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Monte Carlo Simulation

The history of Monte Carlo simulation
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Monte Carlo Simulation 5

Buffon’s needle

Buffon considered a set of parallel straight lines a distance D apart onto a plane and computed the
probability Pthat a needle of length L < Drandomly positioned on the plane would intersect one of these

lines.
1
o] =45 y € [0,D]
' / P = P{Y < Lsin0} 1
O: fo(0) = - 0 € [0, ]
For a fixed value of 6: Lsing Lsind { L sing
P = P{Y < Lsinf} = f fr(y)dy = j —dy =
0 0 D D
A For arandom value of 8 — joint pdf of (y, 8):

Lsin@i p f” j“""@ £ (. 6)dydo J” 1d9 j“in@ 1 . j” Lsin® 0 2L
| — oL, y = — —ay = =—
m 6=0Yy=0 Y 6:07-[ y=0 D 0=0 D D
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Monte Carlo Simulation

Sampling (pseudo) Random Numbers Uniform Distribution

14-- - - - - -=-=-—=—--
| cdf :  U.(r)=P{R<r}=r
I
|
0 1
» |
1 dU (r)
pdf :  ug(r)= dRr =1
>
0 1
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Monte Carlo Simulation

The Random Number Book (1955)

1T million random numbers

Luca Pinciroli, Department of Energy

73735
02965
98859
33666
81666

15838
89793
78155
16381
75002

99982
84543
77757
80871
30500

45963
58303
23851
62570
26440

47174
34378
22466
66207
80827

27601
87442
54043
32792
28220

78134
90708
27965
64775
20422

76866
08730
81978
11698
93867

62686
50033
46176
87989
12444

63873
20025
62394
78428
05720

14330
56522
97323
99314
37797

44711
14021
42391
72248
71840
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Monte Carlo Simulation

Sampling (pseudo) Random Numbers from Uniform Distribution:
Linear Congruential Generator (LCG)

R — U [O 1) Up(TIN
1
X; =(ax_,+c) mod m
where a,€€[0,m-1]
m»1 n
X 0 1 -
n=— 5
m
_92 _ £
X% =220 =1

Example:a=5,c=1, m=16
X, =(5-2+1) mod16=11= r1=%
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Monte Carlo Simulation

Sampling (pseudo) random numbers from generic distribution:
Inverse Transform Method

PrReo=unl) |
U,
AN Sample R from Ug(r) and find X:
? X =F(R)
41" 1I II{ IX x'

Question: which distribution does X obey?

PIX <x}=P{F (R)<x]

NF bR <, (4}
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Monte Carlo Simulation 10

Sampling (pseudo) random numbers from generic distribution:
Inverse Transform Method

PrReo=unl) |
U,
AN Sample R from Ug(r) and find X:
? X =F(R)
41" 1I R X x'

Question: which distribution does X obey?

PIX <x}=P{F (R)<x]

Application of the operator F, to the argument of P above yields

P{X <xj=P{R<F,(x)}=Fy(x)

Summary:
From an R ~ Ui(r) we obtain an X ~ Fy(x)
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Monte Carlo Simulation

Buffon’s needle: MC simulation with inverse transform method

« Initialize the counter of the number of times the needle interceptsaline: Ny = 0

« Simulate N > > 1needle throws by

- Sampling Y from the uniform distribution in the interval [0,D]: fy(y) = % y € [0,D]

by using the inverse transform method:

for0<y<D %
tory<o  EEEp R-r0)-. EEE v-RD

\ fory >D

«  Sampling ® from the uniform distribution in the interval [0,x] by using the inverse transform method: ® = R,m

t

Fy(y) =1

_ O Tl

+ Ifthe needleinterceptsaline,i.e. Y < Lsin®, set Ny, = N; + 1

Ns _ 2L

« Atthe end of the procedure: P = —
N D

3
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Monte Carlo Simulation 12

Sampling by the Inverse Transform Method: Discrete Distributions

Q ={Xg, Xy, e, Xy s oo} Fi
Fyifthith
= < R
Fo=P{X<x} Z P[X AR ]L_
samplearR ~U|[0,1) Fyhy ~+'
P[Fk—l <R<k ] =R (F)-FR((FL) AU &

