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In This Lecture

• Part 1: Model of the Equipment Behavior in 
Normal Condition

• 1A) Auto Associative Kernel Regression (AAKR)

• 1B) Principal Component Analysis (PCA)

• Part 2: Statistical Test
• 2A) Thresholds-Based

• 2B) Q-Statistics

• 2C) Sequential Probability Ratio Test (SPRT)
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Context: Maintenance Interventions & PHM
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Fault Detection: What is? 7
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Fault Detection: What is? 8
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Fault Detection: What is not? 9
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• Limit-based

• Model-based

• Data-driven

Fault Detection: Methods



Ibrahim Ahmed

Limit-based fault detection: data & information

• Normal operation ranges of key signals

Normal 
operation 
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Abnormal condition 

Abnormal condition 

Pressurizer of a nuclear reactor
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time
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• Normal operation ranges of key signals

• Limit Value-Based Fault Detection

Normal 
operation 

range

Abnormal condition 

Abnormal condition 

Pressurizer of a nuclear reactor

10.2 m

3.8 m

Example:

time

Limit-based fault detection: the method 12

Water level
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• Normal operation ranges of key signals

• Limit Value-Based Fault Detection

Normal 
operation 

range

Abnormal condition 

Abnormal condition 

Pressurizer of a PWR nuclear reactor

10.2 m

3.8 m

Example:

time

Limit-based fault detection: Limitations 

Limitations:
• No early detection
•Not applicable to fault detection during    
operational transients
•Control systems operations may hide small 
anomalies (the signal remains in the normal 
range although there is a process anomaly)
•Considering signal individually can delay 
detection

13
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• Limit-based

• Model-based

• Data-driven

Fault Detection: Approaches
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Model-based & Data-driven fault detection: basic idea
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• Limit-based

• Model-based

• Data-driven

Fault Detection: Approaches
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Model-based fault detection: data & information

• Physics-based model of the process (used to reproduce the 
expected behavior of the signals in normal condition)

Pressurizer model
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reconstructions

Example:
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Model-based fault detection: limitations

Abnormal Condition
➢ Typically not available
for complex systems
➢Long computational
time

18
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• Limit-Based

• Model Based

• Data-driven

Fault Detection: Approaches
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Data-driven fault detection: data & information

• Historical signal measurements in normal operation

Water level

PressurePressure

Liquid 

temperat

ure

Steam 

temperat

ure

Spray 

flow

Surge 

line 

flow

Heaters 

power
Level

150.2 321 362 539 244 0 7.2

150.4 322 363 681 304 0 7.5

150.3 323 364 690 335 1244 7.7

… … … … … … …

Example:

20
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Example of Application 1*
21

COMPONENT TO Reactor Coolant Pump of PWR
BE MONITORED Nuclear Power Plant 

   x4

__________________________________________________

: 4

* Work developed with EDF-R&D

Measured signals 48 (Temperatures, pressures, flows,…)

Available data
Historical signal measurements in normal plant 

condition [1 year, frequency=1/30 Hz]
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22Example of Application 2

Measured signals 6 vibration signals measured by accelerometers

Available data
Historical signal measurements in normal plant 

condition [3 years, frequency=5 kHz]
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Data-driven fault detection: possible methods 23

• Statistical Approaches:
• AutoAssociative Kernel Regression (AAKR)

• Principal Component Analysis (PCA)-based

• …

• Artificial Intelligence (AI)-based
• Feedforward Neural Networks (FNNs)

• AutoAssociative Neural Networks (AANNs)

• AutoEncoders (AEs)

• Self Organizing Maps

• …
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In This Lecture

• Part 1: Model of the Equipment Behavior 
in Normal Condition

• 1A) Auto Associative Kernel Regression (AAKR)

• 1B) Principal Component Analysis (PCA)

• Part 2: Statistical Test
• 2A) Thresholds-Based

• 2B) Q-Statistics

• 2C) Sequential Probability Ratio Test (SPRT)
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In This Lecture 25
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PART 1: Model of the Equipment 
Behaviour in Normal Condition

• Auto Associative Kernel Regression (AAKR)

• Principal Component Analysis (PCA)

