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General Framework

SYSTEM

Component 1 Component 2 Component Nc

Failed

Operating

Hot standby

Degraded

…

Failed

Operating

Degraded

Partially failed

…

Failed

Operating
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…
Random transition

at t = t1

Random transition

at t = t2

MARKOV PROCESS

Under specified conditions:

System evolution = Stochastic process

=



Ibrahim Ahmed

Markov Processes:

Basic Elements
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Markov Processes: the System States (1) 
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• The system can occupy a finite or countably infinite number N of states

0

1

2

j
… …

3

System functioning

System failed

System

under maintenance
System in 

cold standby

System degraded

N

Set of possible states U = {0, 1, 2, …, N}

= 

State-space of the random process 
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• The States are:

o Mutually Exclusive:

(the system can be only in one state at each time)

o Exhaustive: 𝑃 𝑈 = 𝑃 𝑖=1ڂ
𝑁 State = 𝑖 = σ𝑖=1

𝑁 𝑃 State = 𝑖 = 1

(the system must be in one state at all times

• Example:

Set of possible states U = {0, 1, 2, 3}

0

1 2

3

U

( ) jijiP === if,0StateState

Markov Processes: the System States (2)

( ) ( )

( ) ( ) ( ) ( ) 13State2State1State0State

3State2State1State0State

==+=+=+==

=====

PPPP

PUP
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• Transitions from one state to another occur stochastically (i.e., randomly

in time and in final transition state)

0

1

2

j
… …

3

N

Random transition at time t = t1

Random transition at time t = t2 > t1

Random transition at time t = t3 > t2

Markov Processes: Transitions between states
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• The system state in time can be described by an integer random

variable X(t)

• The stochastic process may be observed at:

• Discrete times

• Continuously

( ) 5=tX → the system occupies the state labelled by number 5 at time t

t10 t2 tn Tm

0 Tm

t

t

→ DISCRETE-TIME DISCRETE-STATE MARKOV CHAIN

→ CONTINUOUS-TIME DISCRETE-STATE MARKOV PROCESS

Markov Processes: Mathematical Representation
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Discrete-Time 

Markov Processes

11
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The Conceptual Model: Discrete Observation Times
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• The stochastic process is observed at discrete times

t10 t2 t3 t4 tn Tm

t

𝑡𝑛 = 𝑡𝑛−1 + Δ𝑡 𝑛

( ) 122 ttt −= ( ) 344 ttt −=

… …tn-1

Δ𝑡 𝑛
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• The stochastic process is observed at discrete times

• Hypotheses:

• The time interval Δt(n) is small enough such that only one event 

(i.e., stochastic transition) can occur within it

• For simplicity, Δt(n) = Δt = constant

The Conceptual Model: Discrete Observation Times

13

t10 t2 t3 t4 tn Tm

t

( )nttt nn += −1

( ) 122 ttt −= ( ) 344 ttt −=

… …

0 tn Tm
𝑡1 𝑡2

∆𝑡 2∆𝑡

𝑡3

3∆𝑡 𝑛∆𝑡
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• The random process of system transition in time is described by an 

integer random variable X(∙)

• 𝑋 𝑛 ≔ system state at time 𝑡𝑛 = 𝑛Δ𝑡
• 𝑋 3 = 5: the system occupies state 5 at time 𝑡3

The Conceptual Model: Mathematical Representation



Ibrahim Ahmed

15

• The random process of system transition in time is described by an 

integer random variable X(∙)

• 𝑋 𝑛 ≔ system state at time 𝑡𝑛 = 𝑛Δ𝑡
• 𝑋 3 = 5: the system occupies state 5 at time 𝑡3

OBJECTIVE:

Compute the probability that the system is in a given state

at a given time, for all possible states and times

( )  NjNnjnXP time ...,,1,0,...,,2,1, ===

The Conceptual Model: Objective
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( )  NjNnjnXP time ...,,1,0,...,,2,1, ===

What do we need?

Objective:
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( )  NjNnjnXP time ...,,1,0,...,,2,1, ===

What do we need?