R~UJ[0,1) and F(r)=r
= P[Fk_1< R< Fk]: F-F_,=1= P[X =xk]

Graphically: -

Fify Fifithy Firfitfifo

1
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Monte Carlo Simulation 13

Sampling by the Inverse Transform Method: Exponential Distribution

- Markovian system with two states (good, failed)
- hazardrate, A = constant

e cdf F.(t)=P{T <t}=1-¢"
pdf f(t)-dt=P{t<T <t+dt}=4e " -dt
« Sampling a failure time T

R=F,(1)=F 1

I
H
|
CDI
=

Luca Pinciroli, Department of Energy I0f0r3| PONI\'.'LIESELSO



Monte Carlo Simulation 14

Sampling by the Inverse Transform Method: Weibull Distribution

cdf: Fr(t)=P{T <t}=1-e"
odf: fr(t)-dt=P{t<T <t+dt}= aft* e . dt

« Sampling a failure time T

R=F(r)=F (t)=1-¢"*

Luca Pinciroli, Department of Energy I0f0r3| PONI\'.'LIESELSO




Monte Carlo Simulation 15

Sampling by the Rejection Method: von Neumann Algorithm

Given a pdf fy(x) limited in (a,b), let AS)
Jor
so that M
0<h (x)<1,Vxe(a,b)

The operative procedure

Sample X'~U(a, b)

Sample R~U[0,1)

No Yes ;
R < h(X")? Accept X

Luca Pinciroli, Department of Energy I0f0r3| PONI\'.'LIESELSO




Monte Carlo Simulation 16

Sampling by the Rejection Method: von Neumann Algorithm

More generally: _ .
d Y dy(X) Is a distribution it is easy to sample

X~ 1, (X)=9x.(xX)-H(x) from (uniform, normal, ...)
B, :max H (x) H(x) is a shape correction factor f(x)/g(x)
he) =X 0 <hx) <1
BH Sample X'~gy(x)
The operative procedure:

« sample X’~gy.(x), and calculate h(X’) Sample f~U[O,1)

« sampleR ~U[0,1). If R<=h(X’) the value X’ N §
o) es
is accepted; else start again. @ Accept X’

We show that the accepted value is actually a realization of X sampled from
fx(X)

[X'<xnaccepted] P{X'sxaR<h(X)]

P
Pl X'< ted | =
[ x| accepte ] P|accepted | P|accepted |

Luca Pinciroli, Department of Energy I010r3| PONI\'.'LIEgELSO




Monte Carlo Simulation 17

Sampling by the Rejection Method: von Neumann Algorithm

2.
Plz<X'<z+dznaccepted|=P[z< X '<z+dz|P[R<h(z)]=
= 0x.(2)dz-h(z)
3. )
P[X'<xnR<h(X")]= j g,.(z)dz-h(z)
4, -

P [accepted | = T dy.(2)dz-h(z) =

1 % 1 % 1
=— (2)dz-H(z2)=—| f dx =—
BH_[ogxu (2) BH_-[OX(X)XB

H
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Monte Carlo Simulation 18

Sampling by the Rejection Method: von Neumann Algorithm

P[X" <me<h(x) I 9 (2)d2-0(2)
P[accepted] 1

By,

P| X "< x|accepted | =

= j Oy (2)dz-H(z) = _? fy (z)dz =F, (x)

The efficiency of the method is given by the probability of accepted:

& = P[accepted] = _[ dy.(z)h(z)dz = Bi

H
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Monte Carlo Simulation 19

Sampling by the Rejection Method: von Neumann Algorithm

Example
0<x<1

2 1
Sample from the pdf: f.(xX)=—-
P p 0=

Luca Pinciroli, Department of Energy |Qer3| PONI\-I!_IESELSO




Monte Carlo Simulation 20

Sampling by the Rejection Method: von Neumann Algorithm
Example

The operative procedure:

1
1+R/?
- sample R, ~U[0,1). If R, <h(X ') accept X=X"; else start again

. sampleR, ~U[0,1) = X'=R? and h(X ") =

The efficiency of the method is:

- 1 7 _ 7850
B. 4

H
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Monte Carlo Simulation 22

RAM quantities of interest are definite integrals

T, T, .

