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General Framework

SYSTEM
| ........ Fld ........ | o 1 .............. | | : I
| al .'?2'.".':'.".':5 I |Fal .'?:d'.".'L'.".': ! | e Faﬂed ------- I
IE Operating | IE Operating | | i O peratlng """ i
reemresmresress e P 1T O
l: | : | seerermcinninnean,
I ; Hot standby : i Degraded _ : | : ! Hotstandby : |
I LN ] I I L N ] I I oo I
.............................. [ — | I
B TS S S ——
. Degraded | | ipardally failed: | b MViaintenance | |
| s I_ o [ B i
Component 1 Component 2 Component NN,
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General Framework

SYSTEM
i Failed | I Failed | Random (ransiton o
[T o [eireissisovsme atr=6 [T i
IE Operating | IE Operating | R O peratlng """ i
reemresmresress e P 1] e O
| | T DT
I ; Hot standby : i Degraded _ : | : Hot standby : |
: ARt |
e L e Ranglom transition ' :
: : I: : . g,
I Degraded | Vipartially failedi¢l | atr=1s, L MNaintenance ||
| s | p [ B i
Component 1 Component 2 Component NN,

System evolution = Stochastic process
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General Framework

SYSTEM
grrse s ——— : gressess ege I
i Failed Ii Failed : Random transitjon s
[ ol [eoserctseisomsons atr=t, [Tl
| - Operating | IE Operating | R O peratlng """ i
reemresmresress e P 1] e O
| | T DT
I ; Hot standby : i Degraded _ : | , Cold standby = |
: A Rt ,
R 1 Rangom transidon 1
I : : —f o g,
..... Degraded | Vipartially failedi¢l | atr=1s, b MViaintenance | |
| , I_ T [ B i
Component 1 Component 2 Component NN,

Under specified conditions:
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Markov Processes:

Basic Elements
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Markov Processes: the System States (1)

* The system can occupy a finite or countably infinite number N of states

© () O

System functioning System in Sys?:em
cold standby under maintenance
System failed System degraded

Set of possible states U= {0, 1, 2, ..., N}

State-space of the random process
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Markov Processes: the System States (2)

* The States are:
o Mutually Exclusive: P(State =inState = j)=0, if i# j
(the system can be only in one state at each time)
o Exhaustive: P(U) = P(UX, State = i) = Y., P(State = i) = 1
(the system must be in one state at all times

* Example:

Set of possible states U= {0, 1, 2, 3} U 1 2

P(U )= P(State = 0UState =1 State = 2 State = 3)
= P(State = 0)+ P(State =1)+ P(State = 2)+ P(State = 3)=1
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Markov Processes: Transitions between states

9

* Transitions from one state to another occur stochastically (i.e., randomly
in time and in final transition state)

Random transition at time ¢ = ¢,

©

Random transition at time ¢ = ¢, > ¢,

o ¢

Random transition at time ¢ = ¢; > ¢,
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Markov Processes: Mathematical Representation

10

 The system state in time can be described by an integer random
variable X(?)

X (t) =5 > the system occupies the state labelled by number 5 at time ¢

* The stochastic process may be observed at:

* Discrete times - [DISCRETE-TIME DISCRETE-STATE MARKOV CHAIN

. IContinuously > CONTINUOUS-TIME DISCRETE-STATE MARKOV PROCESS

5 ¢
0 T

m
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Discrete-Time

Markov Processes
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The Conceptual Model: Discrete Observation Times

* The stochastic process 1s observed at discrete times

— {—*—\ N
L _ 1 _ L _L_ - ___ R L.
0 [ b I Iy e Ly 0, o Tm
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The Conceptual Model: Discrete Observation Times

* The stochastic process 1s observed at discrete times
At(Z) =t -t At(4) =4, -4

——
I IO TR I E I e e Lo
0 ¢ t, tot, t, T,

t =t +At(n)

* Hypotheses:

* The time interval A4#(n) is small enough such that only one event
(i.e., stochastic transition) can occur within it

* For simplicity, A#(n) = At = constant

At 2At  3At nAt
L___L___L___L_______ |
0 t1 ty t3 t, T,
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The Conceptual Model: Mathematical Representation

* The random process of system transition in time 1s described by an
integer random variable X(+)

* X(n) := system state at time t,, = nAt
X(3) = 5: the system occupies state 5 at time t3
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The Conceptual Model: Objective

* The random process of system transition in time 1s described by an
integer random variable X(+)

* X(n) := system state at time t,, = nAt
* X(3) = 5: the system occupies state 5 at time t3

v

OBJECTIVE:
Compute the probability that the system is in a given state
at a given time, for all possible states and times

P[X(n)=j],n=12,..,N, ., j=0,1,.., N

time?
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Objective:
P[X(n)=j],n=12,.., Ny, i=0,1.., N
—~————

What do we need?
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Objective:
P[X(n)=j],n=12,.., Ny, i=0,1.., N
—~————

What do we need?