26
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What do we need? 27

Data in normal 

conditions

obs-nc = observation in normal condition
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Training set, input and output
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Requirement I

• Equipment is in normal condition

29
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Requirement II

• Equipment is in abnormal condition
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PART 1: Model of the Equipment 
Behaviour in Normal Condition

• 1A) Auto Associative Kernel Regression (AAKR)

• 1B) Principal Component Analysis (PCA)

31
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AAKR: Training set, input and output = Slide 26 
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AAKR: the algorithm (1)

• Training patterns: 

• Test input     : measured signals at current time

• Test output      : weighted sum of the training patterns
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AAKR: the algorithm (2)
34

• Output                                 = weighted sum of the training patterns:

• weights w(k) = similarity measures between        and                                  
 (the test and the k-th training pattern): 
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AAKR: parameter h setting

d=0   →  w=0.40/h

d=h   →  w=0.24/h

d=2h →  w=0.05/h

d=3h →  w=0.004/h  

𝑤 𝑑 = 0

𝑤(𝑑 = 3ℎ)
=

0.40

0.004
= 100
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AAKR: the algorithm (2)
36

• Output                                 = weighted sum of the training patterns:

• weights w(k) = similarity measures between        and                                  
 (the test and the k-th training pattern): 

• with                                          Euclidean distance between        and  
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AAKR: Exercise 1

),...,( 1
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conditions? 
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AAKR: Exercise 2

),...,( 1
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•Signal values at current time: 

•Historical signal measurements in normal plant condition:   
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signal reconstruction                                        ?

Question 2) Is the plant in normal or abnormal 

conditions? 
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AAKR remarks: Computational Time

• Computational time:

• No training of the model

• Test: 
computational time depends on 
a) the number of training patterns 𝑁;

   b) the number of signals 𝑛.
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AAKR remarks: Accuracy

• Accuracy:

•  depends on the training set:

• ↑N → ↑ Accuracy

42
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Inaccurate reconstruction
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AAKR remarks 43

Pros: 
• No need of hypothesis on data distribution (e.g. 

linearity)

Cons
• Performance related to number of training 

observations



PART 1: Model of the Equipment 
Behaviour in Normal Condition

• 1A) Auto Associative Kernel Regression (AAKR)

• 1B) Principal Component Analysis (PCA)

44
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PCA: What is it?

PCA:
• Space transformation

• From an n-dimensional space to a 𝑙-dimensional space (𝑙 < 𝑛) 

• Retaining most of the information (loosing the least information)

x1 x2

x3

45
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IDEA OF PCA 46

• Two signals are highly correlated or dependent
➔One is enough!
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PCA: Training set, input and output = Slide 26 and Slide 27  
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PCA for fault detection: operational steps (1)

Step 1: find Principal Components 
(PCs) in the training set            :

1) PC1
is the direction of maximum 
variance

2) PC2
is orthogonal to PC1 and 
describes the maximum residual 
variance

3) PC3                                                 
is orthogonal to PC1 and PC2 and 
describes the maximum residual 
variance

48

ncobsX −

ncobsX −
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Step 1: Mathematical details (1A)

Objective: find principal components

Procedure:

• Compute 𝑉 = covariance matrix of 𝑋𝑜𝑏𝑠−𝑛𝑐
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Objective: find principal components

Procedure:

• Compute 𝑉 = covariance matrix of 𝑋𝑜𝑏𝑠−𝑛𝑐

• Find  the n eigenvectors Ԧ𝑝1, Ԧ𝑝2 , … , Ԧ𝑝𝑛 of 𝑉 and the corresponding 
eigenvalues 𝜆1 ≥ 𝜆2 ≥ 𝜆3 ≥ ⋯ ≥ 𝜆𝑛
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Step 1: Mathematical Details (1B)
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Step 1: Properties of the PCs (I)

➢ P is an orthonormal basis:              

1=

⊥
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Step 1: Properties of the PCs (II)

➢ P is an orthonormal basis:

➢ Data can be transformed from the original to the transformed 
bases and viceversa without any loss of information 
(multiplication for P and PT)

• 𝑢 = the projection of Ԧ𝑥 on the new basis is given by: 𝑢 = Ԧ𝑥 ∙ 𝑃

              