Some Examples: THE A e
—--

«  Unreliability: I3

FT(tmiss) — P{T < tmiss) — P{Q(Tl» ---»Tn) < tmiss} —

fr,,..r, (t1, ., ty) dty .. dty

J(tp---;tn):q(t1;---;tn)Stmiss

« MTTF = [ "t fr(t) dt

Luca Pinciroli, Department of Energy I0f0r3| PONI\'.'LIESELSO




Monte Carlo Simulation 23

MC Evaluation of Definite Integrals (1D)

G = I: h(x)dx :J': g(x)f, (x)dx

4

* xisarandom variable with pdf fx(x): J X
. g(x)isarandom variable j f, (X) dx =1
LJa

E[o(x)]= [ 9(0)f, (x)dx=G

Luca Pinciroli, Department of Energy I0f0r3| PONI\'.'LIESELSO




Monte Carlo Simulation 24

MC Evaluation of Definite Integrals (1D)
= [i(e)(ckis = Flg(x )

4

Problem - Estimate E[g(x)]

Solution - Dart Game

1) fori=12,..,N
o Sample X; from fy(x) (the probability that a shot hits x e dxis f(x)dx)
o Compute g(X;) (the awardis g(x))

End
1 N
Consider Ntrials with results {x;, x5, ..., x5} : the average award is: — Zg(xi ) =g
Random N3
variable! <C Jostmator of B 5
E[GN]A Var[Gy] S Gy a good estimator of E[g(x)] *

Luca Pinciroli, Department of Energy |Qer3| PONI\-I!_IESELSO




Monte Carlo Simulation 25

MC Evaluation of Definite Integrals (1D): Why G, is a good estimator

of G? L
GN :NZQ(Xi)

i=1

\ 4

Gy is arandom variable with:

. N
Nz g(x;)
i=1

N
1 1
= FZ Var[g(x)] = NVar[g(x)]

N
1
E[Gy] = E =NZE[g<x>] =G

N
1
Var|[Gy]| = Var lNZ g(x;)

G, is an unbiased estimator of G: E|lG,]=G

Gyis a consistent estimator of G: lim Var[Gy] =0

Luca Pinciroli, Department of Energy I0f0r3| PONI\'.'LIESELSO




Monte Carlo Simulation 26

MC Evaluation of Definite Integrals (1D): Example

1
G:j cosl Zox ldx = 2 —0.6366
0 2 T

How can we write the integral
for MC estimation?

flx) =7 g(x) =7

3
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Monte Carlo Simulation 27

MC Evaluation of Definite Integrals (1D): Example

1
G:j cosl Zox ldx = 2 = 0.6366
0 2 T

By setting:

f(x) =1 for xe [0,1]
g(x) = COS(% x]

We perform N=104 trials:

X U[O,l) 1 N 1 N
- ‘ Gy = Nz g(x;) = —z cos (—xi) = 0,6342
g(x;) = cos (Exl) i=1 i=1

Luca Pinciroli, Department of Energy I0f0r3| PONI\'.'LIESELSO




Monte Carlo Simulation 28

MC Evaluation of Definite Integrals (1D): Example

1 T
G = .[0 003(5 xjdx
x; > U[01)

We perform N=10* trials: ol )= cos(* x,) ‘ GN=%ig(x,-)=%icos{%xl)=0.6342
‘ N =10 2
1 1 1
VarlGy 1= Varla()] = (B2 (4 - (Bl -+ Ele® (D-69)

Unknown in a practical case!

