

Markov Reliability and Availability Analysis Part I: Discrete-Time Discrete State Markov Processes

Ibrahim Ahmed <u>ibrahim.ahmed@polimi.it</u>

Ibrahim Ahmed

POLITECNICO MILANO 1863

General Framework

General Framework

System evolution = Stochastic process

POLITECNICO MILANO 1863

General Framework

Under **specified** conditions:

System evolution = **Stochastic process**

MARKOV PROCESS

POLITECNICO MILANO 1863

Markov Processes: Basic Elements

Ibrahim Ahmed

POLITECNICO MILANO 1863

Markov Processes: the System States (1)

• The **system** can occupy a **finite** or **countably infinite** number N of states

Set of possible states $U = \{0, 1, 2, ..., N\}$

State-space of the random process

- The **States** are:
 - Mutually Exclusive: $P(\text{State} = i \cap \text{State} = j) = 0$, if $i \neq j$

(the system can be **only** in **one** state *at each time*)

• Exhaustive:
$$P(U) = P(\bigcup_{i=1}^{N} \text{State} = i) = \sum_{i=1}^{N} P(\text{State} = i) = 1$$

(the system must be in **one** state *at all times*

• Example:

Set of possible states $U = \{0, 1, 2, 3\}$

$$\begin{array}{c|c} \boldsymbol{U} & 1 & 2 \\ 0 & 3 \end{array}$$

$$P(U) = P(\text{State} = 0 \cup \text{State} = 1 \cup \text{State} = 2 \cup \text{State} = 3)$$

= $P(\text{State} = 0) + P(\text{State} = 1) + P(\text{State} = 2) + P(\text{State} = 3) = 1$

Ibrahim Ahmed

POLITECNICO MILANO 1863

• Transitions from one state to another occur stochastically (i.e., randomly in time and in final transition state)

POLITECNICO MILANO 1863

The system state in time can be described by an integer random ۲ variable X(t)

 $X(t) = 5 \rightarrow$ the system occupies the state labelled by number 5 at time t

The stochastic process may be observed at:

10

Ibrahim Ahmed

11

Discrete-Time Markov Processes

Ibrahim Ahmed

POLITECNICO MILANO 1863

The Conceptual Model: Discrete Observation Times

- The stochastic process is **observed** at **discrete** times

12

The Conceptual Model: Discrete Observation Times

• The stochastic process is **observed** at **discrete** times

- Hypotheses:
 - The time interval *∆t*(*n*) is **small** enough such that **only one** event (i.e., stochastic transition) can occur within it

Ibrahim Ahmed

POLITECNICO MILANO 1863

The Conceptual Model: Mathematical Representation

- The random process of system transition in time is described by an **integer random variable** *X*(·)
- $X(n) \coloneqq$ system state at time $t_n = n\Delta t$
 - X(3) = 5: the system occupies state 5 at time t_3

The Conceptual Model: Objective

- The random process of system transition in time is described by an **integer random variable** *X*(·)
- $X(n) \coloneqq$ system state at time $t_n = n\Delta t$
 - X(3) = 5: the system occupies state 5 at time t_3

OBJECTIVE:

Compute the <u>probability</u> that the system is in a <u>given state</u> at a <u>given time</u>, for <u>all</u> possible states and times

$$P[X(n)=j], n=1, 2, ..., N_{time}, j=0, 1, ..., N$$

Objective:

$$P[X(n)=j], n=1, 2, ..., N_{time}, j=0, 1, ..., N$$

What do we need?

POLITECNICO MILANO 1863

Objective:

$$P[X(n)=j], n=1, 2, ..., N_{time}, j=0, 1, ..., N$$

What do we need?

Transition Probabilities!