Objective:

Transition Probabilities!
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• Transition probability: conditional probability that the system moves to 

state j at time tn given that it is in state i at current time tm and given the 

previous system history

The Conceptual Model: the Transition Probabilities

𝑃 𝑋 𝑛 = 𝑗|𝑋 0 = 𝑥0, 𝑋 1 = 𝑥1, 𝑋 2 = 𝑥2, … , 𝑋(𝑚)  = 𝑥𝑚 = 𝑖
∀𝑗 = 0,1, … , 𝑁

i j

tntmt10 t2
Tm

t
… …

𝑥1𝑥0 𝑥2state

Present 
Time



Ibrahim Ahmed

𝑃 𝑋 𝑛 = 𝑗|𝑋 0 = 𝑥0, 𝑋 1 = 𝑥1, 𝑋 2 = 𝑥2, … , 𝑋𝑚 = 𝑥𝑚 = 𝑖

The Conceptual Model: the Markov Assumption

19

In general for stochastic processes: 

• the probability of a transition to a future state depends on its entire life 

history

In Markov Processes: 

• the probability of a transition to a future state only depends on its present 

state

=

THE PROCESS HAS “NO MEMORY”

𝑃 𝑋 𝑛 = 𝑗|𝑋 0 = 𝑥0, 𝑋 1 = 𝑥1, 𝑋 2 = 𝑥2, … , 𝑋(𝑚)  = 𝑥𝑚 = 𝑖
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The Conceptual Model: the Markov Assumption - Notation

𝑝𝑖𝑗 𝑚, 𝑛 = 𝑃 𝑋 𝑛 = 𝑗|𝑋(𝑚)  = 𝑖  𝑛 > 𝑚 ≥ 0
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1. Transition probabilities pij(m, n) are larger than or equal to 0

( ) 0,0,  mnnmpij

2. Transition probabilities must sum to 1

( ) ( ) 0,1,,
0

==
=

mnnmpnmp
N

j

ij

jall

ij

(definition of probability)

(the set of states is exhaustive)

0

i=1 2

3

U

Starting from i = 1, the system either remains in i = 1 or 

it goes somewhere else, i.e., to j = 0 or 2 or 3

( ) 0,1,
3

0

1 =
=

mnnmp
j

j

i = 0,1, 2, …, N, j = 0, 1, 2, …, N

i = 0,1, 2, …, N

The Conceptual Model: Properties of the Transition Probabilities (1)
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The conceptual model: properties of the transition probabilities (2)

3. ( ) ( ) ( )=
k

kjikij nrprmpnmp ,,,

( ) ( )  ( ) ( ) ( )  ======
k

imXkrXjnXpimXjnXp ,,,

( ) ( ) ( )  ( ) ( )  ======
k

imXkrXPimXkrXjnXp ,,|

( ) ( )  ( ) ( )  =====
k

imXkrXPkrXjnXp ,|

( ) ( ) ( ) 
( ) ( ) 

( ) imXP

imXjnXP
imXjnXPnmpij

=

==
====

,
|,

( ) ( ) 
( ) ( ) 

( ) 
=

==
===

k imXP

imXkrXP
krXjnXp

,
|

( ) ( )  ( ) ( )  ( ) ( ) ======
k

ikkj

k

rmpnrpimXkrXPkrXjnXP ,,||

(theorem of total probability)

↓ conditional probability

↓ Markov assumption

(conditional probability)

↓ formula above

↓ conditional probability

i = 0,1, 2, …, N, j = 0, 1, 2, …, N
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The Conceptual Model: Stationary Transition Probabilities
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• If the transition probability pij(m, n) depends on the interval (tn – tm) and 

not on the individual times tm and tn, then

• the transition probabilities are stationary

• the Markov process is homogeneous in time

i j

mk0 n=m+k
t

i j

pij(0,k) pij(m,n)
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The Conceptual Model: Stationary Transition Probabilities
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• If the transition probability pij(m, n) depends on the interval (tn – tm) and 

not on the individual time tm then:

• the transition probabilities are stationary

• the Markov process is homogeneous in time

( ) ( )( ) ( ) ( ) ( ) 

( ) ( ) 
( ) 0,

0|

|,,,

=

===

==+=+=−+=

kkp

iXjkXP

imXjkmXPkmmpmnmmpnmp

ij

ijijij

k time steps

i j

mk0 n=m+k
t

i jpij(k) pij(k)

i = 0,1, 2, …, N, j = 0, 1, 2, …, N
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The conceptual Model: Problem Setting

• We know:

▪ The one-step transition probabilities:

▪ The state probabilities at time 𝑛 =0 (initial condition):

                                                      𝑐𝑗 = 𝑃 𝑋 0 = 𝑗  

    

• Objective: 

▪ Compute the probability that the system is in a given state j at a 

given time 𝑡𝑛, for all possible states and times

      

25

(i = 0,1, 2, …, N, j = 0, 1, 2, …, N)

( ) ijij pp =1

( )  ( ) NjNnnPjnXP timej ...,,1,0,...,,2,1, ====
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The Conceptual Model: Notation - the Transition Probability 

Matrix
26

00 01 0

10 11 1

0 1

0 1 ...