52

Ԧ𝑥 

𝑢
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Step 1: Properties of the PCs (III) 53

Ԧ𝑥 

➢ P is an orthonormal basis:

➢ Data can be transformed from the original to the transformed 
bases and viceversa without any loss of information 
(multiplication for P and PT)

• 𝑢 = the projection of Ԧ𝑥 on the new basis is given by: 𝑢 = Ԧ𝑥 ∙ 𝑃

• Ԧ𝑥 can be obtained from 𝑢 by: Ԧ𝑥 = 𝑢 ∙ 𝑃𝑇
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Step 1: Properties of the PCs (III) 54
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➢ P is an orthonormal basis:

➢ Data can be transformed from the original to the transformed 
bases and viceversa without any loss of information 
(multiplication for P and PT)
• 𝑢 = the projection of Ԧ𝑥 on the new basis is given by: 𝑢 = Ԧ𝑥 ∙ 𝑃
• Ԧ𝑥 can be obtained from 𝑢 by: Ԧ𝑥 = 𝑢 ∙ 𝑃𝑇

➢ The percentage of variance retained by the i-th principal
component is:             
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• Lost small information

• Reduce the number of 

dimensions from n=10 to  = 4

55

Step 2 [PCA approximation]: ignore the PCs of lower 

significance.

PCA for fault detection: operational steps (2)
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• Step 2 [PCA approximation]: ignore the PCs of lower significance.

map the observation Ԧ𝑥𝑜𝑏𝑠 in a subspace ℜ𝑙 ⊂ ℜ𝑛 identified by the 
first l< 𝑛 eigenvectors Ԧ𝑝1, … , Ԧ𝑝𝑙:

                                                       Ԧ𝑥𝑜𝑏𝑠𝑃𝑙 with 𝑃𝑙 = [ Ԧ𝑝1, … , Ԧ𝑝𝑙]

PCA for fault detection: operational steps (2)
56
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meaningful in normal 
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Example of application to the normal condition data:  𝑋𝑜𝑏𝑠−𝑛𝑐



Ibrahim Ahmed

PCA for fault detection: operational steps (3)
57
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Example of application to the normal condition data:  𝑋𝑜𝑏𝑠−𝑛𝑐

We loose the 

noise in the 

space of the 

measured 

signals

• Step 2 [PCA approximation]: ignore the PCs of lower significance.

map the observation Ԧ𝑥𝑜𝑏𝑠 in a subspace ℜ𝑙 ⊂ ℜ𝑛 identified by the first l <
𝑛 eigenvectors Ԧ𝑝1, … , Ԧ𝑝𝑙:

                                                       Ԧ𝑥𝑜𝑏𝑠𝑃𝑙 with 𝑃𝑙 = [ Ԧ𝑝1, … , Ԧ𝑝𝑙] 

• Step 3: [Antitransformation]: signal reconstructions  Ԧො𝑥𝑛𝑐 = Ԧ𝑥𝑜𝑏𝑠𝑃𝑙 𝑃𝑙
𝑇

•  
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PCA for fault detection: Summary
58

Find       from
• Historical data
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PCA for fault detection: Summary
59

Find       from
• Historical data

• Measured signals at present time:

• Transform and project  

• Antitrnansform

 

),...,( 1

obs

n

obsobs xxx =


෠Ԧ𝑥𝑛𝑐 = Ԧ𝑥𝑜𝑏𝑠𝑃𝑙𝑃𝑙
𝑇

Ԧ𝑥𝑜𝑏𝑠𝑃𝑙






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ncobsX −

Ԧො𝑥𝑛𝑐 ≅ Ԧ𝑥𝑜𝑏𝑠 →   normal condition

Ԧො𝑥𝑛𝑐 ≠ Ԧ𝑥𝑜𝑏𝑠
→   abnormal condition

Signal reconstructions

I’m looking at the measurements 

considering only the directions that 

are most meaningful in normal 

condition (directions of maximum variance)

I loose only the irrelevant noise

The process is changed

𝑃𝑙
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Exercise 1
60

),( 21

obsobsobs xxx =


•Measured signals at present time: 

•Signal reconstructions?

•Normal or abnormal condition?