Luca Pinciroli, Department of Energy |Qer3| PONI\-I!_IESELSO




MC Evaluation of Definite Integrals (1D): Example

1
sz cos zx dx
0 2

x; > U[01)

—10% trials: AN )il 7 )
We perform N=10% trials: ol = oos ) ‘ GN—NlZg(xi)—NIZCOS(Zxi)—0.6342

‘ N =10°

Unknown in a practical case!

29
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Monte Carlo Simulation 30

MC Evaluation of Definite Integrals (1D): Example

G = .[: cos(% xjdx
X, — [O,l) v N
We perform N=10*trials: g(x.):Ucos(ﬁx ) ‘ Gy =%Zg(xi)=%ZCOS(%)@)=O.6342
i 2 1 i= i=
‘ N =10*
1 1 1
VarlGy |= < Varlg()]=— (ELe* ()] - (Elg(0)? )=~ (ELe* ()1 - 67)

‘ N

G@O.%
E[gZ(x)] They can be computed during the MC simulation!

\ 4

1(7-6,2) 610" - -
Var|G |~ N(g Gy ) Estimated Variancel

G =0.6342++/9.6-10° =0.6342+0.0031 True value is 0.6366

Luca Pinciroli, Department of Energy |Qer3| PONI\-I!_IEgl':LSO




Monte Carlo Simulation 31

MC Integral: interpretation of the variance

Gy | Samplel Sample?2 Eagglggg
N=10000 N =10000 o=0.68

a=0.68 a=0.68 ’\—‘/
G ‘ ,
unknown

P(G, e [@i;@m% ])~0.68

v
P(Ge[G, ~0,,:G, +0,, |)~0.68

Luca Pinciroli, Department of Energy |Qer3| PONI\-I!_IESELSO




Monte Carlo Simulation 32

Definite Integral - Monte Carlo Vs Deterministic Numerical
Integration

Why Monte Carlo instead of deterministic numerical integration?

Because the latter suffers from two major issues when dealing
with highly multidimensional problems:

1. The number of function evaluations (grid) increases
combinatorially with the number of dimensions

2. The boundaries of the multidimensional integration domain D
become intractable

Luca Pinciroli, Department of Energy
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Monte Carlo Simulation 33

Estimation error - variance reduction

- The estimate Gy becomes more precise (less uncertain) as the
estimator variance Var|Gy] decreases!

- How canwe achieve lower Var|Gy] = % Var[g(x)]?
1. Increasing the number N of MC trials = “brute force”

2. Decreasing Var[g(x)]= variance reduction techniques

G- j{ } (0x=]_ 0,01, (x)ix

Forced (biased) MC
simulation

Luca Pinciroli, Department of Energy I010r3| PONI\'.'LIEgELSO




Monte Carlo Simulation

34

MC estimation of RAM quantities of interest: Unreliability

estimation example

T = System failure time

} F. (t)???

T; = fr,(t;) = Component failure time

FT(tmiss) — P{T = tmiss) =

Umiss t oo
j frt)dt= J I, () fr(t)dt
0 0

with

1if t <t
L.(t) = miss
o) {O otherwise

b

G = j g(Of () dx = E[g(x)]
G = Fr(tmiss) gx) = Ig(t) f(x) = fr(t)

Iy 15

-

Ty = fr,(t1)
Ty = fr,(t2)

T is evaluated by means of MC simulation

FT(tmiss) — P{T < tmiss) —

tmiss + 00
[ rwae= [ @@
0 0

I,()= 1] I,()=0

tmiss

3
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Monte Carlo Simulation 35

MC estimation of RAM quantities of interest: Unreliability
estimation example

fr,@) =Me ™Mt ¢ . =8760h [OBIECTIVE:

_ At A =210%h! MC Estimate System Unreliability
- - N2 Shevmssion Time
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Monte Carlo Simulation 36

MC estimation of RAM quantities of interest: Unreliability
estimation example

fr,@) =Me ™Mt ¢ . =8760h [OBIECTIVE:

_ At A =210%h! MC Estimate System Unreliability
- - N2 Shevmssion Time

~ In(1 — r;),r; = U[0,1)

