

Y POLITECNICO DI MILANO

Prof. Enrico Zio

Politecnico di Milano Dipartimento di Energia

Introduction

Prof. Enrico Zio

POLITECNICO DI MILANO

Introduction: reliability and availability

 Reliability and availability: important performance parameters of a system, with respect to its ability to fulfill the required mission in a given period of time

- Two different system types:
 - Systems which must satisfy a specified mission within an assigned period of time: reliability quantifies the ability to achieve the desired objective without failures
 - Systems maintained: availability quantifies the ability to fulfill the assigned mission at any specific moment of the life time

CRC

Availability is a concept that applies to situations in which failures are repaired.

Availability is a measure of the degree to which an item is in an operable state when called upon to perform.

Availability is expressed as a probability.

CRĊ

Availability definition (2)

- X(t) = indicator variable such that:
 - \succ X(t) = 1, system is operating at time t
 - \succ X(t) = 0, system is failed at time t

Instantaneous availability p(t) and unavailability q(t)

p(t) = P[X(t) = 1] = E[X(t)] q(t) = P[X(t) = 0] = 1 - p(t)

CRĊ

Unrevealed failure

A stand-by component fails unnoticed. The system goes on without noticing the component failure until a test on the component is made or the component is demanded to function

Testing / preventive maintenance

A component is removed from the system because it has to be tested or must undergo preventive maintenance

P Repair

A component is unavailable because under repair

Average availability descriptors

How to compare different maintenance strategies?

Components under corrective maintenance (stochastic repair time):

$$p = \lim_{t \to \infty} p(t)$$

Availability of an unattended component (no repair allowed) RC

Prof. Enrico Zio

POLITECNICO DI MILANO

Availability of an unattended component (no repair allowed) RC

 The probability q(t) that at time t the component is not functioning is equal to the probability that it failed before t

 $q(t) \equiv F(t)$

$$p(t) = 1 - q(t) \equiv R(t)$$

where F(t) is the cumulative failure probability and R(t) is the reliability

Availability of a continuously monitored component

Prof. Enrico Zio

POLITECNICO DI MILANO

Objective:

> Computation of the availability p(t)

Hypotheses:

- > N = number of identical components at time t = 0
- Restoration starts immediately after the component failure
- Probability density function of the random time duration T_R of the repair process = g(t)

Balance equation between time *t* and time $t+\Delta t$

Availability of a continuously monitored component (2)

$$N \cdot p(t + \Delta t) = N \cdot p(t) - N \cdot p(t) \cdot \lambda \cdot \Delta t + \int_{0}^{t} N \cdot p(\tau) \cdot \lambda \cdot \Delta \tau \cdot g(t - \tau) \cdot \Delta t$$
(1)
(2)
(3)
(4)

- 1) Number of items UP at time $t+\Delta t$
- 2) Number of items UP at time t
- 3) Number of items failing during the interval Δt
- 4) Number of items that had failed in $(\tau, \tau + \Delta \tau)$ and whose restoration terminates in $(t, t + \Delta t)$;

Availability of a continuously monitored component (3)

• The integral-differential form of the balance

$$\frac{dp(t)}{dt} = -\lambda \cdot p(t) + \int_{0}^{t} \lambda \cdot p(\tau) \cdot g(t-\tau) \cdot d\tau \qquad p(0) = 1$$

 The solution can be obtained introducing the Laplace transforms

$$f(x) \rightarrow L[f(x)] = \tilde{f}(s) = \int_{0}^{\infty} e^{-s \cdot x} f(x) dx$$
$$\frac{df(x)}{dx} \rightarrow L\left[\frac{df(x)}{dx}\right] = s \cdot \tilde{f}(s) - f(0)$$

CRC

Availability of a continuously monitored component (4)

