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The history of Monte Carlo simulation
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Buffon’s needle

Buffon considered a set of parallel straight lines a distance D apart onto a plane and computed the 
probability P that a needle of length L < D randomly positioned on the plane would intersect one of these 
lines.

Monte Carlo Simulation 5
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For a fixed value of 𝜃: 

For a random value of 𝜃 → joint pdf of (y, 𝜃): 
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Sampling (pseudo) Random Numbers Uniform Distribution
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The Random Number Book (1955)
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1 million random numbers
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where

 

    Example: a = 5, c = 1, m = 16
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Sampling (pseudo) Random Numbers from Uniform Distribution: 
Linear Congruential Generator (LCG)
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  ( )rUrR R=Pr

Sampling (pseudo) random numbers from generic distribution: 
Inverse Transform Method

Monte Carlo Simulation 9

F
( ) xFRP X

Question: which distribution does X obey?

Sample R from UR(r) and find  X:

( )RFX X

1−=

  ( ) xRFPxXP X = −1
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Question: which distribution does X obey?

Application of the operator Fx to the argument of P above yields

 

Summary:
From an R  UR(r) we obtain an X  FX(x)

Sample R from UR(r) and find  X:

( )RFX X

1−=

  ( ) xRFPxXP X = −1

  ( )  ( )xFxFRPxXP XX ==

  ( )rUrR R=Pr

Sampling (pseudo) random numbers from generic distribution: 
Inverse Transform Method
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Buffon’s needle: MC simulation with inverse transform method

Monte Carlo Simulation 11

• Initialize the counter of the number of times the needle intercepts a line: 𝑁𝑠 = 0

• Simulate N >> 1 needle throws by 

• Sampling Y from the uniform distribution in the interval [0,D]:  𝑓𝑌 𝑦 =
1

𝐷
𝑦 ∈ [0, 𝐷]

by using the inverse transform method:

𝐹𝑌 𝑦 =

𝑦

𝐷
𝑓𝑜𝑟 0 ≤ 𝑦 ≤ 𝐷

0 𝑓𝑜𝑟 𝑦 < 0
1 𝑓𝑜𝑟 𝑦 > 𝐷

𝑅 = 𝐹𝑌 𝑦 =
𝑌

𝐷
𝑌 = 𝑅1𝐷

• Sampling Θ from the uniform distribution in the interval [0,π] by using the inverse transform method: Θ = 𝑅2𝜋

• If the needle intercepts a line, i.e.   𝑌 ≤ 𝐿𝑠𝑖𝑛Θ, set  𝑁𝑠 = 𝑁𝑠 + 1

• At the end of the procedure: 𝑃 =
𝑁𝑠

𝑁
≅

2𝐿

𝜋D
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•  

•  

Graphically:  
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Sampling by the Inverse Transform Method: Discrete Distributions
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• Markovian system with two states (good, failed)
• hazard rate,  = constant

• cdf
   
•pdf

•Sampling a failure time T

( )   t

T etTPtF −−== 1  

( )   dtedttTtPdttf t

T =+= −

( ) ( ) t

TR etFrFR −−== 1

( ) ( )RRFT T −−== − 1ln
11



Sampling by the Inverse Transform Method: Exponential Distribution
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cdf:

pdf:

•Sampling a failure time T

Sampling by the Inverse Transform Method: Weibull Distribution

( )   1 t

TF t P T t e
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• Given a pdf fX(x) limited in (a,b), let   

 
so that

• The operative procedure
 

( )
( ) X

M

f x
h x

f
=

0 ( ) 1, ( , )h x x a b   

Sampling by the Rejection Method: von Neumann Algorithm
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More generally:

The operative procedure:
• sample X’~gX’(x), and calculate h(X’) 
• sample R ~U[0,1). If R<=h(X’) the value X’ 

is accepted; else start again.  