The Conceptual Model: the Transition Probabilities

• **Transition probability:** conditional probability that the system moves to state *j* at time t_n given that it is in state *i* at current time t_m and given the previous system history

$$P[X(n) = j | X(0) = x_0, X(1) = x_1, X(2) = x_2, \dots, X(m) = x_m = i]$$

$$\forall j = 0, 1, \dots, N$$

POLITECNICO MILANO 1863

The Conceptual Model: the Markov Assumption

• the **probability** of a transition to a **future** state depends on its **entire life history**

$$P[X(n) = j | X(0) = x_0, X(1) = x_1, X(2) = x_2, \dots, X(m) = x_m = i]$$

In Markov Processes:

• the **probability** of a transition to a **future** state **only** depends on its **present state**

$$P[X(n) = j | \frac{X(0)}{X(0)} = \frac{x_0, X(1)}{x_1, X(2)} = \frac{x_2, \dots, X_m}{x_2, \dots, X_m} = x_m = i]$$

 The Conceptual Model: the Markov Assumption - Notation

 20

 $p_{ij}(m,n) = P[X(n) = j | X(m) = i]$ $n > m \ge 0$

The Conceptual Model: Properties of the Transition Probabilities (1)

- 1. Transition probabilities $p_{ij}(m, n)$ are **larger than or equal to 0**

$$p_{ij}(m,n) \ge 0, n > m \ge 0$$

(definition of probability)
 $i = 0, 1, 2, ..., N, j = 0, 1, 2, ..., N$

2. Transition probabilities **must sum to 1**

$$\sum_{all j} p_{ij}(m,n) = \sum_{j=0}^{N} p_{ij}(m,n) = 1, n > m \ge 0 \qquad i = 0, 1, 2, ..., N$$

(the set of states is exhaustive)

$$\begin{array}{c|c} U & i=1 & 2 \\ 0 & & & \\ 0 & & & \\ \end{array} & \begin{array}{c} 2 & \\ 3 & \\ \end{array} & \begin{array}{c} 2 \\ \sum_{j=0}^{3} p_{1j}(m,n) = 1, n > m \ge 0 \\ \end{array}$$

Starting from i = 1, the system either remains in i = 1 or it goes somewhere else, i.e., to j = 0 or 2 or 3

POLITECNICO MILANO 1863

The conceptual model: properties of the transition probabilities (2)

3.
$$p_{ij}(m,n) = \sum_{k} p_{ik}(m,r)p_{kj}(r,n) \quad i = 0,1,2,...,N, j = 0,1,2,...,N$$

$$p[X(n)=j,X(m)=i] = \sum_{k} p[X(n)=j,X(r)=k,X(m)=i] \quad \text{(theorem of total probability)}$$

$$\downarrow \text{ conditional probability}$$

$$= \sum_{k} p[X(n)=j|X(r)=k,X(m)=i]P[X(r)=k,X(m)=i]$$

$$\downarrow \text{ Markov assumption}$$

$$= \sum_{k} p[X(n)=j|X(r)=k]P[X(r)=k,X(m)=i]$$

$$p_{ij}(m,n) = P[X(n)=j|X(m)=i] = \frac{P[X(n)=j,X(m)=i]}{P[X(m)=i]} \quad \text{(conditional probability)}$$

$$\downarrow \text{ formula above}$$

$$= \sum_{k} p[X(n)=j|X(r)=k] \frac{P[X(r)=k,X(m)=i]}{P[X(m)=i]}$$

$$\downarrow \text{ conditional probability}$$

$$= \sum_{k} P[X(n)=j|X(r)=k] \frac{P[X(r)=k,X(m)=i]}{P[X(m)=i]}$$

$$\downarrow \text{ conditional probability}$$

$$= \sum_{k} P[X(n)=j|X(r)=k]P[X(r)=k|X(m)=i] = \sum_{k} p_{kj}(r,n)p_{ik}(m,r)$$

POLITECNICO MILANO 1863

The Conceptual Model: Stationary Transition Probabilities

- If the **transition probability** $p_{ij}(m, n)$ depends on the **interval** $(t_n t_m)$ and **not** on the **individual times** t_m and t_n , then
 - the transition probabilities are stationary
 - the Markov process is homogeneous in time