Applying the Laplace transform we obtain:

$$s \cdot \widetilde{p}(s) - 1 = -\lambda \cdot \widetilde{p}(s) + \lambda \cdot \widetilde{p}(s) \cdot \widetilde{g}(s)$$

which yields:

$$\widetilde{p}(s) = \frac{1}{s + \lambda \cdot (1 - \widetilde{g}(s))}$$

- **Inverse** Laplace transform $\rightarrow p(t)$
- Limiting availability:

$$p_{\infty} = \lim_{t \to \infty} p(t) = \lim_{s \to 0} \left[s \cdot \widetilde{p}(s) \right] = \lim_{s \to 0} \left[\frac{s}{s + \lambda \cdot (1 - \widetilde{g}(s))} \right]$$

Availability of a continuously monitored component (5)

• As $s \to 0$, the first order approximation of $\tilde{g}(s)$ is the following:

CRC

Availability of a continuously monitored component (5)

Availability of a component under periodic maintenance (1) crc

- Safety systems are generally in standby until accident and their components must be periodically tested
- The instantaneous unavailability is a periodic function of time
- The performance indicator used is the average unavailability (which is not a probability !)

$$q_T = \frac{1}{T} \cdot \int_0^T q(t) dt = \frac{\overline{DOWNtime}}{T} = \frac{\overline{T_D}}{T}$$

Availability of a component under periodic maintenance (2) crc

- Suppose the unavailability is due to unrevealed random failures, e.g. with constant rate λ
- Assume also instantaneous and perfect testing and maintenance procedures

Availability of a component under periodic maintenance (3) crc

Objective: computation of the average unavailability

• The average unavailability within one period τ is:

$$q_{\tau} = \frac{mean \ DOWNtime}{\tau} = \frac{\overline{T}_{D}}{\tau} = \frac{\overline{T}_{D}}{\tau} = (\tau - t)F_{T}(t)dt = \int_{0}^{\tau} (\tau - t)dF_{T} = (\tau - t)F_{T}(t)\Big|_{0}^{\tau} + \int_{0}^{\tau} F_{T}(t)dt = \int_{0}^{\tau} F_{T}(t)dt$$

Availability of a component under periodic maintenance (4) crc

The average unavailability and availability are then:

For different systems, we can compute $p_{\tau} e q_{\tau}$ by first computing their failure probability distribution $F_{T}(t)$ and reliability R(t) and then applying the above expressions Availability of a component under periodic maintenance (5) crc

- Assume a finite repair time τ_R
- The average unavailability and availability over the complete maintenance cycle period τ+τ_R are:

$$\overline{q}_{\tau+\tau_R} = \frac{\tau_R + \int_0^{\tau} F_T(t) dt}{\tau + \tau_R} \approx \left[\tau_R < <\tau\right] \approx \frac{\tau_R + \int_0^{\tau} F_T(t) dt}{\tau}$$

EXAMPLES

Prof. Enrico Zio

Availability of a continuously monitored component

 Find instantaneous and limiting availability for an exponential component whose restoration probability density is

$$g(t) = \mu \cdot e^{-\mu \cdot t}$$

The Laplace transform of the restoration density is

$$\widetilde{g}(s) = L[g(t)] = \frac{\mu}{s + \mu}$$

$$\widetilde{p}(s) = \frac{1}{s + \lambda \cdot \frac{s}{s + \mu}} = \frac{s + \mu}{s \cdot (s + \mu + \lambda)} \longrightarrow \begin{cases} p(t) = L^{-1}[\widetilde{p}(s)] = \frac{\mu}{\mu + \lambda} + \frac{\lambda}{\mu + \lambda} \cdot e^{-(\mu + \lambda) \cdot t} \\ p_{\infty} = \frac{\mu}{\mu + \lambda} \end{cases}$$

п.