We show that the accepted value is actually a realization of X sampled from
fX(x)
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Sampling by the Rejection Method: von Neumann Algorithm
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gX’(x) is a distribution it is easy to sample 

from (uniform, normal, …)

H(x) is a shape correction factor f(x)/g(x)
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Sampling by the Rejection Method: von Neumann Algorithm
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The efficiency of the method is given by the probability of accepted:
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Sampling by the Rejection Method: von Neumann Algorithm
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Sampling by the Rejection Method: von Neumann Algorithm
Example

Monte Carlo Simulation 19

Sample from the pdf:

 

 

2 1
( )    0 1

(1 )
Xf x x

x x
=   

+



Luca Pinciroli, Department of EnergyLuca Pinciroli, Department of Energy

The operative procedure:

•  

•

The efficiency of the method is:

 

2

1 1 2

1

1
sample ~ [0,1) '  and ( ')

1
R U X R h X

R
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+

2 2sample ~ [0,1). If  ( ') accept = ';  else start againR U R h X X X

1
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4HB


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Sampling by the Rejection Method: von Neumann Algorithm
Example
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RAM quantities of interest are definite integrals

Some Examples:

• Unreliability: 

𝐹𝑇 𝑡𝑚𝑖𝑠𝑠 = 𝑃 𝑇 ≤ 𝑡𝑚𝑖𝑠𝑠 = 𝑃 𝑞 𝑇1, … , 𝑇𝑛 ≤ 𝑡𝑚𝑖𝑠𝑠 =

=  න
𝑡1,…,𝑡𝑛 :𝑞 𝑡1,…,𝑡𝑛 ≤𝑡𝑚𝑖𝑠𝑠

𝑓𝑇1,…,𝑇𝑛
𝑡1, … , 𝑡𝑛  𝑑𝑡1 … 𝑑𝑡𝑛

• 𝑀𝑇𝑇𝐹 = 0׬

+∞
𝑡 𝑓𝑇 𝑡  𝑑𝑡

𝑇1 𝑇2

𝑇3

𝑇𝑛
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MC Evaluation of Definite Integrals (1D)

( ) ( )dxxfxgdxxhG X

b

a

b

a  == )(

( )

( )






=



 1 

 0

b

a
dxxf

xf

X

X
• 𝑥 is a random variable with pdf 𝑓𝑋(𝑥):
• 𝑔(𝑥) is a random variable

( ) ( ) ( ) GdxxfxgxgE X

b

a
== ][
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MC Evaluation of Definite Integrals (1D)

( ) gxg
N

G
N

i

iN == 
=1

1

( ) ( ) ( )][ xgEdxxfxgG
b

a
== 

Monte Carlo Simulation 24

Problem→ Estimate 𝐸[𝑔 𝑥 ]

Solution→Dart Game

1) for 𝑖 = 1,2, … , 𝑁
o Sample 𝑋𝑖 from 𝑓𝑋(𝑥) (the probability that a shot hits x  dx is f(x)dx)
o Compute 𝑔(𝑋𝑖) (the award is g(x))
End

Consider N trials with results 𝑥1, 𝑥2, … , 𝑥𝑁  : the average award is:
Random 
variable!

𝑬[𝑮𝑵] 𝑽𝒂𝒓[𝑮𝑵]
Is 𝐺𝑁 a good estimator of 𝐸[𝑔 𝑥 ] ?



Luca Pinciroli, Department of EnergyLuca Pinciroli, Department of Energy

MC Evaluation of Definite Integrals (1D): Why GN  is a good estimator 
of G?