The Conceptual Model: Stationary Transition Probabilities

- If the **transition probability** $p_{ij}(m, n)$ depends on the **interval** $(t_n t_m)$ and **not** on the **individual time** t_m then:
 - the transition probabilities are stationary
 - the Markov process is homogeneous in time

k time steps

$$p_{ij}(m,n) = p_{ij}(m,m+(n-m)) = p_{ij}(m,m+k) = P[X(m+k) = j | X(m) = i]$$

= $P[X(k) = j | X(0) = i]$
= $p_{ij}(k), k \ge 0 \quad i = 0,1,2,...,N, j = 0, 1, 2, ...,N$

POLITECNICO MILANO 1863

24

The conceptual Model: Problem Setting

- We know:
 - The one-step transition probabilities:

tities:
$$p_{ij}(1) = p_{ij}$$

 $(i = 0, 1, 2, ..., N, j = 0, 1, 2, ..., N)$

25

• The state probabilities at time n = 0 (initial condition):

$$c_j = P[X(0) = j]$$

- Objective:
 - Compute the probability that the system is in a given state j at a given time t_n , for all possible states and times

$$P[X(n) = j] = P_j(n), n = 1, 2, ..., N_{time}, j = 0, 1, ..., N$$

The Conceptual Model: Notation - the Transition Probability Matrix

Properties:

• dim $(\underline{\underline{A}}) = (N+1) \times (N+1)$

•
$$0 \le p_{ij} \le 1, \forall i, j \in \{0, 1, 2, ..., N\}$$

26

(all elements are **probabilities**)

The Conceptual Model: Notation - the Transition Probability Matrix

$$i/j \quad 0 \quad 1 \quad \dots \quad N$$

$$0 \sum \left(\begin{array}{cccc} p_{00} & p_{01} & \dots & p_{0N} \end{array}\right) = 1$$

$$\underline{A} = 1 \qquad p_{10} \quad p_{11} \quad \dots \quad p_{1N}$$

$$\dots \quad \dots \quad \dots \quad \dots \quad \dots$$

$$N \qquad \left(\begin{array}{cccc} p_{N0} & p_{N1} & \dots & p_{NN} \end{array}\right)$$

Properties: • dim $(\underline{\underline{A}}) = (N+1) \times (N+1)$

•
$$0 \le p_{ij} \le 1, \forall i, j \in \{0, 1, 2, ..., N\}$$

27

(all elements are **probabilities**)

only (N+1)xN elements need to be known

•
$$\sum_{j=0}^{N} p_{ij} = 1, i = 0, 1, 2, ..., N$$

(the set of states is exhaustive)

POLITECNICO MILANO 1863

The Conceptual Model: Notation - Unconditional State Probabilities

• Introduce the row vector:

 $\underline{P}(n) = \left[P_0(n) P_1(n) \dots P_j(n) \dots P_N(n) \right] = \text{probabilities of the system being in} \\ \text{state 0, 1, 2, ..., N at the$ *n* $-th time step}$

• Initialize the vector $\underline{P}(n)$ at time step n = 0:

$$\underline{P}(0) = \underline{C} = \left[C_0 C_1 \dots C_j \dots C_N\right]$$

Computation of the Unconditional State Probabilities (1)

 $P_{j}(1) = P[X(1) = j] \qquad \downarrow \text{ theorem of total probability}$ $= \sum_{i=0}^{N} P[X(1) = j | X(0) = i] P[X(0) = i]$ $= \sum_{i=0}^{N} P_{ij}C_{i} = p_{0j} \cdot C_{0} + p_{1j} \cdot C_{1} + p_{2j} \cdot C_{2} + \dots + p_{Nj} \cdot C_{N},$ $= \sum_{i=0}^{N} P_{ij}C_{i} = P_{0j} \cdot C_{0} + p_{1j} \cdot C_{1} + p_{2j} \cdot C_{2} + \dots + p_{Nj} \cdot C_{N},$

with j = 0, 1, 2, ..., N

Using Matrix Notation:

$$\underline{P}(1) = \underline{C} \cdot \underline{\underline{A}}$$

Computation of the Unconditional State Probabilities (2)

At the second time step n = 2:

 $P_{j}(2) = P[X(2) = j]$ $= \sum_{k=0}^{N} P[X(2) = j | X(1) = k] \cdot P[X(1) = k]$ $= \sum_{k=0}^{N} p_{kj} \cdot P_{k}(1)$ $= P_{0}(1) \cdot p_{0j} + P_{1}(1) \cdot p_{1j} + P_{2}(1) \cdot p_{2j} + \dots + P_{N}(1) \cdot p_{Nj},$ with $j = 0, 1, 2, \dots, N$

 $\underline{P}(2) = \underline{P}(1) \cdot \underline{\underline{A}} = (\underline{C}\underline{\underline{A}})\underline{\underline{A}} = \underline{C}\underline{\underline{A}}^{2}$

FUNDAMENTAL EQUATION OF THE HOMOGENEOUS DISCRETE-TIME DISCRETE-STATE MARKOV PROCESS

30

$$\underline{P}(n) = \underline{P}(0) \cdot \underline{\underline{A}}^n = \underline{C} \cdot \underline{\underline{A}}^n$$

POLITECNICO MILANO 1863

- We know:
 - The one-step transition probabilities: p_{ij}
 - The initial condition $c_j = P[X(0) = j]$
- Objective:
 - Compute the probability that the system is in a given state j at a given time t_n , for all possible states and times: $\underline{P}(n)$
- Solution:

$$\underline{P}(n) = \underline{P}(0) \cdot \underline{A}^n = \underline{C} \cdot \underline{A}^n$$

FUNDAMENTAL EQUATION

Multi-step Transition Probabilities: Interpretation

probability of arriving in state *j* after *n* steps given that the initial state was *i*

POLITECNICO MILANO 1863

Multi-step transition probabilities (2)

$$\underline{\underline{A}} = \begin{pmatrix} p_{00} & p_{01} \\ p_{10} & p_{11} \end{pmatrix} \quad (i = 0, 1, j = 0, 1)$$

$$\underline{A}^{2} = \begin{pmatrix} p_{00} & p_{01} \\ p_{10} & p_{11} \end{pmatrix} \cdot \begin{pmatrix} p_{00} & p_{01} \\ p_{10} & p_{11} \end{pmatrix} = \begin{pmatrix} p_{00} \cdot p_{00} + p_{01} \cdot p_{10} \\ p_{10} \cdot p_{00} + p_{11} \cdot p_{10} \end{pmatrix} \xrightarrow{p_{00} \cdot p_{01} + p_{01} \cdot p_{11} \\ p_{10} \cdot p_{01} + p_{11} \cdot p_{11} \end{pmatrix}$$

WHAT IS THE "PHYSICAL" MEANING?

Multi-step Transition Probabilities (3)

$$p_{00}(2) = p_{00} \cdot p_{00} + p_{01} \cdot p_{10}$$

34

$$p_{01}(2) = p_{00} \cdot p_{01} + p_{01} \cdot p_{11}$$

 $p_{ij}(n) = P[X(n) = j | X(0) = i]$, $p_{ij}(n)$ is the sum of the probabilities of all trajectories with length n which originate in state i and end in state j

POLITECNICO MILANO 1863

• Stochastic process of raining in a town (transitions between wet and dry days)

DISCRETE STATES	TRANSITION MATRIX		
State 1: dry day	dry	wet	
State 2: wet day	$\underline{A} = dry (0.8)$	0.2	
DISCRETE TIME Time step $= 1$ day	- wet (0.5)	0.5	
1 mic sicp - 1 uay			

You are required to:

- 1) Draw the Markov diagram
- 2) If today the weather is dry, what is the probability that it will be dry two days from now?

Open Problems

- We provided an analytical framework for computing the state probabilities
- Still open issues:
 - 1. Estimate the transition matrix $A \rightarrow$ Problem of parameter identification from data or expert knowledge
 - 2. Solve for a generic time n, i.e. find $P_j(n)$ as a function of n, without the need of multiplying n times the matrix A

Solution to the fundamental equation

Ibrahim Ahmed

POLITECNICO MILANO 1863

Solution to the Fundamental Equation (1)