Transition Probabilities!
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The Conceptual Model: the Transition Probabilities

* Transition probability: conditional probability that the system moves to
state j at time 7, given that it is in state 7 at current time 7, and given the
previous system history

Pl[X(n) =j|X(0) = x¢,X(1) = x1,X(2) = x5, ..., X(M) = x,,, = i]
vj=01,..,N

N
e (x0) (1)) @ @

L__L__L__ Ll ___l-___ e L5
0 t, b t L, T,

m

Present
Time
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The Conceptual Model: the Markov Assumption

In general for stochastic processes:
 the probability of a transition to a future state depends on its entire life
history

Pl X(n) =j|X(0) = x0,X(1) = x1,X(2) = x5, ..., X(M) = x,,, =]

In Markov Processes:
* the probability of a transition to a future state only depends on its present
state

P[X(n) = j|M)===tigrrldn——ttprrtld===tbgrree, Xy = Xy = ]

THE PROCESS HAS “NO MEMORY” /—_\
state @ @

IS Y e
0 tl t2 tm b ty b Tm
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The Conceptual Model: the Markov Assumption - Notation

pij(m,n) = P[X(n) = jlX(m) =i] n>m=0
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The Conceptual Model: Properties of the Transition Probabilities (1)

1. Transition probabilities p;(m, n) are larger than or equal to 0

pij(m,n)Z 0, n>m=0 i=01,2,..,N,j=0,1,2,..,N
(definition of probability)

2. Transition probabilities must sum to 1

N
> pi(m,n)=>" p,;(mn)=1,n>m=>0 i=01,2, .. N
all j j=0
(the set of states is exhaustive)

=1 2 3
. l. Zp1j(m,n)=1,n>m20
0 3 j=0

Starting from 7 = 1, the system either remains inZ =1 or
it goes somewhere else, i.e., to j=0or 2 or 3
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The conceptual model: properties of the transition probabilities (2)

3, p., m, n Zp.k m, r)pk,(f n) i=0,1,2,..,N,j=0,1,2,....N

p[X(n)=j Zp[X X(r)=k,X(m)=i] (theorem of total probability)

l conditional probability
—Zp )= i1 X(r)=k X(m)=i]P[X(r)=k, X (m)=i]
| Markov assumption

—Zp = j I X(r)=k]P[X(r)=k, X (m)=i]

pij(m,n):P[X(n)zjlx(m) ] P[X( ) J, X( ) i] (conditional probability)

P[X(m)=i
| formula above PIX (1) =k, X (m)=i]
—Zp[x J|X ) k] P[X(n;)zi]
! condltlonal probability

=S P[X(n)=j| X(r)=kJP[X(r)=k| X (m)=i]= Zpk, r,n)py (m,r)

k
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The Conceptual Model: Stationary Transition Probabilities

* If the transition probability p,(m, n) depends on the interval (¢, —#,) and
not on the individual times ¢, and 7, then

* the transition probabilities are stationary
* the Markov process is homogeneous in time
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The Conceptual Model: Stationary Transition Probabilities

* If the transition probability p,(m, n) depends on the interval (¢, —#,) and
not on the individual time ¢, then:

* the transition probabilities are stationary
* the Markov process is homogeneous in time

pij(m’n): pij(m,m+(ff‘_:?))= pij(m’m+k): P[X(m"'k): J| X(m):i]

- PIX(K)= 1 X(0)=1]
=p;(k), k=0 i=01,2,...,N,j=0,1,2, .., N
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The conceptual Model: Problem Setting

° WC knOW:
= The one-step transition probabilities: P j (1) :.