•available historical signal measurements in normal plant condition  
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Exercise 2
65

),( 21

obsobsobs xxx =


•Measured signals at present time: 

•Signal reconstructions?

•Normal or abnormal condition?

•available historical signal measurements in normal plant condition  

1x

2x
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PCA remarks: computational time

Computational time:

• Training time = computational time necessary to find the 
Principal Components is proportional to the number of 
measured signals 𝑛

• Execution time: very short (only 2 matrix multiplications) 
→ OK for online applications

69
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PCA remarks: complex structure

Performance:

Unsatisfactory for dataset characterized by highly non-
linear relationships

70
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Part 2: Statistical Test 71

MODEL OF THE

EQUIPMENT BEHAVIOR

IN NORMAL CONDITION

Signal
reconstructions

Real
measurements

0 500 1000
0
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20

0 500 1000
65

70

75

80

0 500 1000
65

70

75

80

0 500 1000
0

10

20

Part 1

= ?
Statistical 

Test

Normal

Condition

Abnormal

Condition

Part 2
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In This Lecture

• Part 1: Model of the Equipment Behavior in 
Normal Condition

• 1A) Auto Associative Kernel Regression (AAKR)

• 1B) Principal Component Analysis (PCA)

• Part 2: Statistical Test
• 2A) Thresholds-Based

• 2B) Q-Statistics

• 2C) Sequential Probability Ratio Test (SPRT)

72



PART 2: Statistical Test

• Thresholds-based

• Q Statistics

• Sequential Probability Ratio Test (SPRT)
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Abnormal condition detection: decision

• Basics of the decision: residual analysis

• Methods
• Thresholds-based approach

• Stochastic approaches:

• Q Statistics

• Sequential Probability Ratio Test (SPRT)

Ԧ𝑟 = Ԧ𝑥𝑜𝑏𝑠 − Ԧො𝑥𝑛𝑐





→

→

0

0

r

r




Abnormal condition

Normal condition

74



PART 2 A: Statistical Test

• Thresholds-based

• Q Statistics

• Sequential Probability Ratio Test (SPRT)

75
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Thresholds-based

t

r

Abnormal condition 

detection

76
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Thresholds-Based: Remarks

Too large thresholds →  high missing alarm rates (β)

t

r
Normal conditions

t

r
Abnormal conditions

77

Too small thresholds → high false alarm rates (α)

• Easy to apply

• Thresholds setting is difficult and error-prone 



PART 2 B: Statistical Test

• Thresholds-based

• Q-Statistics

• Sequential Probability Ratio Test (SPRT)

78
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Stochastic approaches

• Residual (r)= random variable described by a probability 
law

• The probability law is different in case of normal/abnormal 
condition

-6 -4 -2 0 2 4 6
0

0.1

0.2

0.3

0.4

0.5

r
-6 -4 -2 0 2 4 6

0

0.1

0.2

0.3

0.4

0.5

r

),0( Nr ~ ),( 1 Nr~

Abnormal condition Normal condition 
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Q statistics

• Assuming the signal reconstructions at time 𝑡 are: 
Ԧො𝑥𝑛𝑐(𝑡) = ( ො𝑥1 (𝑡), ො𝑥2 (𝑡), … , ො𝑥𝑛 (𝑡)), 

then the Q-stat at time 𝑡 is: 

𝑄 𝑡 = Ԧ𝑟(𝑡)𝑇 ∙ Ԧ𝑟 𝑡 = Ԧ𝑥𝑜𝑏𝑠(𝑡) − Ԧො𝑥𝑛𝑐(𝑡) Ԧ𝑥𝑜𝑏𝑠 𝑡 − Ԧො𝑥𝑛𝑐 𝑡
𝑇

=

= ෍

𝑖=1

𝑛

(𝑥𝑖
𝑜𝑏𝑠(𝑡) − ො𝑥𝑖

𝑛𝑐(𝑡))2 

The Q-statistics (squared prediction error) is a metric that 
accounts for the amount of variance that is not captured by the 
chosen 𝑙 - dimensional PCA model, which represents the 
“normal behaviour” of the signals.