Asys

1 1ift; <tpm
Fyn(tmiss) = NZ Ig (t;) = 0,9891 where Ig (t;) = {O Otlherl;;?;
L=

N=100009/15y5=ﬂ,1+/12 —)forl=1”N—)tl:—

N

Var[Fy(tmiss)] = ]t (;z (I (t; )) ) - FI% (tmiss) | = %(FN(tmiss) - Fl\zl(tmiss)) =1,08107°

i=1

MC ESTIMATION OF SYSTEM UNRELIABILITY =Fy (tmiss) + +/Var[Fy (tmiss)] = 0,9891 + 1,0 1073

TRUE VALUE OF SYSTEM UNRELIABILITY = 1 — e~#1#42)tmiss = 0,9895

Luca Pinciroli, Department of Energy IQIQr 3 | POLITECNICO
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Monte Carlo Simulation 37

MC estimation of RAM quantities of interest: Unreliability
estimation example

Repeating the system unreliability estimation 1000 times ...

T T T T T T T T T T
I a= 0955
0.994 - 1 a=0683
Unrel
trua
0.992 r
E N _ _
= 099 ]
o
FE
= -
-
oessr | + 1 1 +
0.986 1
Validation1=0.661
= 0.955
0.984

0 2 4 G a 10 12 14 16 18 20
Trial

OLITECNICO
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Monte Carlo Simulation 38

MC estimation of RAM quantities of interest: Unreliability
estimation example

Time evolution

-3
x 10
1 T T T T T T — T T —— 6 I
0.9 — 1
o~ 5 ™
0.8 / 4 ‘\\
\\\
0.7 ]
4 r / \\\
0.6 T
;/ = / \\
— L -,
o 05 ! 7 - 3 -I| -,
L ! -
5 N
e,
N 1 | .
;,a 2 -I H\\-\
0.3r f | \""x
) T
02 / [ \“'““«mx
i 1 -\-1-\-\_
0.1/
D ] i i i i i i i i D i i i i i i i 1
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 0 1000 2000 3000 4000 5000 6000 FOOO 8OO0 9000
Time [h] Time [h]
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Monte Carlo Simulation 39

MTTF estimation example

+ 0o

MTTF = f t fr(t) dt
0
b
6= [ W =Elgw)]  G=MITF  g@w=t f()=Ff®
Exponential failure time T
- @) =2 A =0.2h" S/I?:Jllzzgcm/alzte System

MTTF

Luca Pinciroli, Department of Energy I0f0r3| PONI\'.'LIESELSO




Monte Carlo Simulation 40

MTTF estimation example

+ 00
MTTF = f t fr(t) dt
0
b
6= [ W =Elgw)]  G=MITF  g@w=t f()=Ff®
a
Exponential failure time T
a2 _ ) OBJECTIVE:
_-_ frt) = de™" A =020 MC Estimate System
MTTF
Cpnsidering N = 10000 | &
trials: MTTFy = NZ T; =498 h

N\\N

i=1

N
1((1
Var[MTTFy] = — (—z Tl-2> — MTTFZ | = 0,0024 h

MC ESTIMATION OF SYSTEM MTTF = MTTFy + /Var[MTTFy] = 4,98 + 0,049
TRUE VALUE OF SYSTEM MTTF = % =5h

Luca Pinciroli, Department of Energy IQIQr 3 | POLITECNICO
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Monte Carlo Simulation

MTTF estimation example

MTTF

2.3

9.2

5.1

4.9

4.8

4.7

Repeating the system MTTF estimation 1000 times ...

I o= 0,955
T {1 a=0683
- 1 MTTF i
trua
i Validation1=0.689 i
= 0.957
] 2 4 [ B 10 12 14 16 18 20
Trial

41
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Monte Carlo Simulation 51

Monte Carlo simulation for system reliability
SYSTEM = system of Nc suitably connected components.

COMPONENT = a subsystem of the system (pump, valve,...) which may stay in different exclusive
(multi)states (nominal, failed, stand-by,... ). Stochastic transitions from state-to-state occur at
stochastic times.