GN is a random variable with:

( )
=

=
N

i

iN xg
N

G
1

1

GN is an unbiased estimator of G: 
 
GN is a consistent estimator of G:

  GGE N =

𝐸 𝐺𝑁 = 𝐸
1

𝑁
෍

𝑖=1

𝑁

𝑔 𝑥𝑖 =
1

𝑁
෍

𝑖=1

𝑁

𝐸 𝑔 𝑥 = 𝐺

𝑉𝑎𝑟 𝐺𝑁 = 𝑉𝑎𝑟
1

𝑁
෍

𝑖=1

𝑁

𝑔(𝑥𝑖) =
1

𝑁2 ෍

𝑖=1

𝑁

𝑉𝑎𝑟 𝑔 𝑥 =
1

𝑁
𝑉𝑎𝑟[𝑔 𝑥 ]

lim
𝑁→∞

𝑉𝑎𝑟 𝐺𝑁 = 0
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MC Evaluation of Definite Integrals (1D): Example

 ==







=

1

0
6366.0

2

2
cos




dxxG

How can we write the integral 
for MC estimation? 

𝑓 𝑥 = ? 𝑔 𝑥 = ?
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MC Evaluation of Definite Integrals (1D): Example

 ==







=

1

0
6366.0

2

2
cos




dxxG

( )  









=

=

xxg

xforxf

2
cos)(

1,01



By setting:

We perform N=104 trials:

𝑥𝑖 → 𝑈[0,1)

𝑔 𝑥𝑖 = cos
𝜋

2
𝑥𝑖

𝐺𝑁 =
1

𝑁
෍

𝑖=1

𝑁

𝑔 𝑥𝑖 =
1

𝑁
෍

𝑖=1

𝑁

𝑐𝑜𝑠
𝜋

2
𝑥𝑖 = 0,6342
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MC Evaluation of Definite Integrals (1D): Example

 







=

1

0 2
cos dxxG



We perform N=104 trials:
 )

( )

4

1

10

)
2

cos(

1,0

=

=

→

N

xxg

Ux

i

i

 ( ) 6342.0
2

cos
11

11

=







== 

==

N

i

i

N

i

iN x
N

xg
N

G


    ( ) ( ) ( )( ) ( )( )2222 ][
1

][
1

)(
1

GxgE
N

xgExgE
N

xgVar
N

GVar N −=−==

Monte Carlo Simulation 28

Unknown in a practical case!
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MC Evaluation of Definite Integrals (1D): Example

 







=

1

0 2
cos dxxG



We perform N=104 trials:
 )

( )

4

1

10

)
2

cos(

1,0

=

=

→

N

xxg

Ux

i

i

 ( ) 6342.0
2

cos
11

11

=







== 

==

N

i

i

N

i

iN x
N

xg
N

G


    ( ) ( ) ( )( ) ( )( )2222 ][
1
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1

)(
1

GxgE
N

xgExgE
N

xgVar
N

GVar N −=−==
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Unknown in a practical case!

( ) 
2

1

2
cos

1

0

22 =







=  dxxxgE



  6

2

4
1047.9

2

2

1

10

1 −=





















−=


NGVar

( ) 


2
== xgEG
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MC Evaluation of Definite Integrals (1D): Example

 







=

1

0 2
cos dxxG



We perform N=104 trials:
 )

( )

4

1

10

)
2

cos(

1,0

=

=

→

N

xxg

Ux

i

i

 ( ) 6342.0
2

cos
11

11

=







== 

==

N

i

i

N

i

iN x
N

xg
N

G


( )  ( )
=


N

i

ixg
N

xgE
1

22 1

  ( ) 622 106.9
1 −=− NN Gg
N

GVar Estimated Variance!

They can be computed during the MC simulation!

0031.06342.0106.96342.0 6 == −G True value is 0.6366 

6342.0= NGG

    ( ) ( ) ( )( ) ( )( )2222 ][
1

][
1

)(
1

GxgE
N

xgExgE
N

xgVar
N

GVar N −=−==
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MC Integral: interpretation of the variance

Sample 1
N=10000
=0.68

Sample 2
N =10000
=0.68

Sample 10
N =10000
=0.68

G

NG

( ); 0.68
N NN G G

P G G G   − +  

unknown

( ); 0.68
N NN G N G

P G G G   − +  
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Why  Monte Carlo instead of deterministic numerical integration?