(i=0,1,2,..,N,j=0,1,2, ..., N)

= The state probabilities at time n =0 (initial condition):

= P[X(0) =]

g

* Objective:
= Compute the probability that the system is in a given state j at a
given time t,, for all possible states and times

P[X(n)=j] = . n=12,..,N, ., j=0,1,.., N
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The Conceptual Model: Notation - the Transition Probability

Matrix

Properties: o dim(é): (N +1)><(N +1)

i/j O 1 .. N e0<p, <1Vi,je{0,12,..,N}

0 ( Poo Poi -+ Pon A (all elements are probabilities)
é: 1 Po Pu - Py

N \ Pno Pna - P Y,
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The Conceptual Model: Notation - the Transition Probability

Matrix

Properties: o dim(é): (N +1)><(N +1)

i/j O 1 .. N e0<p, <1Vi,je{0,12,..,N}
0 _ (all elements are probabilities)
~_
é o Pio Pu o P only (N+1)xN elements need to be known
N
L . :1,i:0,l,2,..., N
N \Pno Pni - P/ jzz(;‘p”
(the set of states is exhaustive)

v

A is a Stochastic Matrix
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The Conceptual Model: Notation - Unconditional State

Probabilities

* Introduce the row vector:

P(n)=|P P(n)...P.(n)...P = probabilities of the system being in
_(n) [ O(n) 1(”) J(n) " (n)] state 0, 1, 2, ..., NV at the n-th time step

- Initialize the vector P(n) at time step n = 0:

P(0)=c=[c,C,..C,..Cy]
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Computation of the Unconditional State Probabilities (1)

N_____ | homogeneous process

:_ pljll pOj C+p11 C+p21 C+ +pNj N’
with j=0,1,2,...,N

T —

Using Matrix Notation:

P(1)=C-A
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Computation of the Unconditional State Probabilities (2)

* At the second time step n = 2:

P(2)=P[X(2)=]]

| theorem of total probability + Markov assumption

N
=22 P[X(2)= i[x (M) =k]-P[X (1)=K]

k=15) | homogeneous process
= Z Dkj * P, (1)

k=0

= I:)0 1)' pOj + Pl(l) plj "‘Pz(l)’ p2j ot PN (1) pva
with j=0,1,2,...,N

v
2
P(2)=P(1)-A=(CA)A=CA
FUNDAMENTAL EQUATION = i i
OF THE HOMOGENEOUS ~g— Proccedingin the same
DISCRETE-TIME DISCRETE-STATE PROTITRIVE WY
MARKOV PROCESS P(n): P(O)- A"=C.A"
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Problem Setting & Found Solution

* We know:

= The one-step transition probabilities:

* The initial condition ¢; = P[X(0) =]
* Objective:

= Compute the probability that the system is in a given state j at a
given time t,,, for all possible states and times: P(n)

=  Solution:

P(n) =P(0)-A" =C- A"

FUNDAMENTAL EQUATION
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Multi-step Transition Probabilities: Interpretation

FUNDAMENTAL EQUATION |P(n)=P(0)-A"=C- A"

v
( poo(n) p01(n) -+ Pon (n)\
A" = plO(n) pll(n) o Py (n) n-th step

= transition probability matrix

\pNO(n) le(n) pNN(n))
v
pij(n) = P[X(n) = j|X(0) = i]

probability of arriving in state j after n steps
given that the initial state was i
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Multi-step transition probabilities (2)

EXAMPLE WITH N =2 STATES AND n =2 time steps

Poo  Po
= (i=0,1,7=0,1)

plO pll

1>

A2 ( Pos pmj [ Pog pmj _ (poo-pmpm- Pro’ 'poo-p01+pm-p11j

Po Pu)\ P Pu) Po P Pu P PiosPor+ Pu- Pt

WHAT IS THE “PHYSICAL” MEANING?
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Multi-step Transition Probabilities (3)

Poo (2): Poo - Poo * Por - Pio

- -

p01(2): Poo - Por T Por - P

p;(n)=P[X(n)=j| X(0)=i] > p;i(n) is the sum of the probabilities of all trajectories with length n
which originate in state i and end in state j
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Example 1: wet and dry days in a town

» Stochastic process of raining in a town (transitions between wet and dry days)

DISCRETE STATES TRANSITION MATRIX
State 1: dry day dry wet
State 2: wet day A= dry 08 0.2
DISCRETE TIME B wet [0.5 05)

Time step = 1 day

You are required to:

1) Draw the Markov diagram

2) Iftoday the weather is dry, what is the probability that it will be dry two days from
now?
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Open Problems

We provided an analytical framework for computing the state
probabilities

» Still open issues:

