given class the 35 patterns used to train the network take the following form

$x_1(2)$	$x_1(1)$	$x_{2}(2)$	$x_{2}(1)$	 $x_{10}(2)$	$x_{10}(1)$	class
÷					$x_{10}(1)$	÷
$x_1(t)$	$x_1(t-1)$	$x_2(t)$	$x_2(t-1)$	 $x_{10}(t)$	$x_{10}(t-1)$	class
$x_1(t) \\ x_1(t+1)$	$x_1(t)$	$x_2(t+1)$	$x_2(t)$	 $x_{10}(t+1)$	$x_{10}(t)$	class
÷						÷
$x_1(36)$	$x_1(35)$	$x_2(36)$		$x_{10}(36)$		class

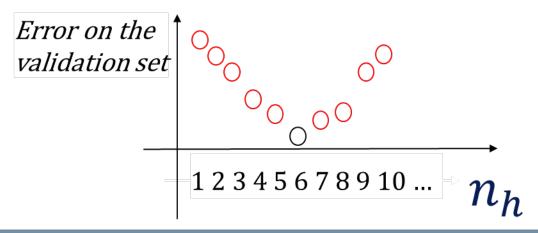
How to set the ANN architecture

Paramers to be set:

- * Number of neurons in the hidden layer (n_h)
- Learning coefficient
- Momentum

Method:

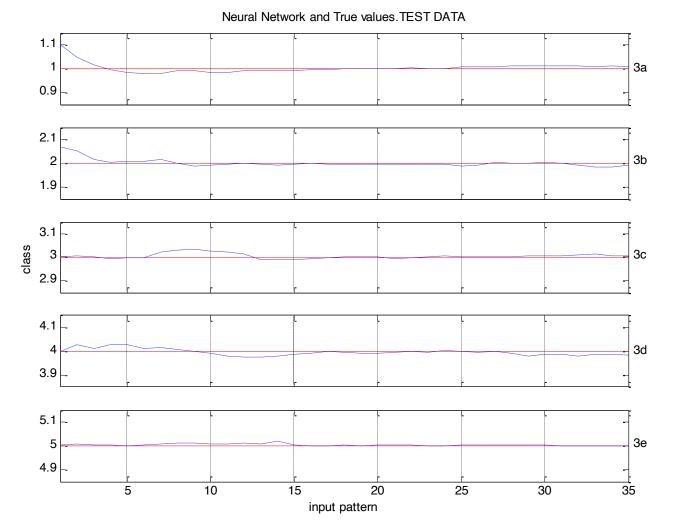
- Divide the training data into:
 - $_{\odot}\,$ A training set (it will be used to find the synapsis weight
 - A validation set (it will be used to find the optimal value of the parameters)
- Proceed by trial-and-error



Network architecure

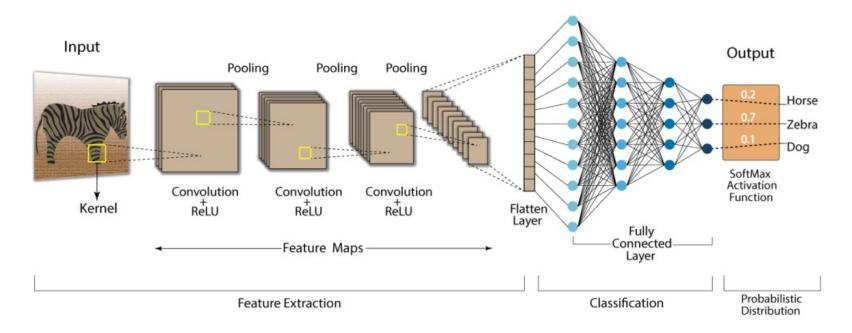
- N_h , η , $\alpha \rightarrow$ grid optimization
- Optimal values
 - N_h:17
 - η: 0.55
 - α:0.6

Test results



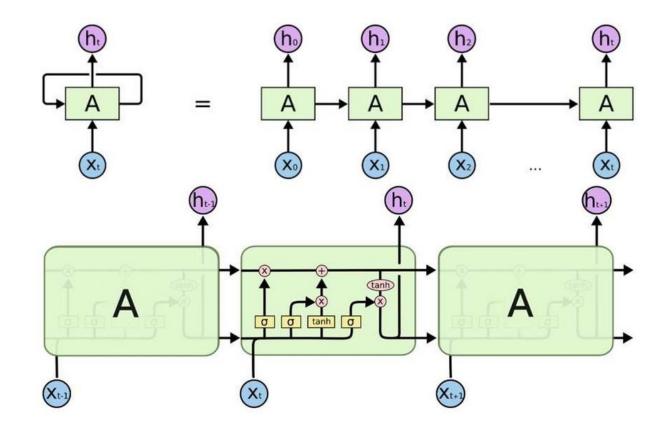
.<mark>53</mark> .