 Because the latter suffers from two major issues when dealing 
with highly multidimensional problems:

1. The number of function evaluations (grid) increases
combinatorially with the number of dimensions

2. The boundaries of the multidimensional integration domain D 
become intractable

Definite Integral – Monte Carlo Vs Deterministic Numerical 
Integration 
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• The estimate 𝐺𝑁 becomes more precise (less uncertain) as the 
estimator variance 𝑉𝑎𝑟 𝐺𝑁  decreases!

• How can we achieve lower 𝑉𝑎𝑟 𝐺𝑁 =
1

𝑁
𝑉𝑎𝑟[𝑔 𝑥 ]?

1. Increasing the number N of MC trials  “brute force”

2. Decreasing 𝑉𝑎𝑟[𝑔 𝑥 ] variance reduction techniques

Estimation error – variance reduction

( )
( )

( ) ( ) ( ) ( ) 







=

DD
dxxfxgdxxfxg

xf

xf
G 111

1

Forced (biased) MC 
simulation
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MC estimation of RAM quantities of interest: Unreliability 
estimation example

???)(tFT

with

𝑇1 𝑇2𝑇 = 𝑆𝑦𝑠𝑡𝑒𝑚 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 𝑡𝑖𝑚𝑒 

𝑇𝑖 ≈ 𝑓𝑇𝑖
𝑡𝑖 = 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 𝑡𝑖𝑚𝑒

𝐹𝑇 𝑡𝑚𝑖𝑠𝑠 = 𝑃 𝑇 ≤ 𝑡𝑚𝑖𝑠𝑠 =

= න
0

𝑡𝑚𝑖𝑠𝑠

𝑓𝑇 𝑡 𝑑𝑡 = න
0

+∞

𝐼𝑔 𝑡 𝑓𝑇 𝑡 𝑑𝑡

𝐼𝑔 𝑡 = ቊ
1 𝑖𝑓 𝑡 ≤ 𝑡𝑚𝑖𝑠𝑠

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑇1 ≈ 𝑓𝑇1
(𝑡1)

𝑇2 ≈ 𝑓𝑇2
(𝑡2)

𝐺 = 𝐹𝑇 𝑡𝑚𝑖𝑠𝑠  𝑔 𝑥 = 𝐼𝑔(𝑡) 𝑓 𝑥 = 𝑓𝑇(𝑡)

𝐺 = න
𝑎

𝑏

𝑔 𝑥 𝑓 𝑥 𝑑𝑥 = 𝐸 𝑔 𝑥

= න
0

𝑡𝑚𝑖𝑠𝑠

𝑓𝑇 𝑡 𝑑𝑡 = න
0

+∞

𝐼𝑔 𝑡 𝑓𝑇 𝑡 𝑑𝑡

𝑇 𝑖𝑠 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑑 𝑏𝑦 𝑚𝑒𝑎𝑛𝑠 𝑜𝑓 𝑀𝐶 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛

𝑡𝑡𝑚𝑖𝑠𝑠

𝐹𝑇 𝑡𝑚𝑖𝑠𝑠 = 𝑃 𝑇 ≤ 𝑡𝑚𝑖𝑠𝑠 =

𝐼𝑔 𝑡 = 1 𝐼𝑔 𝑡 = 0

Monte Carlo Simulation 34



Luca Pinciroli, Department of EnergyLuca Pinciroli, Department of Energy

MC estimation of RAM quantities of interest: Unreliability 
estimation example

Monte Carlo Simulation 35

OBJECTIVE:
MC Estimate System Unreliability 
at the Mission Time

𝑓𝑇1
(𝑡) = 𝜆1𝑒−𝜆1𝑡

𝑇1 𝑇2
𝑓𝑇2

(𝑡) = 𝜆2𝑒−𝜆2𝑡

𝑡𝑚𝑖𝑠𝑠 = 8760 h 
𝜆1 = 2 10-4h-1 

𝜆2 = 5 10-3 h-1
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MC estimation of RAM quantities of interest: Unreliability 
estimation example