1. Estimate the transition matrix A = Problem of parameter
identification from data or expert knowledge

2. Solve for a generic time n, i.e. find P;(n) as a function of n,
without the need of multiplying n times the matrix A
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Solution to the fundamental
equation
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Solution to the Fundamental Equation (1)

{E(n)=E(0)§”
P(0)=C

SOLVE THE EIGENVALUE PROBLEM ASSOCIATED TO MATRIX A

i) Set the eigenvalue problem V- -A=®-V
ii) Write the homogeneous form V ( A- a)L) =0
iii) Find non-trivial solutions by setting det ( A-w- L) =0
iv) From det (é— - L) =0 compute the eigenvalues «;, j=0,1..,N
v) Set the N+1 eigenvalue problems \L A=, \i J=01..,N

vi) From V;-A=®, \i compute the eigenvectors \i, J=01..,N
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Eigenvalues of a Stocastic Matrix

* A 1s a stocastic matrix

*  The Markov process is regular and Ergodic

—~—————

wo=1land |wj| <1,j=12,...,N
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Solution to the fundamental equation (2)

———
N N
Q=Z(;Cj Vi AND E(”):JZ;“J Vi
< -
e—

WE NEED TO FIND THE COEFFICIENTS &; AND C;,J=01..,N
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Solution to the fundamental equation (3)

N
FIND THE COEFFICIENTS  C;, j=0,1,..,N  FOR C=) ¢V,

0

SOLVE THE ASSOCIATED ADJOINT EIGENVALUE PROBLEM

i) Set the adjoint eigenvalue problem

V' A=V~
T
ii) Since for real valued matrices é+ = é then:

\i+'é+:0)+°\i+ ‘ \i+‘éT :C()+°V+

iii) Since the eigenvalues  @;, ] =0,1,...,N depend only on det(éT ): det(é)
) a)J+ =w;, J=01..,N
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Solution to the fundamental equation (4)

iv) From V: A+=a)j -\g,j:O,l,...,N compute the adjoint eigenvectors

_J .=

Vi, j=01..N

N
v) By definition of the adjoint problem and since \ij and \ij

are orthogonal B <V V=V = 0ifi=]
L= L — |kotherwise
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Solution of the fundamental equation (4)

iv) From V} AT = o; \5 J=01...,N compute the adjoint eigenvectors

Vi, j=01..N

+
v) By definition of the adjoint problem and since \ij and \ij

are orthogonal B <V V>V = 0 ifi=]
L= L —  |kotherwise

N
vi) Multiply the left- and right-hand sides of C = ZCi\ﬁ by \i]r
i=0

vi.C)
N V:,C
Vi.C ViV = ViV, ) »e =0

<_J > §C< | (ort>hogona<llty)J J>_)CJ <\LJJF’\LJ>

Ibrahim Ahmed POLITECNICO MILANO 1863



Solution to the fundamental equation (5)

. N
FIND THE COEFFICIENTS @, ]=0,1,.,N  FOR P(n)=3 a;-V,

1=0

N
USE P(M=>a;-V; C=>c,-V, AND P(n)=CA"
=0
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Solution to the fundamental equation (5)

FIND THE cOEFriCiENTs @, j=0,1..,N  FOR  P(n)=2 a;-V,

N
USE P(n) = Za V,, C=>c,-V, anp P(n)=CA"

j=0 0 —
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Solution to the fundamental equation (6)

Since \ﬁ'_:: ; \i then V, -éz =w. tw; V. :a)j2 -V

13>

iii) Multiply V;-A=®;-V; by to obtain \i

>

J J J

*es (proceeding in the same recursive way)
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Example 2: wet and dry days in a town - HOMEWORK

send your solution by Friday before 8:00

» Stochastic process of raining in a town (transitions between wet and dry days)

DISCRETE STATES TRANSITION MATRIX
State 1: dry day dry wet
State 2: wet day A= dry 08 0.2
DISCRETE TIME B wet [0.5 05)

Time step = 1 day

Today the weather is dry

You are required to:

1) Drive an expression of the probability that it will be dry » days from now.
2) Estimate the probability that it will be dry » days from now.
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Quantity of Interest
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Ergodic Markov Process

A Markov process is called ergodic if it 1s possible to eventually get
from every state to every other state with positive probability

4= (050 03) 4= %)
Ergodic Non Ergodic

A Markov process is said to be regular 1f some power of the stochastic
matrix 4 has all positive entries (i.e. strictly greater than zero).