...0

...1

... ... ... ......

...

N

N

N N NN

i j N

p p p

A p p p

p p pN

 
 

=  
 
 
 

Properties:

(all elements are probabilities)

( ) ( ) ( )11dim ++=• NNA

 Njipij ...,,2,1,0,,10 •
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The Conceptual Model: Notation - the Transition Probability 

Matrix
27

00 01 0

10 11 1

0 1

0 1 ...

...0

...1

... ... ... ......

...

N

N

N N NN

i j N

p p p

A p p p

p p pN

 
 

=  
 
 
 

Properties:

Nip
N

j

ij ...,,2,1,0,1
0

==•
=

(all elements are probabilities)

(the set of states is exhaustive)

only (N+1)xN elements need to be known

is a Stochastic MatrixA

( ) ( ) ( )11dim ++=• NNA

 Njipij ...,,2,1,0,,10 •

σ                                                       =1
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The Conceptual Model: Notation - Unconditional State 

Probabilities
28

• Introduce the row vector:

( ) ( ) ( ) ( ) ( ) nPnPnPnPnP Nj ......10=

• Initialize the vector           at time step n = 0:

= probabilities of the system being in 

state 0, 1, 2, …, N at the n-th time step

( )nP

( )  Nj CCCCCP ......0 10==
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( ) ( )

( ) ( ) ( )
0

0 0 1 1 2 2

0

1 1

1 0 0

... ,

0,1,2,...,

j

N

i

N

ij i j j j Nj N

i

P P X j

P X j X i P X i

p C p C p C p C p C

with j N

=

=

=  =  

 = = =   =   

= =  +  +  + + 

=





↓ theorem of total probability

↓ homogeneous process

( )1P C A= 

Using Matrix Notation:

Computation of the Unconditional State Probabilities (1)
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• At the second time step n = 2:

( ) ( )

( ) ( ) ( )

( )

( ) ( ) ( ) ( )

0

0

0 0 1 1 2 2

2 2

2 1 1

1

1 1 1 ... 1 ,

0,1,2,...,

j

N

k

N

kj k

k

j j j N Nj

P P X j

P X j X k P X k

p p

P p P p P p P p

with j N

=

=

=  =  

 = = =   =   

= 

=  +  +  + + 

=





( ) ( ) ( ) 2
2 1P P A CA A CA=  = =

( ) ( ) nn
ACAPnP == 0

Proceeding in the same 

recursive way…

FUNDAMENTAL EQUATION

OF THE HOMOGENEOUS

DISCRETE-TIME DISCRETE-STATE

MARKOV PROCESS

↓ theorem of total probability + Markov assumption

Computation of the Unconditional State Probabilities (2)

= ෍

𝑘=0

𝑁

𝑝𝑘𝑗 ∙ 𝑃𝑘 1  

↓ homogeneous process



Ibrahim Ahmed

• We know:

▪ The one-step transition probabilities:

▪ The initial condition  𝑐𝑗 = 𝑃 𝑋 0 = 𝑗      

• Objective: 

▪ Compute the probability that the system is in a given state j at a 

given time 𝑡𝑛, for all possible states and times: 𝑃 𝑛

▪ Solution:

Problem Setting & Found Solution

31

𝑝𝑖𝑗

𝑃 𝑛 = 𝑃 0 ⋅ 𝐴𝑛 = 𝐶 ⋅ 𝐴𝑛

FUNDAMENTAL EQUATION
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Multi-step Transition Probabilities: Interpretation

32

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

00 01 0

10 11 1

0 1

...

...

... ... ... ...

...