 $\begin{cases} \underline{P}(n) = \underline{P}(0) \underline{\underline{A}}^n \\ P(0) = C \end{cases}$ SOLVE THE EIGENVALUE PROBLEM ASSOCIATED TO MATRIX A i) Set the eigenvalue problem $\underline{V} \cdot \underline{\underline{A}} = \boldsymbol{\omega} \cdot \underline{\underline{V}}$ ii) Write the homogeneous form $\underline{V} \cdot (\underline{A} - \boldsymbol{\omega} \cdot \underline{I}) = 0$ iii) Find **non-trivial solutions** by setting $det(\underline{A} - \omega \cdot \underline{I}) = 0$ iv) From det $(\underline{A} - \omega \cdot \underline{I}) = 0$ compute the **eigenvalues** $\omega_j, j = 0, 1, ..., N$ v) Set the *N*+1 eigenvalue problems $V_j \cdot \underline{\underline{A}} = \omega_j \cdot V_j$ j = 0, 1, ..., Nvi) From $V_j \cdot \underline{\underline{A}} = \omega_j \cdot V_j$ compute the **eigenvectors** $V_j, j = 0, 1, ..., N$

38

Eigenvalues of a Stocastic Matrix

• *A* is a stocastic matrix

• The Markov process is regular and Ergodic

$$\omega_0 = 1 \text{ and } |\omega_j| < 1, j = 1, 2, \dots, N$$

The **eigenvectors** \underline{V}_j span the (N+1)-dimensional space and can be used as a **basis** to write **any** (N+1)-dimensional vector as a **linear combination** of them

WE NEED TO FIND THE COEFFICIENTS α_j and $c_j, j = 0, 1, ..., N$

POLITECNICO MILANO 1863

40

Solution to the fundamental equation (3)

i) Set the adjoint eigenvalue problem

$$\underline{V}^{+} \cdot \underline{\underline{A}}^{+} = \omega^{+} \cdot \underline{V}^{+}$$

ii) Since for **real valued** matrices $\underline{\underline{A}}^{+} = \underline{\underline{A}}^{T}$ then:

$$\underline{V}^{+} \cdot \underline{\underline{A}}^{+} = \omega^{+} \cdot \underline{V}^{+} \implies \underline{V}^{+} \cdot \underline{\underline{A}}^{T} = \omega^{+} \cdot \underline{V}^{+}$$

iii) Since the eigenvalues ω_j^+ , j = 0, 1, ..., N depend **only** on $det(\underline{A}^T) = det(\underline{A})$

$$\Rightarrow \omega_j^+ = \omega_j, j = 0, 1, \dots, N$$

POLITECNICO MILANO 1863

Solution to the fundamental equation (4)

iv) From $\underline{V}_{j}^{+} \cdot \underline{\underline{A}}^{+} = \omega_{j} \cdot \underline{V}_{j}^{+}, j = 0, 1, ..., N$ compute the adjoint eigenvectors $\underline{V}_{j}^{+}, j = 0, 1, ..., N$

v) By definition of the adjoint problem <u>and</u> since \underline{V}_{j}^{+} and \underline{V}_{j}^{-} are orthogonal $\langle \underline{V}_{j}^{+}, \underline{V}_{i}^{-} \rangle \equiv \underline{V}_{j}^{+} \cdot \underline{V}_{i}^{T} = \begin{cases} 0 & \text{if } i \neq j \\ k & \text{otherwise} \end{cases}$

Solution of the fundamental equation (4)

iv) From $\underline{V}_{j}^{+} \cdot \underline{\underline{A}}^{+} = \omega_{j} \cdot \underline{V}_{j}^{+}, j = 0, 1, ..., N$ compute the adjoint eigenvectors $\underline{V}_{j}^{+}, j = 0, 1, ..., N$

v) By **definition** of the adjoint problem <u>and</u> since \underline{V}_{j}^{+} and \underline{V}_{j}^{-} are **orthogonal** $\langle \underline{V}_{j}^{+}, \underline{V}_{i} \rangle \equiv \underline{V}_{j}^{+}, \underline{V}_{i}^{T} = \begin{cases} 0 & \text{if } i \neq j \\ k & \text{otherwise} \end{cases}$