𝑉𝑎𝑟 𝐹𝑁(𝑡𝑚𝑖𝑠𝑠) ≈
1

𝑁

1

𝑁
෍

𝑖=1

𝑁

𝐼𝑔 𝑡𝑖  
2

 − 𝐹𝑁
2 𝑡𝑚𝑖𝑠𝑠 ≈

1

𝑁
𝐹𝑁 𝑡𝑚𝑖𝑠𝑠 − 𝐹𝑁

2 𝑡𝑚𝑖𝑠𝑠 = 1,08 10−6

MC ESTIMATION OF SYSTEM UNRELIABILITY =𝐹𝑁 𝑡𝑚𝑖𝑠𝑠 ± 𝑉𝑎𝑟 𝐹𝑁(𝑡𝑚𝑖𝑠𝑠) = 0,9891 ± 1,0 10−3 

OBJECTIVE:
MC Estimate System Unreliability 
at the Mission Time

𝑓𝑇1
(𝑡) = 𝜆1𝑒−𝜆1𝑡

𝑇1 𝑇2
𝑓𝑇2

(𝑡) = 𝜆2𝑒−𝜆2𝑡

𝑡𝑚𝑖𝑠𝑠 = 8760 h 
𝜆1 = 2 10-4h-1 

𝜆2 = 5 10-3 h-1

𝑁 = 10000 → 𝜆𝑠𝑦𝑠 = 𝜆1 + 𝜆2 → 𝑓𝑜𝑟 𝑖 = 1, … , 𝑁 → 𝑡𝑖 = −
1

𝜆𝑠𝑦𝑠
ln 1 − 𝑟𝑖 , 𝑟𝑖 → 𝑈[0,1)

𝐹𝑁 𝑡𝑚𝑖𝑠𝑠 =
1

𝑁
෍

𝑖=1

𝑁

𝐼𝑔 𝑡𝑖 = 0,9891 𝑤ℎ𝑒𝑟𝑒 𝐼𝑔 𝑡𝑖 = ቊ
1 𝑖𝑓 𝑡𝑖 < 𝑡𝑚𝑖𝑠𝑠

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

TRUE VALUE OF SYSTEM UNRELIABILITY = 1 − 𝑒− 𝜆1+𝜆2 𝑡𝑚𝑖𝑠𝑠 = 0,9895 
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Validation 1 = 0.661
Validation 2 = 0.955

MC estimation of RAM quantities of interest: Unreliability 
estimation example

Repeating the system unreliability estimation 1000 times …
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MC estimation of RAM quantities of interest: Unreliability 
estimation example

Monte Carlo Simulation 38
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MTTF estimation example

𝑀𝑇𝑇𝐹 = න
0

+∞

𝑡 𝑓𝑇 𝑡  𝑑𝑡

𝐺 = 𝑀𝑇𝑇𝐹 𝑔 𝑥 = 𝑡 𝑓 𝑥 = 𝑓𝑇(𝑡)𝐺 = න
𝑎

𝑏

𝑔 𝑥 𝑓 𝑥 𝑑𝑥 = 𝐸 𝑔 𝑥

Exponential failure time T

𝑓𝑇(𝑡) = 𝜆𝑒−𝜆𝑡 OBJECTIVE:
MC Estimate System 
MTTF 

𝜆  = 0,2 h-1 
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MTTF estimation example

𝑀𝑇𝑇𝐹 = න
0

+∞

𝑡 𝑓𝑇 𝑡  𝑑𝑡

𝐺 = 𝑀𝑇𝑇𝐹 𝑔 𝑥 = 𝑡 𝑓 𝑥 = 𝑓𝑇(𝑡)

Considering 𝑁 = 10000 
trials:

𝐺 = න
𝑎

𝑏

𝑔 𝑥 𝑓 𝑥 𝑑𝑥 = 𝐸 𝑔 𝑥

Exponential failure time T

𝑓𝑇(𝑡) = 𝜆𝑒−𝜆𝑡 OBJECTIVE:
MC Estimate System 
MTTF 

𝜆  = 0,2 h-1 

 