80
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Q Statistics

• Let 𝜗𝑖 = σ𝑘=𝑙+1
𝑛 𝜆𝑘

𝑖 , 𝑖 = 1,2,3; ℎ0 = 1 −
2𝜃1𝜃3

3𝜃2
2

• 𝑐 =
𝜃1

𝑄

𝜃1

ℎ0
−1−

𝜃2ℎ0 ℎ0−1

𝜃1
2

2𝜃2ℎ0
2

is approximately 𝑁(0,1)

81

Theorem ,see Appendix 1, J.E. Jackson and 

G.S. Mudholkar, Technometrics, 21(3), (1979), 

341-349

c

𝑓𝐶(𝑐)

𝑧90

Equipment in normal condition → 𝑃(𝑐 ≤ 𝑧90)=0.9
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Q Statistics 82

t

𝑄

Abnormal condition 

detection

𝑄𝛼

𝑄𝛼 = 𝜗1

ℎ0𝑧𝛼 2𝜃2

𝜃1
+ 1 +

ℎ0𝜃2 ℎ0 − 1

𝜃1
2

1/ℎ0

𝑃(𝑎𝑏𝑛𝑜𝑟𝑚𝑎𝑙 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛|𝑛𝑜𝑟𝑚𝑎𝑙 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛)=0.1

FALSE POSITIVE

→ 𝑃(𝑄 ≤ 𝑄90)=0.9



PART 2 C: Statistical Test

• General Idea

• Q Statistics

• Sequential Probability Ratio Test (SPRT)
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SPRT

• 𝑅𝑇 = {𝑟 1 , … , 𝑟 𝑇 }  sequence of residuals at time 
𝑡 =  1, … 𝑇, where 𝑟 𝑡 = 𝑥𝑜𝑏𝑠(𝑡) − ො𝑥𝑛𝑐(𝑡) 

• Binary hypothesis test:
• Null hypothesis (H0) ≡ Normal condition

𝑟 𝑡 ~𝒩 0, 𝜎 , ∀𝑡

• Alternative hypothesis (H1) ≡ Abnormal condition
𝑟 𝑡 ~𝒩 𝜇1, 𝜎 , ∀𝑡
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0
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( ) ( ) ,11 Nrf 
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( ) ( ),00 Nrf 
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SPRT: the decision

𝐿𝑇 =
𝑃 𝑅𝑇|𝐻1is true

𝑃 𝑅𝑇|𝐻0is true
=

𝑓1 𝑟 1 ⋅ 𝑓1 𝑟 2 ⋅. . .⋅ 𝑓1 𝑟 𝑇

𝑓0 𝑟 1 ⋅ 𝑓0 𝑟 2 ⋅. . .⋅ 𝑓0 𝑟 𝑇

ln 𝐿𝑇

trueis1H

trueis0H

Not enough 

information

B

A
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SPRT Theorem



−
=

1
lnB





−
=

1
lnA

 

  







trueis|

trueis|

10

01

HDP

HDP

False alarm

Missing alarm
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SPRT for the positive mean test

• Null hypothesis (H0) ≡ Normal condition 𝑟 𝑡 ~𝒩 0, 𝜎

• Alternative hypothesis (H1) ≡ Abnormal condition 𝑟 𝑡 ~𝒩 𝜇1, 𝜎

Sequential

Formula!

ln 𝐿𝑇 =
𝜇1

𝜎2 ෍

𝑡=1

𝑇

𝑟 𝑡 −
𝜇1

2
=

𝜇1

𝜎2 ෍

𝑡=1

𝑇−1

𝑟 𝑘 −
𝜇1

2
+

𝜇1

𝜎2 𝑟𝑇 −
𝜇1

2

= ln( 𝐿𝑇−1) +
𝜇1

𝜎2
𝑟 𝑇 −

𝜇1

2

𝐿𝑇 =
𝑃(𝑟 1 , … , 𝑟 𝑇 |𝐻1)