N

Nn

N N NN

p n p n p n

p n p n p n
A

p n p n p n

 
 
 =
 
  
 

( ) ( ) nn
ACAPnP == 0

n-th step 

transition probability matrix

𝑝𝑖𝑗 𝑛 = 𝑃 𝑋 𝑛 = 𝑗|𝑋 0 = 𝑖

probability of arriving in state j after n steps 

given that the initial state was i

FUNDAMENTAL EQUATION
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EXAMPLE WITH N = 2 STATES AND n = 2 time steps









=

1110

0100

pp

pp
A (i = 0,1, j = 0, 1)










++

++
=
















=

1111011010110010

1101010010010000

1110

0100

1110

01002

pppppppp

pppppppp

pp

pp

pp

pp
A

WHAT IS THE “PHYSICAL” MEANING?

Multi-step transition probabilities (2)
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( ) ( ) ( ) iXjnXPnpij === 0|

00p
01p

01p
11p

( ) 1101010001 2 ppppp +=

, pij(n) is the sum of the probabilities of all trajectories with length n 

which originate in state i and end in state j

0 1

Multi-step Transition Probabilities (3)

( ) 1001000000 2 ppppp +=

01p

10p

0 1

00p

00p
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Example 1: wet and dry days in a town

35

• Stochastic process of raining in a town (transitions between wet and dry days)

0.8 0.2

0.5 0.5

dry wet

A dry

wet

=  
 
 

TRANSITION MATRIXDISCRETE STATES

State 1: dry day

State 2: wet day

DISCRETE TIME

Time step = 1 day

You are required to:

1) Draw the Markov diagram

2) If today the weather is dry, what is the probability that it will be dry two days from 

now?
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Open Problems

• We provided an analytical framework for computing the state 

probabilities

• Still open issues:

1. Estimate the transition matrix 𝐴 → Problem of parameter 

identification from data or expert knowledge

2. Solve for a generic time 𝑛, i.e. find 𝑃𝑗(𝑛) as a function of 𝑛, 

without the need of multiplying 𝑛 times the matrix 𝐴

36
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Solution to the fundamental 

equation

37
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Solution to the Fundamental Equation (1)

38

( ) ( )

( )



=

=

CP

APnP
n

0

0

i) Set the eigenvalue problem V A V = 

ii) Write the homogeneous form ( ) 0V A I −  =

iii) Find non-trivial solutions by setting ( )det 0A I−  =

iv) From                                 compute the eigenvalues Njj ...,,1,0, =

v) Set the N+1 eigenvalue problems j j jV A V =  Nj ...,,1,0=

vi) From                           compute the eigenvectors NjV j ...,,1,0, =

SOLVE THE EIGENVALUE PROBLEM ASSOCIATED TO MATRIX A

( )det 0A I−  =

j j jV A V = 
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Eigenvalues of a Stocastic Matrix

• 𝐴 is a stocastic matrix

• The Markov process is regular and Ergodic

39

𝜔0 = 1 and 𝜔𝑗 < 1, 𝑗 = 1,2, . . . , 𝑁
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Solution to the fundamental equation (2)

40

0

( )
N

j j

j

P n V
=

= 
0

N

j j

j

C c V
=

=  AND

WE NEED TO FIND THE COEFFICIENTS j Njc j ...,,1,0, =AND

The eigenvectors Vj span the (N + 1)-dimensional space 

and can be used as a basis to write any (N + 1)-dimensional vector 

as a linear combination of them
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Solution to the fundamental equation (3)

0

N

j j

j

C c V
=

= 

SOLVE THE ASSOCIATED ADJOINT  EIGENVALUE  PROBLEM

++++
= VAV 

+++
= VAV

T


i) Set the adjoint eigenvalue problem

ii) Since for real valued matrices                   then:
T

AA =
+

iii) Since the eigenvalues Njj ,...,1,0, =+ depend only on ( ) ( )AA
T

detdet =

Njjj ,...,1,0, ==+ 

FIND THE COEFFICIENTS Njc j ...,,1,0, = FOR

++++
= VAV 

41
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Solution to the fundamental equation (4)

v) By definition of the adjoint problem and since  
+

jV and jV

are orthogonal 0
, T

j i j i

if i j
V V V V

k otherwise

+ +


    = 


iv) From                                                       compute the adjoint eigenvectors
+