Convolutional Neural Networks

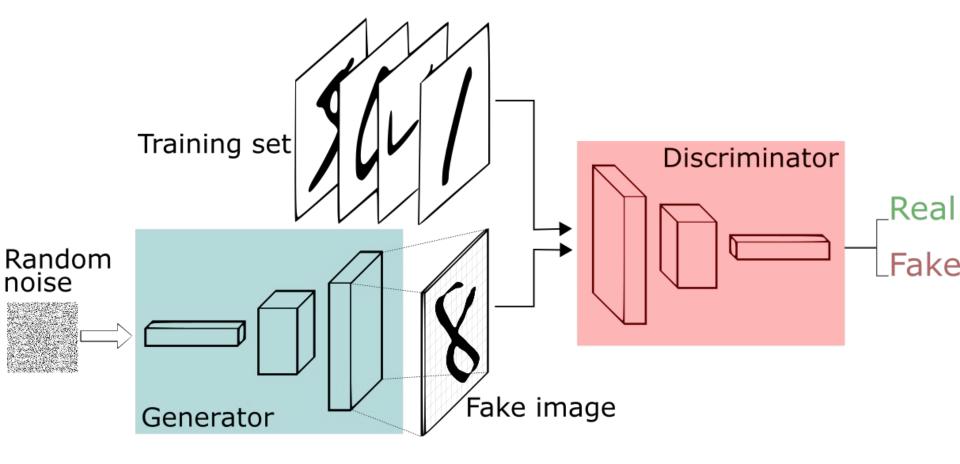


Convolution Neural Network (CNN)

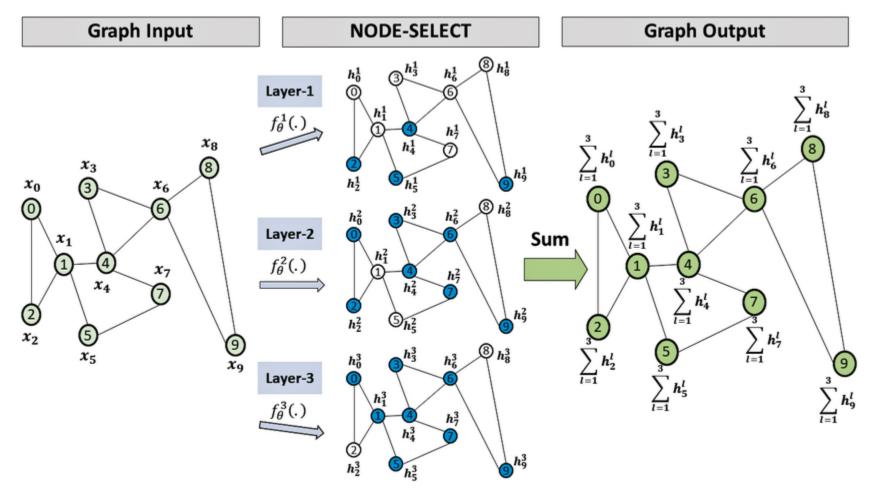
Recurrent Neural Networks



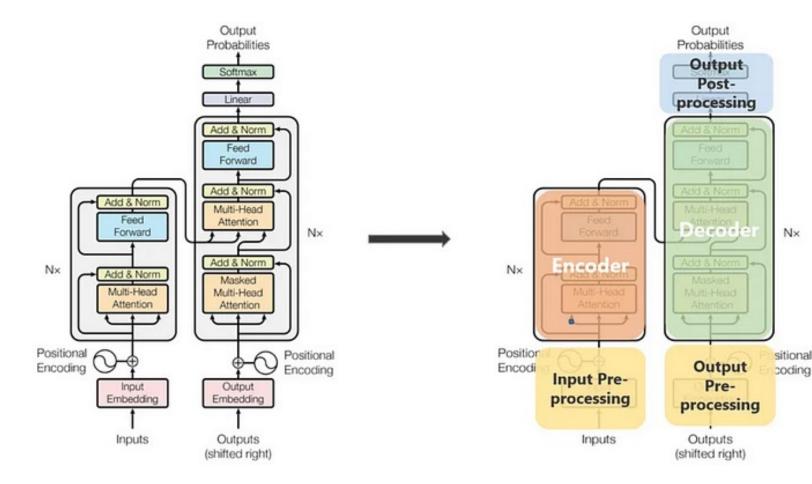
Generative Adversarial Networks



Graph Neural Networks



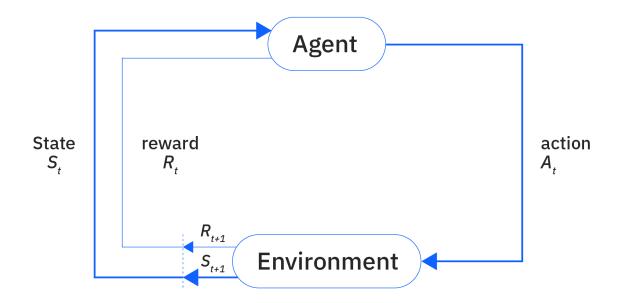
• Transformers



POLITECNICO MILANO 1863

,<mark>58</mark> ,

Reinforcement Learning



Fault Diagnostics Methods

Joaquín Figueroa Politecnico di Milano, Energy Department joaquineduardo.figueroa@polimi.it

April 14th, 2025