𝑃(𝑟 1 , … , 𝑟 𝑇 |𝐻0)
= 𝑒

−
1

2𝜎2 σ𝑡=1
𝑇 𝜇1 𝜇1−2𝑟 𝑡

= 𝑒
𝜇1
𝜎2 σ𝑡=1

𝑇 𝑟 𝑡 −
𝜇1
2
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SPRT: Example





−
=

1
lnA



−
=

1
lnB

𝐿0 = 1 → ln( 𝐿0) = 0

ln 𝐿1 = ln 𝐿0 +
𝜇1

𝜎2 𝑟 1 −
𝜇1

2

ln 𝐿2 = ln 𝐿1 +
𝜇1

𝜎2 𝑟 2 −
𝜇1

2

trueis1H

trueis0H

Not enough 

information

ln 𝐿𝑇

21 3
0

Not enough 

information

t
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SPRT: parameters to be set

• the residual variance in normal condition (σ2)

• the expected offset amplitude (μ1)

• the maximum acceptable false alarm rate (α)

• the maximum acceptable missing alarm rate (β)

89
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Example

0 100 200 300 400 500 600 700 800 900 1000
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True signal value

Reconstruction

Time interval Simulated 

Offset

[0-200] No

[201-400] Yes

(amplitude = 

0.11)

[401-600] Yes

(amplitude = 

0.23)

[601-800] Yes

(amplitude = 

0.34)

[801-1000] Yes

(amplitude = 

0.46)

observed
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Example: residuals

0 100 200 300 400 500 600 700 800 900 1000
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

R
e
s
id

u
a
ls

Time

No offset
Maximum 

offset

91



Ibrahim Ahmed

Example: SPRT

Parameter Value
α 0.01
Β 0.01
μ0 0
μ1 0.46
σ2 0.12

0 100 200 300 400 500 600 700 800 900 1000
-5

-4

-3

-2

-1

0
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Time

S
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 i
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Upper Threshold

Lower Threshold

SPRT value

No offset Maximum 

offset





−
=

1
lnA



−
=

1
lnB

trueis1H

trueis0H

92

𝐿0 = 1 → ln( 𝐿0) = 0

ln 𝐿1 = ln 𝐿0 +
𝜇1

𝜎2 𝑟 1 −
𝜇1

2

ln 𝐿2 = ln 𝐿1 +
𝜇1

𝜎2 𝑟 2 −
𝜇1

2
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SPRT: performance

Time interval Offset Estimated 

ASN

Number of times in 

which a normal 

condition has been 

detected

Number of times in 

which an abnormal 

condition has been 

detected

[0-200] No 1.2 150 2

[201-400] amplitude = 0.11 1.9 70 5

[401-600] amplitude = 0.23 2.4 15 17

[601-800] amplitude = 0.34 2.1 0 94

[801-1000] amplitude = 0.46 1.2 2 142

Average Sample Number (ASN) needed to deliver a decision
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Data-Driven Fault Detection

Challenges?

94
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Fault Detection - Challenges

• Hundreds of Signals are Monitored

• Evolving Environment

• Robustness

95
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Data-Driven Fault Detection: Challenge I 96

Hundreds of signals are monitored

EMPIRICAL MODEL OF 

PLANT BEHAVIOR

IN NORMAL OPERATION

(AAKR, PCA, ANN)

Signal
reconstructions

0 500 1000
65

70

75

80

0 500 1000
0

10

20

DIFFICULT TO DEVELOP

1 #312KA031 VALUE kg/s sum feedwater flows

2 #312KA032 VALUE kg/s sum feedwater flows

3 #312KA033 VALUE kg/s sum feedwater flows

4 #312KA201 VALUE MPa pressure difference over VA23

5 #312KA301 VALUE kg/s flow train A

6 #312KA302 VALUE kg/s flow train A

7 #312KA303 VALUE kg/s flow train A

8 #312KA306 VALUE kg/s flow low power (fløde låglast)

9 #312KA502 VALUE C feedwater temp train A

10 #312KA503 VALUE C temp after VA8

11 #312KC301 VALUE kg/s flow train C

12 #312KC302 VALUE kg/s flow train C

13 #312KC303 VALUE kg/s flow train C

14 #312KC502 VALUE C feedwater temp line C

15 #313KA511 VALUE C temp PA1 (main circulation pump)

16 #313KA512 VALUE C temp PA2 (main circulation pump)