𝑀𝑇𝑇𝐹𝑁 =
1

𝑁
෍

𝑖=1

𝑁

𝑇𝑖 = 4,98 ℎ

𝑉𝑎𝑟 𝑀𝑇𝑇𝐹𝑁 ≈
1

𝑁

1

𝑁
෍

𝑖=1

𝑁

𝑇𝑖
2 − 𝑀𝑇𝑇𝐹𝑁

2 = 0,0024 ℎ

MC ESTIMATION OF SYSTEM 𝑀𝑇𝑇𝐹 = 𝑀𝑇𝑇𝐹𝑁 ± 𝑉𝑎𝑟[𝑀𝑇𝑇𝐹𝑁] = 4,98 ± 0,049

TRUE VALUE OF SYSTEM  𝑀𝑇𝑇𝐹 =
1

𝜆
= 5 ℎ 
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MTTF estimation example

Validation 1 = 0.689
Validation 2 = 0.957

Repeating the system MTTF estimation 1000 times …
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CONTENTS

Sampling

Evaluation of definite integrals

Simulation of system transport

Simulation for reliability/availability analysis
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Monte Carlo simulation for system reliability
SYSTEM = system of Nc suitably connected components.

COMPONENT = a subsystem of the system (pump, valve,...) which may stay in different exclusive 
(multi)states (nominal, failed, stand-by,... ). Stochastic transitions from state-to-state occur at 
stochastic times.

STATE of the SYSTEM at t = the set of the states in which the Nc components stay at t. The states of 
the system are labeled by a scalar which enumerates all the possible combinations of all the 
component states.

SYSTEM TRANSITION = when any one of the plant components performs a state transition we say 
that the system has performed a transition. The time at which the system performs the n-th 
transition is called tn and the system state thereby entered is called kn.

SYSTEM LIFE = stochastic process.
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T(tt’; k’)dt = conditional probability of a transition at t dt, given that the preceding transition 
occurred at t’ and that the state thereby entered was k’.

C(k  k’; t) = conditional probability that the system enters state k, given that a transition occurred 
at time t when the system was in state k’.

Both these probabilities form the ”trasport kernel” :
K(t; k  t’; k’)dt = T(t  t’; k’)dt C(k  k’; t)

(t; k) = ingoing transition density or probability density function (pdf) of a system transition at t, 
resulting in the entrance in state k

Stochastic Transitions: Governing Probabilities
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System life: random walk
Random walk = realization of the system life generated by the underlying 
 state-transition stochastic process.
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The von Neumann’s Approach and the Transport Equation

The transition density (t; k) is expanded in series of the partial 
transition densities:
n(t; k) = pdf that the system performs the n−th transition at t, 
entering the state k.
Then,

  Transport equation for the plant states
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

+=

==


=

'

0

0

0

)','|,()','('),(

),(),(

k

t

t

n

n

ktktKktdtkt

ktkt





Monte Carlo Simulation 54



Luca Pinciroli, Department of EnergyLuca Pinciroli, Department of Energy
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Von Neumann approach:
• Initial Conditions: t0=t*, k0=k*, P0≡P*
• The subsequent transition densities in the random walk:

• In general:
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Monte Carlo Solution to the Transport Equation (1)
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Monte Carlo Solution to the Transport Equation (2)
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Monte Carlo Solution to the Transport Equation (3)
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Initial Conditions: (t*, k*)
Formally rewrite the partial transition densities:
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CONTENTS

Sampling

Evaluation of definite integrals

Simulation of system transport

Simulation for reliability/availability analysis
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Monte Carlo Simulation in RAMS




=
k

t

k dtRktG
0

),(),()( 

• 𝑅𝑘(𝜏, 𝑡) = 1  𝐺(𝑡) = unreliability
• 𝑅𝑘(𝜏, 𝑡) = prob. system not exiting before t from the state k entered at 𝜏 < 𝑡

 𝐺(𝑡) = unavailability 

Monte Carlo solution of a definite integral: expected value  sample mean

Expected value

Monte Carlo Simulation 59

• 𝐺(𝑡): expected value — representing unavailability or unreliability.