STATE of the SYSTEM at t = the set of the states in which the Nc components stay at t. The states of
the system are labeled by a scalar which enumerates all the possible combinations of all the
component states.

SYSTEM TRANSITION = when any one of the plant components performs a state transition we say
that the system has performed a transition. The time at which the system performs the n-th

transition is called t, and the system state thereby entered is called k..

SYSTEM LIFE = stochastic process.

Luca Pinciroli, Department of Energy IQIQr 3 | POLITECNICO
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Monte Carlo Simulation 52

Stochastic Transitions: Governing Probabilities

K k' k
1 N
[ il

ﬁ

P
L

‘ : .
t t t

T(t | t; k")dt = conditional probability of a transition at te dt, given that the preceding transition
occurred at t’ and that the state thereby entered was k'.

C(k | k’; t) = conditional probability that the system enters state k, given that a transition occurred
at time t when the system was in state k'.

In .
.

Both these probabilities form the "trasport kerne

Kit; k | t;k)dt=T(t | ;K)dtCk | K; 1)

y(t; k) = ingoing transition density or probability density function (pdf) of a system transition at t,
resulting in the entrance in state k

Luca Pinciroli, Department of Energy IQIQr 3 | POLITECNICO
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Monte Carlo Simulation 53

System life: random walk

Random walk = realization of the system life generated by the underlying
state-transition stochastic process.

Luca Pinciroli, Department of Energy I0f0r3| PONI\'.'LIEgELSO




Monte Carlo Simulation 54

The von Neumann’s Approach and the Transport Equation

The transition density y(t; k) is expanded in series of the partial
transition densities:

y"(t; k) = pdf that the system performs the n—th transition at t,
entering the state k.

Then,

p(LK) =2y (LK) -

:c,yo(t,k)+Zjdt'w(t',k')K(t,k 1t k")

Transport equation for the plant states

Luca Pinciroli, Department of Energy I0f0r3| PONI\'.'LIEgELSO




Monte Carlo Simulation 55

Monte Carlo Solution to the Transport Equation (1)

Von Neumann approach:
* Initial Conditions: ty,=t*, ky=k*, P,=P*
» The subsequent transition densities in the random walk:

(1, k) = K(t, K ‘to’ Ko)

wl(t, K, = Zj* Lt k) ALK (L, K, [t k)

* In general:

4 (tn’ n) Z £ Wn 1(tn =17 ""n 1)dtn 1K(tn’ n‘tn -1 "*'n 1)

Luca Pinciroli, Department of Energy I010r3| PONI\'.'LIEgELSO



Monte Carlo Simulation 56

Monte Carlo Solution to the Transport Equation (2)
y" (LK) =3 [Lw k)UK ()
=
=y (tk) =D y"tk) =y k) +
n=0

+ZLZV/‘1(t KL Ktk

n -1=0
v (1K)

( > K k')j

n-1=0

Pinciroli, Department of Energy I0f0r3| PONI\'.'LIESELSO




Monte Carlo Simulation 57

Monte Carlo Solution to the Transport Equation (3)
Initial Conditions: (t* k%)
Formally rewrite the partial transition densities:
Lt k) =S [dtw® (t, ko YK (6, kot ko) = K (t, k [t k
(L, 1)_2 " toy (L, Ko ) K(L,, 1‘t0’ o) = K(t, 1‘t K*)
Ko
v (k) = Z dtl‘// (tlik)K(tzikz‘twk)_

=3 [Tt k5 kDK (G, oty k)
Ky

p' (k)= > dtnl Tdt

t*
Ki Ky yeonKy_g

| S0t K (t, k%, k%) K (b, kot k) -+~ K (K] K, )
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CONTENTS

Sampling
Evaluation of definite integrals
Simulation of system transport

Simulation for reliability/availability analysis
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Monte Carlo Simulation in RAMS
t
G(t) = ZJ-O w(7,K)R (7,1)d7r Expected value

kel

e ((t): expected value — representing unavailability or unreliability.

e I': Subset of system failure states.

e Y (1, k): Probability density of entering state k at time .