jV

NjVAV jjj ,...,1,0, ==
+++



Nj ,...,1,0, =

42
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jj

j

jjjj

N

i

ijij

VV

CV
cVVcVVcCV

,

,
,,,

0
+

+

+

=

++
=→==

Solution of the fundamental equation (4)

v) By definition of the adjoint problem and since  
+

jV and jV

are orthogonal 0
, T

j i j i

if i j
V V V V

k otherwise

+ +


    = 


vi) Multiply the left- and right-hand sides of
0

N

i i

i

C c V
=

= by 
+

jV

(orthogonality)

iv) From                                                       compute the adjoint eigenvectors
+

jV

NjVAV jjj ,...,1,0, ==
+++



Nj ,...,1,0, =

43
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Solution to the fundamental equation (5)

0

( )
N

j j

j

P n V
=

= 
0

N

j j

j

C c V
=

=  ( ) n
ACnP =

FIND THE COEFFICIENTS Njj ...,,1,0, = FOR
0

( )
N

j j

j

P n V
=

= 

USE , AND

44
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Solution to the fundamental equation (5)

i) Substitute

0

( )
N

j j

j

P n V
=

= 

0

N

j j

j

C c V
=

=  into ( ) n
ACnP = to obtain ( ) n

N

j

jj AVcnP 












= 

=0

ii) Set n
N

j

jj

n
AVcAC 













== 

=0

0

( )
N

j j

j

P n V
=

= 
0

N

j j

j

C c V
=

=  ( ) n
ACnP =

FIND THE COEFFICIENTS Njj ...,,1,0, = FOR
0

( )
N

j j

j

P n V
=

= 

USE , AND

45
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Solution to the fundamental equation (6)

iii) Multiply j j jV A V =  to obtain AVAAV jjj = 

Since

by A

j j jV A V =  then
jjjjjj VVAV == 22



…

j

n

j

n

j VAV = 

iv) Substitute j

n

j

n

j VAV =  into

0 0

N N
n

j j j j j

j j

V c V 
= =

 =   
n

j j jc = 

(proceeding in the same recursive way)

0

( )
N

j j

j

P n V
=

= 
n

N

j

jj

n
AVcAC 

=

==
0

46
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Example 2: wet and dry days in a town – HOMEWORK

send your solution by Friday before 8:00
47

• Stochastic process of raining in a town (transitions between wet and dry days)

0.8 0.2

0.5 0.5

dry wet

A dry

wet

=  
 
 

TRANSITION MATRIXDISCRETE STATES

State 1: dry day

State 2: wet day

DISCRETE TIME

Time step = 1 day

You are required to:

1) Drive an expression of the probability that it will be dry n days from now.

2) Estimate the probability that it will be dry n days from now.

Today the weather is dry
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Quantity of Interest

48
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Ergodic Markov Process

A Markov process is called ergodic if it is possible to eventually get 

from every state to every other state with positive probability

Ergodic Non Ergodic

A Markov process is said to be regular if some power of the stochastic 

matrix A has all positive entries (i.e. strictly greater than zero). 

49

𝐴 =
0.8 0.2

0.50 0.5
𝐴 =

0.8 0.2
0 1

𝐴 =
0 1
1 0

 𝐴2 = 𝐴4 = ⋯ =
1 0
0 1

𝐴3 = 𝐴5 = ⋯ =
0 1
1 0

Ergodic – Non Regular
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Steady State Probabilities

50

Is it possible to make long-term predictions 

(𝑛 → +∞) of a Markov process? 

It is possible to show that if the Markov 

process is regular then:

lim
𝑛→+∞

𝑃 𝑛 = Π Steady state probabilities
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Steady State Probabilities

51

• Steady state probabilities 𝝅𝒋: probability of the system being in state j asymptotically

1) Since Njj ,...,2,1,1and10 == 

( ) 0 0

0 0

lim lim lim
N N

n

j j j j j
n n n

j j

P n V c V c V 
→ → →

= =

=  =   = =  AT STEADY STATE:

• TWO ALTERNATIVE APPROACHES:
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Steady state probabilities

52

• Steady state probabilities 𝝅𝒋: probability of the system being in state j asymptotically

1) Since Njj ,...,2,1,1and10 == 

( ) 0 0

0 0

lim lim lim
N N

n

j j j j j
n n n

j j

P n V c V c V 
→ → →

= =

=  =   = =  AT STEADY STATE:

2) Use the recursive equation ( ) ( ) AnPnP −= 1

AT STEADY STATE: ( ) ( ) =−= 1nPnP

A= subject to
0

1
N

j

j=

 =

• TWO ALTERNATIVE APPROACHES:

SOLVE
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Example 3: wet and dry days in a town (continue)

53

0.8 0.2

0.5 0.5

dry wet

A dry

wet

=  
 
 

 01=C

• Question: what is the probability that one year from now the day will be dry?