• Γ: Subset of system failure states.

• 𝜓(𝜏, 𝑘): Probability density of entering state k at time 𝜏.

• 𝑅𝑘(𝜏, 𝑡): Residual probability — probability the system stays in failure state 𝑘 until time 𝑡, after entering at 𝜏

1. Randomly sampling system lives (random walks)

2. Estimating 𝐺(𝑡) as the mean over those samples
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Phase space
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System reliability estimation

Monte Carlo Simulation 61

𝑅(𝑡) = 1 −
Σ𝑀𝐶𝑅 𝑡

𝑀

𝐶𝑅 𝑡
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System availability estimation

Monte Carlo Simulation 62

• Divide the mission time, 𝑇𝑀,in bins and associate a counter (of the system failure) to each bin:

𝐶𝑈 1 , 𝐶𝑈 2 , … , 𝐶𝑈 𝜏
• Initialize each counter to 0:

𝐶𝑈 1 , 𝐶𝑈 2 , … , 𝐶𝑈 𝜏 = 0

• If the component is failed in 𝑡𝑗 , 𝑡𝑗 + Δ𝑡 , the corresponding counter increases 𝐶𝑈 𝑡𝑗 = 𝐶𝑈 𝑡𝑗 + 1, otherwise 𝐶𝑈 𝑡𝑗 = 𝐶𝑈 𝑡𝑗

𝐶𝑈 𝑡



Luca Pinciroli, Department of EnergyLuca Pinciroli, Department of Energy

System availability estimation

Monte Carlo Simulation 63

Another trial
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System availability estimation

Monte Carlo Simulation 64

Another trial

𝐴(𝑡) = 1 −
Σ𝑀𝐶𝑈 𝑡

𝑀
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• Each trial of a Monte Carlo simulation consists in generating a
random walk which guides the system from one configuration to
another, at different times.

• During a trial, starting from a given system configuration k’ at t’, we
need to determine when the next transition occurs and which is the
new configuration reached by the system as a consequence of the
transition.

• This can be done in two ways which give rise to the so called
“indirect” and “direct” Monte Carlo approach.

Monte Carlo Simulation Approaches
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The indirect approach consists in:

1. Sampling first the time t of a system transition from the
corresponding conditional probability density 𝑇(𝑡|𝑡′, 𝑘′) of the
system performing one of its possible transitions out of k’ entered at
time t’.

2. Sampling the transition to the new configuration k from the
conditional probability 𝐶 𝑘 𝑡, 𝑘′ that the system enters the new
state k given that a transition has occurred at t starting from the
system in state k’.

3. Repeating the procedure from k’ at time t to the next transition.

Indirect Monte Carlo
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Indirect Monte Carlo: Example

Monte Carlo Simulation 67

Transition rate 
exponentially distributed

𝜆1
𝐴 = 𝜆1

𝐵 ≠ 𝜆1
𝐶

𝜆1
𝐴 = 𝜆1

𝐵

𝜆1
𝐶
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Indirect Monte Carlo: Example
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The direct approach differs from the previous one in that the system transitions are not
sampled by considering the distributions for the whole system but rather by sampling directly
the times of all possible transitions of all individual components of the system and then
arranging the transitions along a timeline, in accordance to their times of occurrence.
Obviously, this timeline is updated after each transition occurs, to include the new possible
transitions that the transient component can perform from its new state. In other words,
during a trial starting from a given system configuration k’ at t’:

1. We sample the times of transition 𝑡𝑗′→𝑚𝑖

𝑖 , 𝑚𝑖 = 1,2, … , 𝑁𝑆𝑖, of each component i, i = 1, 2,…, Nc

leaving its current state j’i and arriving to the state mi from the corresponding transition
time probability distributions 𝑓𝑇

𝑖,𝑗𝑖→𝑚𝑖 (𝑡|𝑡′).