17 #313KA711 VALUE mm/s vibration PA1 radial

18 #313KA712 VALUE mm/s vibration PA2 radial

19 #313KA721 VALUE mm/s vibration PA1 tangential

20 #313KA722 VALUE mm/s vibration PA2 tangential

21 #313KA731 VALUE rpm rotation speed PA1

22 #313KA732 VALUE rpm rotation speed PA2

23 #313KB511 VALUE C temp PB1 (main circulation pump)

24 #313KB512 VALUE C temp PB2 (main circulation pump)

25 #313KB711 VALUE mm/s vibration PB1 radial

26 #313KB712 VALUE mm/s vibration PB2 radial

27 #313KB721 VALUE mm/s vibration PB1 tangential

28 #313KB722 VALUE mm/s vibration PB2 tangential

29 #313KB731 VALUE rpm rotation speed PB1

… … … …

123 #313KC511 VALUE C temp PC1 (main circulation pump)

𝑥2

𝑥1

𝑥123
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Fault Detection: Challenge I 97

Measured 

Signals Group 
generation

Subset 2

Subset 1

Subset H

Model 2

Model 1

Model H

rxxx ,...,, 21
Random

• Solution

123 signals

≈30 signals

…

Ensemble of models
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Fault Detection: Challenge I 98

Measured 

Signals Group 
generation

Subset 2

Subset 1

Subset H

Model 2

Model 1

Model H

rxxx ,...,, 21
Random

• Solution

123 signals

≈20 signals

…

Aggregati
on

Weighted

Average

Ensemble of models
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Fault Detection: Challenge II 99

Evolving Environment
In

le
t 
G

a
s
 

T
e

m
p

e
ra

tu
re

2012 2015 2019

Planned

MaintenanceOperational Condition:

Load 100% →

Load 80% 

Plant Upgrading: 

Valve ‘64y’ is

replaced with a 

new model
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Fault Detection: Challenge II 100

t0

T

P

Identify historical signal 
measurements in 

normal plant operation

T

P

time

False 

alarm 

rate

t0 t1

A New Model is necessary

Plant operations slowly 
change with time  Develop the model

Example: monitoring the turbine of an electric power plant
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Fault Detection: Challenge II 101

time

False 

alarm 

rate

t0 t1

A New Model is necessary

t1

T time

False 

alarm 

rates

t0 t1T

P

Identify recent historical 
signal measurements in 
normal plant operation

Develop the new model

Periodic Human Interventions for developing new models!  →  high costs! 

P

Example: monitoring the turbine of an electric power plant

t0

T

P

Identify historical signal 
measurements in 

normal plant operation

T

P

Develop the model
Plant operations slowly 

change with time  
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Fault Detection: Challenge II 102

• The detection model should be able to follow the process
changes:

• Incremental learning of the new data that gradually becomes
available

• No necessity of human intervention for:
• selecting recent normal operation data 

• building the new model

T

P

T

P

New data are coming

T

P

Automatic updating of the model
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Fault Detection: Challenge III 103

Robustness of the Reconstruction

ROBUSTNESS:

t

t t

t

ABNORMAL CONDITION
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ncobsnc xx −
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Signal
reconstructions

Real
measurements
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Example1:
Monitoring a Turbine for Energy Production

104

𝑥1 𝑥2 𝑥3

𝑥4 𝑥5 𝑥6

6 Temperature Sensors

in different position
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𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒙𝟓 𝒙𝟔

𝒙𝟏 1 0.97 0.98 0.98 0.99 0.98

𝒙𝟐 0.97 1 0.95 0.99 0.98 0.96

𝒙𝟑 0.98 0.95 1 0.96 0.99 0.99

𝒙𝟒 0.98 0.99 0.96 1 0.98 0.97

𝒙𝟓 0.99 0.98 0.99 0.98 1 0.99

𝒙𝟔 0.98 0.96 0.99 0.97 0.99 1

Highly Correlated Signals
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Abnormal condition of the first signal
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Traditional AAKR

Simulated residuals

Traditional AAKR

Simulated residuals

1 2

Simulated abnormal conditions Simulated abnormal conditions

Example1:
Traditional AAKR

105

DELAY IN THE DETECTION

IMPOSSIBILITY TO IDENTIFY THE SIGNALS

TRIGGERING THE ABNORMAL BEHAVIOR
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Our Contribution:
A modified AAKR method