vi) Multiply the left- and right-hand sides of $\underline{C} = \sum_{i=0}^{N} c_i \underline{V}_i$ by \underline{V}_j^+

$$\left\langle \underline{V}_{j}^{+}, \underline{C} \right\rangle = \sum_{i=0}^{N} c_{i} \left\langle \underline{V}_{j}^{+}, \underline{V}_{i} \right\rangle = c_{j} \left\langle \underline{V}_{j}^{+}, \underline{V}_{j} \right\rangle \rightarrow c_{j} = \frac{\left\langle \underline{V}_{j}^{+}, \underline{C} \right\rangle}{\left\langle \underline{V}_{j}^{+}, \underline{V}_{j} \right\rangle}$$
(orthogonality)

POLITECNICO MILANO 1863

43

Solution to the fundamental equation (5)

FIND THE COEFFICIENTS $\alpha_j, j = 0, 1, ..., N$ FOR $\underline{P}(n) = \sum_{j=0}^N \alpha_j \cdot \underline{V}_j$ USE $\underline{P}(n) = \sum_{j=0}^N \alpha_j \cdot \underline{V}_j$, $\underline{C} = \sum_{j=0}^N c_j \cdot \underline{V}_j$ AND $\underline{P}(n) = \underline{C}\underline{A}^n$

Solution to the fundamental equation (5)

FIND THE COEFFICIENTS $\alpha_j, j = 0, 1, ..., N$ FOR $\underline{P}(n) = \sum_{j=0}^{N} \alpha_j \cdot \underline{V}_j$ USE $\underline{P}(n) = \sum_{j=0}^{N} \alpha_j \cdot \underline{V}_j$, $\underline{C} = \sum_{j=0}^{N} c_j \cdot \underline{V}_j$ AND $\underline{P}(n) = \underline{C}\underline{A}^n$

i) Substitute
$$\underline{C} = \sum_{j=0}^{N} c_{j} \cdot \underline{V}_{j}$$
 into $\underline{P}(n) = \underline{C}\underline{\underline{A}}^{n}$ to obtain $P(n) = \left(\sum_{j=0}^{N} c_{j}\underline{V}_{j}\right) \cdot \underline{\underline{A}}^{n}$

ii) Set
$$\underline{P}(n) = \sum_{j=0}^{N} \alpha_j \cdot \underline{V}_j = \underline{C} \cdot \underline{\underline{A}}^n = \left(\sum_{j=0}^{N} c_j \underline{V}_j\right) \cdot \underline{\underline{A}}^n$$

POLITECNICO MILANO 1863

45

Solution to the fundamental equation (6)

iii) Multiply
$$\underline{V_j} \cdot \underline{\underline{A}} = \omega_j \cdot \underline{V_j}$$
 by $\underline{\underline{A}}$ to obtain $\underline{V_j} \cdot \underline{\underline{A}} \cdot \underline{\underline{A}} = \omega_j \quad \underline{V_j} \cdot \underline{\underline{A}}$
Since $\underline{V_j} \cdot \underline{\underline{A}} = \omega_j \cdot \underline{V_j}$ then $\underline{V_j} \cdot \underline{\underline{A}}^2 = \omega_j \cdot \omega_j \cdot \underline{V_j} = \omega_j^2 \cdot \underline{V_j}$

••• (proceeding in the same recursive way)

$$\underline{V_j} \cdot \underline{\underline{A}}^n = \omega_j^n \cdot \underline{V_j}$$

iv) Substitute
$$\underline{V}_{j} \cdot \underline{\underline{A}}^{n} = \omega_{j}^{n} \cdot \underline{V}_{j}$$
 into $\underline{P}(n) = \sum_{j=0}^{N} \alpha_{j} \cdot \underline{V}_{j} = \underline{\underline{C}} \cdot \underline{\underline{A}}^{n} = \sum_{j=0}^{N} c_{j} \cdot \underline{V}_{j} \underline{\underline{A}}^{n}$

$$\sum_{j=0}^{N} \alpha_{j} \cdot \underline{V}_{j} = \sum_{j=0}^{N} c_{j} \cdot \omega_{j}^{n} \cdot \underline{V}_{j}$$

$$\alpha_{j} = c_{j} \cdot \omega_{j}^{n}$$

POLITECNICO MILANO 1863

46

Example 2: wet and dry days in a town – HOMEWORK send your solution by Friday before 8:00