2. The time instants 𝑡𝑗𝑖→𝑚𝑖

𝑖  thereby obtained are arranged in ascending order along a timeline 
from tmin  to tmax  TM.

Direct Monte Carlo (1)

Monte Carlo Simulation 69



Luca Pinciroli, Department of EnergyLuca Pinciroli, Department of Energy

3. The clock time of the trial is moved to the first occurring transition time tmin= t* in 
correspondence of which the system configuration is changed, i.e. the component 
i* undergoing the transition is moved to its new state mi*. 

4. At this point, the new times of transition 𝑡𝑖
𝑚𝑖

∗→𝑙𝑖
∗

∗
, 𝑙𝑖

∗ = 1,2, … , 𝑁𝑆
𝑖∗, of component i* out 

of its current state mi* are sampled from the corresponding transition time 
probability distributions, 𝑓𝑇

𝑖∗,𝑚𝑖
∗→𝑙𝑖

∗

(𝑡|𝑡∗), and placed in the proper position of the 
timeline. 

5. The clock time and the system are then moved to the next first occurring transition 
time and corresponding new configuration, respectively. 

6. The procedure repeats until the next first occurring transition time falls beyond the 
mission time, i.e. tmin > TM. 

Compared to the previous indirect method, the direct approach is more suitable for 
systems whose components’ failure and repair behaviours are represented by 
different stochastic distribution laws. 

Direct Monte Carlo (2)
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Direct Monte Carlo: Example
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Exercise

Monte Carlo Simulation 72

Consider the discrete probability distribution 𝑓𝑋(𝑥) in the graph:
1) Identify the value of the parameter A;
2) Compute the corresponding cumulative distribution;
3) Write an algorithm to sample N=1000 values from 𝑓𝑋 𝑥 and evaluate 

the distribution of the obtained samples;

𝑥

𝑓𝑋(𝑥)

1 2 3 4

𝐴

2𝐴

3𝐴

4𝐴
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Exercise: Indirect Monte Carlo

Monte Carlo Simulation 73

Consider the system in the Figure, which is made up of the three binary components.

The (failure) transition from the state ‘WORKING’ to the state ‘FAILED’ is described by the constant
failure rate 𝜆, whereas the (repair) transition from the state ‘FAILED’ to the state ‘WORKING’ by the
constant repair rate 𝜇, whose numerical values are reported in the Table below. The system mission time
is Tm=1000 h and the components initial state at time t = 0 h are C1=’WORKING’, C2=’ FAILED’,
C3=’WORKING’.

𝝀 10-3  h-1

𝝁 10-1  h-1

1) Draw a possible life of the system in the phase space and indicate the states of the system which
correspond to a system failure.

2)Compute the first transition time using the inverse transform method. Use 𝑅1=0.232 as random
number sampled from an uniform distribution in the range [0,1).

3)Find the state entered by the system as a result of the first transition. Use 𝑅2=0.787 as random
number sampled from an uniform distribution in the range [0,1).

4)Simulate one entire plant life using the random numbers attached, sampled from an uniform
distribution in the range [0,1). Start the simulation from the time and the state found in point Q1.3)
and Q1.4), respectively.

1) 0.8929
2) 0.3320
3) 0.8212
4) 0.0417
5) 0.1077
6) 0.5951
7) 0.5298
8) 0.4188
9) 0.3354
10)0.6225
11)0.4381
12)0.7359
13)0.5180
14)0.5789

15)0.6454
16)0.9902
17)0.8199
18)0.4132
19)0.8763
20)0.8238
21)0.0545
22)0.7186
23)0.8022
24)0.7364
25)0.7091
26)0.5409
27)0.1248
28)0.9576

29)0.4033
30)0.2170
31)0.7173
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