106

Modified AAKR

-
Fault

Detection

No Fault

Fault

Ԧ𝑥𝑜𝑏𝑠

Ԧ𝑥𝑛𝑐

Δ Ԧ𝑥

Modification of the loci

of equisimilarity points 

Malfunctions causing variations

of a small number of signals are

more frequent than those

causing variations of a large 

number of signals

𝑥1

𝑥2

𝑥2

𝑥1Ԧ𝑥𝑜𝑏𝑠

Ԧ𝑥ℎ𝑖𝑠𝑡 1

Ԧ𝑥ℎ𝑖𝑠𝑡 2
Ԧ𝑥𝑜𝑏𝑠

𝑥2

𝑥1

Ԧ𝑥ℎ𝑖𝑠𝑡 2
Ԧ𝑥ℎ𝑖𝑠𝑡 1
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• Early Detection

• More Accurate

𝑥1 𝑥2 𝑥3

𝑥4 𝑥5 𝑥6

• Correct Diagnosis of the

signal that triggers the alarms
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Traditional AAKR Modify AAKR

Loci of 

equisimilarity 

points 

Accuracy OK! OK!

Robustness NO! Especially

with correlated

signals

1. Robust reconstruction of the values 

expected in normal conditions

2. Correct identification of signals

affected by abnormal condition

3. Good performance with correlated

signals

𝑥2

𝑥1Ԧ𝑥𝑜𝑏𝑠

Ԧ𝑥ℎ𝑖𝑠𝑡 1

Ԧ𝑥ℎ𝑖𝑠𝑡 2

Ԧ𝑥𝑜𝑏𝑠

𝑥2

𝑥1

Ԧ𝑥ℎ𝑖𝑠𝑡 2
Ԧ𝑥ℎ𝑖𝑠𝑡 1
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6 Sensors of reactor coolant system (RCS) measured during startup transient

S1 (Cold leg temperature) S2 (Core exit temperature) S3 (Hot leg temperature)

S4 (Safety injection flow) S5 (Residual heat removal flow) S6 (Sub-cooling margin temperature)

Correlations
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Simulated abnormal condition
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Normal condition

Traditional AAKR

Simulated residuals

Traditional AAKR

Simulated residuals

1 2

Simulated abnormal conditions Simulated abnormal conditions

Example2:
Traditional AAKR
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DELAY IN THE DETECTION

IMPOSSIBILITY TO IDENTIFY THE SIGNALS

TRIGGERING THE ABNORMAL BEHAVIOR

ො𝑥𝑞
∗ =

σ𝑖=1
𝑀 𝑘𝑖

𝑓
𝑥𝑖

σ𝑖=1
𝑀 𝑘𝑖

𝑓

LACKS TEMPORAL INFORMATION
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Our Contribution:
AABKR method – Aggregating Bilateral Directions
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Aggregating bilateral 

directions capturing both 

spatial and temporal 

dependencies

Fault 
Detection

Online Observations, 

No fault

Fault

Feature 
Distance 

Calculator

DTW-based time 
position index 
identification 

method

Weighted-
Distance 

Algorithm

Bilateral 
Kernel 

Calculator

Historical Data, X

Plant Feature 
Kernel 

Calculator

Temporal 
Kernel 

Calculator

Prediction

ො𝑥𝑞
∗ =

σ𝑖=1
𝑀 𝑘𝑖

𝑓
⊛ 𝑘𝑖

𝑡 𝑥𝑖

σ𝑖=1
𝑀 𝑘𝑖

𝑓
⊛ 𝑘𝑖

𝑡
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(a) AAKR 

 

(b) AABKR 

 

Means of the alarm rates in start-up process operating condition

Distributions of the TARs for a thousand-run Monte Carlo in start-up
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Traditional AAKR Modify AAKR (AABKR)

Information 

captured 

Accuracy OK! OK!

Robustness NO! Especially

with correlated

signals and 

normal transient 

data

1. Robust reconstruction of the values 

expected in normal conditions

2. Correct identification of signals

affected by abnormal condition

3. Good performance with normal 

transient monitoring
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