- Stochastic process of raining in a town (transitions between wet and dry days)

DISCRETE STATES	TRANSITION MATRIX	
State 1: dry day	dry	wet
State 2: wet day	$\underline{A} = dry (0.8)$	0.2
DISCRETE TIME Time step = 1 day	- wet (0.5)	0.5

Today the weather is dry

You are required to:

- 1) Drive an expression of the probability that it will be dry n days from now.
- 2) Estimate the probability that it will be dry *n* days from now.

POLITECNICO MILANO 1863

47

Quantity of Interest

Ibrahim Ahmed

POLITECNICO MILANO 1863

A Markov process is called **ergodic** if it is possible to eventually get from every state to every other state with positive probability

$$A = \begin{pmatrix} 0.8 & 0.2 \\ 0.50 & 0.5 \end{pmatrix} \qquad A = \begin{pmatrix} 0.8 & 0.2 \\ 0 & 1 \end{pmatrix}$$

Ergodic Non Ergodic

A Markov process is said to be regular if some power of the stochastic matrix *A* has all positive entries (i.e. strictly greater than zero).

$$A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
$$A^{2} = A^{4} = \dots = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
$$A^{3} = A^{5} = \dots = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

.00

Ergodic – Non Regular

POLITECNICO MILANO 1863

Steady State Probabilities

Is it possible to make long-term predictions $(n \rightarrow +\infty)$ of a Markov process?

It is possible to show that if the Markov process is regular then:

50

$$\lim_{n \to +\infty} \underline{P}(n) = \Pi$$

Steady state probabilities

POLITECNICO MILANO 1863

Steady State Probabilities

- Steady state probabilities π_i : probability of the system being in state *j* asymptotically
- **TWO ALTERNATIVE APPROACHES:** 1) Since $\omega_0 = 1$ and $|\omega_j| < 1, j = 1, 2, ..., N$ **AT STEADY STATE:** $\lim_{n \to \infty} \underline{P}(n) = \lim_{n \to \infty} \sum_{j=0}^{N} \alpha_j \cdot \underline{V}_j = \lim_{n \to \infty} \sum_{j=0}^{N} c_j \cdot \omega_j^n \cdot \underline{V}_j = c_0 \underline{V}_0 = \underline{\Pi}$

Steady state probabilities

- Steady state probabilities π_j : probability of the system being in state *j* asymptotically
- **TWO ALTERNATIVE APPROACHES:** 1) Since $\omega_0 = 1$ and $|\omega_j| < 1, j = 1, 2, ..., N$ **AT STEADY STATE:** $\lim_{n \to \infty} \underline{P}(n) = \lim_{n \to \infty} \sum_{j=0}^{N} \alpha_j \cdot \underline{V}_j = \lim_{n \to \infty} \sum_{j=0}^{N} c_j \cdot \omega_j^n \cdot \underline{V}_j = c_0 \underline{V}_0 = \underline{\Pi}$
 - 2) Use the recursive equation $\underline{P}(n) = \underline{P}(n-1) \cdot \underline{\underline{A}}$ **AT STEADY STATE:** $\underline{P}(n) = \underline{P}(n-1) = \underline{\Pi}$ **SOLVE** $\underline{\Pi} = \underline{\Pi} \cdot \underline{\underline{A}}$ subject to $\sum_{j=0}^{N} \Pi_{j} = 1$

Example 3: wet and dry days in a town (continue)

Question: what is the probability that one year from now the day will be dry?
 Use the approximation based on the recursive equation

FIRST PASSAGE PROBABILITY AFTER *n* TIME STEPS:

Probability that the system arrives **for the first time** in state *j* **after** *n* **steps**, given that it was in state *i* at the initial time 0

$$f_{ij}(n) = P[X(n) = j \text{ for the first time} | X(0) = i]$$

$$=$$

$$f_{ij}(n) = P[X(n) = j, X(m) \neq j, 0 < m < n \mid X(0) = i]$$

NOTICE:

 $f_{ij}(n) \neq p_{ij}(n)$

 $p_{ij}(n)$ =probability that the system reaches state *j* after *n* steps starting from state *i*, but not necessarily for the first time

Example 4: First Passage Probabilities

Compute for the markov process in the Figure below:

- $f_{11}(1)$
- $f_{11}(n)$
- $f_{12}(n)$
- Probability of going from state 1 to state 1 in 1 step for the first time

$f_{11}(1) = ?$

• Probability that the system, starting from state 1, will return to the same state 1 for the first time after *n* steps

$$f_{11}(n) = ?$$

• Probability that the system will arrive for the first time in state 2 after *n* steps $f_{12}(n) = ?$

POLITECNICO MILANO 1863

First Passage Probabilities (4)

 $(f_{ij}(1) \cdot p_{jj})$

RELATIONSHIP WITH TRANSITION PROBABILITIES

Probability that the system reaches state *j* at step 2, given that it was in *i* at 0

 $f_{ij}(1) = p_{ij}(1) = p_{ij}$

 $f_{ij}(2)$

Probability that the system reaches state *j* for the first time at step 1 (starting from *i* at 0) and that it remains in *j* at the successive step

$$f_{ij}(3) = p_{ij}(3) - f_{ij}(1) \cdot p_{jj}(2) - f_{ij}(2) \cdot p_{jj}$$

...
$$f_{ij}(k) = p_{ij}(k) - \sum_{l=1}^{k-1} f_{ij}(k-l)p_{jj}(l)$$
 (Renewal Equation)

POLITECNICO MILANO 1863

Recurrent, Transient and Absorbing States (1)

DEFINITIONS:

• First passage probability that the system goes to state *j* within *m* steps given that it was in *i* at time 0:

 $q_{ij}(m) = \sum_{n=1}^{m} f_{ij}(n) = \text{sum of the probabilities of the$ **mutually exclusive events**of reaching*j*for the first time after*n*= 1, 2, 3, ...,*m*steps

- Probability that the system **eventually** reaches state *j* from state *i*: $q_{ij}(\infty) = \lim_{m \to \infty} q_{ij}(m)$
- Probability that the system **eventually** returns to the initial state:

$$f_{ii} = q_{ii}(\infty)$$

Recurrent, transient and absorbing states (2)

• State *i* is **recurrent** if the system starting at such state will **surely** return to it **sooner or later** (i.e., in finite time):

$$f_{ii} = q_{ii}\left(\infty\right) = 1$$

• For recurrent states $\Pi_i \neq 0$

Recurrent, transient and absorbing states (2)

• State *i* is **recurrent** if the system starting at such state will **surely** return to it **sooner or later** (i.e., in finite time):

 $f_{ii} = q_{ii}(\infty) = 1$

- For recurrent states $\Pi_i \neq 0$
- State *i* is **transient** if the system starting at such state has a **finite probability** of **never** returning to it:

$$f_{ii} = q_{ii}(\infty) < 1$$

• For these states, at steady state $\Pi_i = 0$

59

we cannot have a finite Markov process in which all states are transients because eventually it will leave them and somewhere it must go at steady state

• State *i* is **absorbing** if the system cannot leave it once it enters: $p_{ii} = 1$

Classify the states of the following Markov Chain

60

Sojourn Time in a state (Average Occupation Time of a State)

S_i = number of consecutive time steps the system remains in state *i*

 $E[S_i] = l_i$ = Average occupation time of state *i*

average number of time steps before the system exits state *i*

• Recalling that:

 p_{ii} = probability that the system "moves to" *i* in one step, given that it was in *i*

 $1 - p_{ii} =$ probability that the system exits *i* in one step, given that it was in *i*

$$P(S_i = n) = p_{ii}^n (1 - p_{ii})$$

$$S_i \sim \text{Geom}(1 - p_{ii})$$

$$I_i = E[S_i] = \frac{1}{1 - p_{ii}}$$

POLITECNICO MILANO 1863

61