e R, (7,t): Residual probability — probability the system stays in failure state k until time t, after entering at t

* Rip(z,t) =1= G(t) = unreliability
* Ri(z,t) = prob. system not exiting before t from the state kenteredatr < ¢t
= G (t) = unavailability

Monte Carlo solution of a definite integral: expected value = sample mean

1. Randomly sampling system lives (random walks)
2. Estimating G (t) as the mean over those samples
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Phase space

h 4
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System reliability estimation

3 |

A M
0
ST Y/ v LIPS
0
i Vs SR LR LRI
0 T |

Cr(t) &

112

1."4]

C*(t)=Cy(0) t<[0.T;,]

C't)=C" )+ te[rT,,

C'O=C"t)+1 te[zT,]

C,()=C*(t) te]0.T,]

R(t)=1-

Yy Cr(t)
M
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System availability estimation

« Divide the mission time, TM,in bins and associate a counter (of the system failure) to each bin:

Cy(1),Cy(2), ..., Cy(7)
* [nitialize each counter to O:

CU(]-)) CU(Z)) ) CU(T) =0
- If the component is failed in (¢;, t; + At), the corresponding counter increases Cy(t;) = Cy(t;) + 1, otherwise Cy(¢;) = Cy(¢))

A

Trial 1
- >
Cy(t) —I—|—|—I—|—|—|—I—|—I—H]+||]l-||]|]-|—H—I—IlI-lI-Ii—I—H—I+H—)
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System availability estimation

F 3
Another trial

| [ S R S
-1 >
Trial 1 H-H-H ||||||||||||||||||||||||||H|||||| 5
Trial i-th HH-HHHH ||||||||||||| H ||||||||| H-H |I||||| 3
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System availability estimation

A
Another trial

—_—

L =

—1 >

Trial 1 H-H-H ||||||||||||||||||||||||||]|||||| 5
Trial i-th HH-HHHH |||||||||||| H ||||||||| HHH |I||||| >

Trial M-th

Xy Cy(t)

A =1-
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Monte Carlo Simulation Approaches

« Each trial of a Monte Carlo simulation consists in generating a
random walk which guides the system from one configuration to
another, at different times.

« During a trial, starting from a given system configuration k’at t’, we
need to determine when the next transition occurs and which is the
new configuration reached by the system as a consequence of the
transition.

« This can be done in two ways which give rise to the so called
“indirect” and “direct” Monte Carlo approach.
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Indirect Monte Carlo

The indirect approach consists in:

1. Sampling first the time t of a system transition from the
corresponding conditional probability density T(t|t',k’) of the
system performing one of its possible transitions out of k’entered at
time t

2. Sampling the transition to the new configuration k from the
conditional probability C(k|t, k") that the system enters the new
state k given that a transition has occurred at t starting from the
systemin state k'.

3. Repeating the procedure from k’ at time t to the next transition.
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Indirect Monte Carlo: Example

SAMPLING THE TIME OF TRANSITION _— - L

B

The rate of transition of component A(B) out of its nominal state 1 is:

4 B Transitionrate
A=A exponentially distributed
.. . . . =21 # 2
* The rate of transition of component C out of its nominal state 1 is:

| AL
:IThI? rate of transition of the system out of its current configuration (1,
, 1) is:
AP = 4 2B+ 4€

*We are now in the position of sampling the first system transition time
t,, by applying the inverse transform method:

1
= to—mlﬂ(l—Rr)
where R~ U[0,1)
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Indirect Monte Carlo: Example

* Assuming that t, < T,, (otherwise we would proceed to the successive
trial), we now need to determine which transition has occurred, i.e.
which component has undergone the transition and to which arrival
state.