1=(1 o)
A2=A4=---=((1) (1))
A3=A5=---=((1) é)

Ergodic — Non Regular
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Steady State Probabilities

Is 1t possible to make long-term predictions
(n — +o0) of a Markov process?

Regular Markov {Chai

Ergodic Markov Chains

lim P(n) =11

n—-—+oo
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Steady State Probabilities

S1

* Steady state probabilities 7z;: probability of the system being in state j asymptotically

 TWO ALTERNATIVE APPROACHES:
D)Since @, =1and |o;| <1 j=12,..,N

N
AT STEADY STATE: lim P(n)=lim Zaj Vi =lim> e, -of -V, =c,V, =1

n—oo _— nN—o0
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Steady state probabilities

52

* Steady state probabilities 77;: probability of the system being in state j asymptotically

 TWO ALTERNATIVE APPROACHES:
1) Since w, =1and ‘(01‘ <1]=12,.,N

N
AT STEADY STATE: limP(n)=1im> |V, =lim > c; - o] -V; =V, =11

N
SOLVE [1=T1-A subjectto D II, =1

j=0

Ibrahim Ahmed POLITECNICO MILANO 1863




Example 3: wet and dry days in a town (continue)

* Question: what 1s the probability that one year from now the day will be dry?
L Use the approximation based on the recursive equation
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First Passage Probabilities (1)

*  FIRST PASSAGE PROBABILITY AFTER n TIME STEPS:

Probability that the system arrives for the first time in state j
after n steps, given that it was in state i at the initial time 0

T
f,()=P[ X(n)= j forthe firsttime| X(0) =1 |
f.(n)=P|lX(n)= 7, X(m)# j,0<m<n|X(0)=i]
T
NOTICE:
fij(n) # p;j(n)

Di; (n) =probability that the system reaches state j
after n steps starting from state i, but not necessarily for the first time
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Example 4: First Passage Probabilities

Compute for the markov process in the Figure below:

Pz

© f11(D) /\
¢ fll(n) P P

¢ f12 (Tl) P

* Probability of going from state 1 to state 1 in 1 step for the first time

f11(1) =7
* Probability that the system, starting from state 1, will return to the same state 1 for the first time after n
steps
fi1(m) =7

* Probability that the system will arrive for the first time in state 2 after n steps

fi2(n) =7
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First Passage Probabilities (4)

 RELATIONSHIP WITH TRANSITION PROBABILITIES

fij (1): ; (1): ;

f;(2) @

Probability that the system Probability that the system reaches state j for the
reaches state j first time at step 1 (starting from i at 0) and
at step 2, given that it was in i at 0 that it remains 1n j at the successive step

i (3): 0;; (3)_ i (1) Pi; (2)_ fi (2) Pji

k-1

fij ( pI J Z f | ) (Renewal Equation)
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Recurrent, Transient and Absorbing States (1)

DEFINITIONS:

* First passage probability that the system goes to state j within m steps given that it
was in i at time O:

CI,J Z f,J = sum of the probabilities of the mutually exclusive events of
reaching j for the first time aftern =1, 2, 3, ..., m steps

* Probability that the system eventually reaches state j from state i:

d () = lim g; (m)

m—oo

* Probability that the system eventually returns to the initial state:

fi =0 ()
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Recurrent, transient and absorbing states (2)

« State i is recurrent if the system starting at such state will surely return to it sooner or
later (i.e., in finite time):

fi = a; (OO) =1

* For recurrent states I11; =0
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Recurrent, transient and absorbing states (2)

« State i 1s recurrent if the system starting at such state will surely return to it sooner or
later (i.e., in finite time):

fi = 0; (OO) =1
* For recurrent states I11; =0

« State i 1s transient if the system starting at such state has a finite probability of never
returning to it:

fi =0, (OO) <1 % @
« For these states, at steady state I1; =0

v

we cannot have a finite Markov process in which all states are
transients because eventually it will leave them and somewhere it
must go at steady state

» State i is absorbing if the system cannot leave it once it enters: pii =1
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Example §

Classify the states of the following Markov Chain
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Sojourn Time in a state (Average Occupation Time of a State)

S;= number of consecutive time steps the system remains in state i

E[S;] = ;= Average occupation time of state i

average number of time steps before the system exits state i

* Recalling that:

P;; = probability that the system “moves to” i in one step, given that it was in i

1-— Pii = probability that the system exits 7 in one step, given that it was in i
v

P(S; =n) =pi(1 —py)
v
Si~Geom(1 — p;;)

" T 1—py
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