❑ Use the approximation based on the recursive equation 
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First Passage Probabilities (1)

54

• FIRST PASSAGE PROBABILITY AFTER 𝒏 TIME STEPS:

Probability that the system arrives for the first time in state j 

after n steps, given that it was in state i at the initial time 0

NOTICE: 

𝑝𝑖𝑗(𝑛) =probability that the system reaches state j 

after n steps starting from state i, but not necessarily for the first time 

𝑓𝑖𝑗 𝑛 ≠ 𝑝𝑖𝑗(𝑛)
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Example 4: First Passage Probabilities

55

• Probability of going from state 1 to state 1 in 1 step for the first time

• Probability that the system, starting from state 1, will return to the same state 1 for the first time after n

steps

• Probability that the system will arrive for the first time in state 2 after n steps

𝑓11 1 =?

𝑓11 𝑛 =?

𝑓12 𝑛 =?

Compute for the markov process in the Figure below:

• 𝑓11 1

• 𝑓11 𝑛

• 𝑓12 𝑛
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56

( ) ( ) ijijij ppf == 11

( ) ( ) ( ) jjijijij pfpf −= 122

Probability that the system 

reaches state j 

at step 2, given that it was in i at 0

• RELATIONSHIP WITH TRANSITION PROBABILITIES

Probability that the system reaches state j for the

first time at step 1 (starting from i at 0) and

that it remains in j at the successive step

( ) ( ) ( ) ( ) ( ) jjijjjijijij pfpfpf −−= 22133

…

( ) ( ) ( ) ( )
−

=

−−=
1

1

k

l

jjijijij lplkfkpkf (Renewal Equation)

First Passage Probabilities (4)
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Recurrent, Transient and Absorbing States (1)

57

• First passage probability that the system goes to state j within m steps given that it 

was in i at time 0:

( ) ( )
1

m

ij ij

n

q m f n
=

= = sum of the probabilities of the mutually exclusive events of 

reaching j for the first time after n = 1, 2, 3, …, m steps

• Probability that the system eventually reaches state j from state i:

( ) ( )limij ij
m

q q m
→

 =

• Probability that the system eventually returns to the initial state:

( )ii iif q= 

DEFINITIONS:
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Recurrent, transient and absorbing states (2)

58

• State i is recurrent if the system starting at such state will surely return to it sooner or 

later (i.e., in finite time):

( ) 1ii iif q=  =

• For recurrent states 0 i
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Recurrent, transient and absorbing states (2)

59

• State i is recurrent if the system starting at such state will surely return to it sooner or 

later (i.e., in finite time):

( ) 1ii iif q=  =

• For recurrent states 0 i

• State i is transient if the system starting at such state has a finite probability of never 

returning to it:

( ) 1ii iif q=  

• For these states, at steady state 0=i

• State i is absorbing if the system cannot leave it once it enters: 1=iip

we cannot have a finite Markov process in which all states are 

transients because eventually it will leave them and somewhere it 

must go at steady state
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Example 5

Classify the states of the following Markov Chain

60



Ibrahim Ahmed

Sojourn Time in a state (Average Occupation Time of a State)

61

=iip probability that the system “moves to” i in one step, given that it was in i

=− iip1 probability that the system exits i in one step, given that it was in i

• Recalling  that:

P 𝑆𝑖 = 𝑛 = 𝑝𝑖𝑖
𝑛(1 − 𝑝𝑖𝑖)

𝑆𝑖~Geom(1 − 𝑝𝑖𝑖)

𝒍𝒊 = 𝑬 𝑺𝒊 =
1

1 − 𝑝𝑖𝑖

𝑬 𝑺𝒊 = 𝒍𝒊= Average occupation time of state i 

                                   =

average number of time steps before the system exits state i 

𝑆𝑖= number of consecutive time steps the system remains in state i
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