* The probabilities of components A, B, C undergoing a transition out of
their initial nominal states 1, given that a transition occurs at time t,, are:
At AP Ar

A(l._l.l) ’ /1(1,1.1) > ;L(l.l,l)
 Thus, we can apply the inverse transform method to the discrete
distribution
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Direct Monte Carlo (1)

The direct approach differs from the previous one in that the system transitions are not
sampled by considering the distributions for the whole system but rather by sampling directly
the times of all possible transitions of all individual components of the system and then
arranging the transitions along a timeline, in accordance to their times of occurrence.
Obviously, this timeline is updated after each transition occurs, to include the new possible
transitions that the transient component can perform from its new state. In other words,
during a trial starting from a given system configuration k’at t*

1. We sample the times of transition t]?,_)mi, m; = 1,2,..., N, of each component ;i =1, 2,..., N,
leaving its current state j; and arriving to the state m; from the corresponding transition
time probability distributions £,/ (¢|t").

2. The time instants t!

Ji—m;

fromt  tot, . =Ty

thereby obtained are arranged in ascending order along a timeline
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Direct Monte Carlo (2)

3. The clock time of the trial is moved to the first occurring transition time t_, = t*in

correspondence of which the system configuration is changed, i.e. the component
i*undergoing the transition is moved to its new state m;*.

4. At this point, the new times of transition t":n;_kﬁl;, I} =1,2,..,N&, of component i* out
of its current state m* are sampled from the corresponding transition time

probability distributions, f;*'m;‘_’l;(ﬂt*), and placed in the proper position of the
timeline.

5. The clock time and the system are then moved to the next first occurring transition
time and corresponding new configuration, respectively.

6. The procedure repeats until the next first occurring transition time falls beyond the
missiontime,ie. t_ . > 7,

Compared to the previous indirect method, the direct approach is more suitable for
systems whose components’ failure and repair behaviours are represented by
different stochastic distribution laws.
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Direct Monte Carlo: Example

A
I3
O
- [~
A : A
n E l-f]—l'z ?__H-
. B
: fl—ﬂ
9
B : ::rﬂ
. .
0 i T, -
i (
: é}l—}-l
C D, ]
: {
0 : T, F3 [
i
| 5 |
System (A,B,C) | O |
Ny
0 Fil0)-»(3.00) I,
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Exercise

Consider the discrete probability distribution fx (x) in the graph:
1) Identify the value of the parameter A;
2) Compute the corresponding cumulative distribution;

3) Write an algorithm to sample N=1000 values from fy (x) and evaluate
the distribution of the obtained samples;

fx(x) 1

44 0

2A *
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Exercise: Indirect Monte Carlo

Consider the system in the Figure, which is made up of the three binary components.

The (failure) transition from the state ‘WORKING’ to the state ‘FAILED’ is described by the constant
failure rate A, whereas the (repair) transition from the state ‘FAILED’ to the state ‘WORKING’ by the
constant repair rate u, whose numerical values are reported in the Table below. The system mission time
is Tm=1000 h and the components initial state at time t = 0 h are C1="WORKING’, C2=" FAILED’,
C3="WORKING'.

1) Draw a possible life of the system in the phase space and indicate the states of the system which
correspond to a system failure.

2)Compute the first transition time using the inverse transform method. Use R,;=0.232 as random
number sampled from an uniform distribution in the range [0,1).

3)Find the state entered by the system as a result of the first transition. Use R,=0.787 as random
number sampled from an uniform distribution in the range [0,1).

4)Simulate one entire plant life using the random numbers attached, sampled from an uniform
distribution in the range [0,1). Start the simulation from the time and the state found in point Q1.3)
and Q1.4), respectively.

Luca Pinciroli, Department of Energy
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G
- &
G
- 10_3 h_1
- 10_1 h_1
1) 0.8929 15)0.6454  29)0.4033
2) 0.3320 16)0.9902 30)0.2170
3) 0.8212 17)0.8199  31)0.7173
4) 0.0417  18)0.4132
5) 0.1077 19)0.8763
6) 0.5951  20)0.8238
7) 0.5298  21)0.0545
8) 0.4188  22)0.7186
9) 0.3354  23)0.8022
10)0.6225  24)0.7364
11)0.4381  25)0.7091
12)0.7359  26)0.5409
13)0.5180  27)0.1248
14)0.5789  28)0.9576
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