11

CRĆ

Example: System 1 = System 2
MTBF = 10yrs = 87 600h; MDT = 4h :

$$N_{1/2} = \frac{MDT}{MTBF + MDT} = \frac{4h}{87 600h + 4h} \approx 4.6 \cdot 10^{-5}$$

 $N_{s_{tot}} = N_1 + N_2 = 2 \cdot N_{1/2} = 9.2 \cdot 10^{-5} \approx 10^{-4}$

CRĊ

Exam	ple: Availability for traffic sig with List of M	Calculation gnal of a aterial (Lo			STM- ←	Addregate		witch/ Clock Tribs	Aggregate	STM-16		
SIEMENS The FIT-values are statistical values and based only upon the random failure rate corresponding to the "flat" component of the typical bathtub curve. The calculation method is in acc.with IEC 61709!												
		total	Main pa	Quantity of items a) unprotected				b) Trib-+Aggreg-+Switch-prot.				
Item-No	Name	λtot M I BF to FIT (year)	AmainMTBFmainMTBFmainMDTNon-FIT(year)(h)Availab.		Total	STM1e	STM4	STM16	Total	STM1e	STM4	STM16
SM10-1.11 SM10-1.12	Subrack SCOH	2.334 48,9 4.694 24,3	540 211,4 4 0 infinite 4	2,16E-6 0	11	1	1	1	11	1	1	1
SM10-5.1 SM10-8 1	CLU SWITCH FABRIC VC-4	2.771 41,2	2.024 56,4 4 2 302 49 6 4	8,10E-6	1	1	1	1	2	1+1 1+1	1+1 1+1	1+1 1+1
SM10-20.1	STM-16 BOARD	5.133 22,2	3,242 35,2 4	1,30E-5	1	1	1	2	2	1+1	1+1	1+1
SM10-20.32 SM10-23.1	STM-16 MODULE L-16.2/3 STM-4 BOARD	2.931 38,9	500 228,3 4 1.685 67,7 4	2,00E-0 6,74E-6	4		1	4	° 2	1+1	1+1	1+1
SM10-23.11 SM10-27.1	STM-4 MODULE L-4.2/3 STM-1 CARD, 8 X STM-1e	500 228,3 3.489 32,7	500 228,3 4 2.288 49,9 4	2,00E-6 9,15E-6	2 1	1	1		4 2	1+1	1+1	
SM10-6.1	SWITCH FABRIC VC-12 Failure rates in FIT (1FIT=	4.866 23,5 1Failure/10 ⁹ h)	4.014 28,4 4 Total	1,61E-5	1 37.565				2 66.102			
	MTBF in years Failure rates in FIT (1FIT	:1Failure/10 ⁹ h)	Total Main path		3,04	10 896	10 793	12 350	1,73	540	540	540
	MTBF in years		Main path			10,48	10,58	9,24		211,4	211,4	211,4
	Failure intensity in failure	es per year	Main path			22,91	22,69	25,96		1,14	1,14	1,14
	Non-availability in min/ye Availability in %	ar	Main path Main path			0,095 99,996	0,095 99,996	0,108 99,995		0,005 99,9998	0,005 99,9998	0,005 99,9998
Availabili	Availability/Reliability Table Page 1 - 1											

Prof. Enrico Zio

POLITECNICO DI MILANO

assuming 24h/d readiness of maintenance staff

—— (Duct-) Cable 🗛 Station A

Example: Availability of a simple link:

(no current values)

SIEMENS

The FIT-values are statistical values and based only upon the random failure rate corresponding to the "flat" component of the typical bathtub curve.

			i ne calcul	ation metho	od is in acc.with ie	C 61709!					
						Quantity of items for following items:					
		STM 16 Link from A to P									
Itom-No	Namo	λ _{main}	MTBF main	MDT	Non-	with upprotected parts	with protected parts				
ILEIII-INO	Name	FIT	(year)	(h)	Availab.	with unprotected parts	with protected parts				
SM10-1.11	Subrack	540	211,4	4	2,16E-6	5	5				
SM10-1.12	<u>SCOH</u>	0	infinite		0						
SM10-5.1	<u>CLU</u>	2.024	56,4		8,10E-6	5	1+1				
SM10-8.1	SWITCH FABRIC VC-4	2.302	49,6		9,21E-6	5	1+1				
SM10-20.1	STM-16 BOARD	3,242	35,2		1,30E-5	5	1+1				
SM10-20.32	STM-16 MODULE L-16.2/3	500	228,3		2,00E-6	8	1+1				
SM10-6.1	SWITCH FABRIC VC-12	4.014	28,4		1,61E-5	5	1+1				
SM10-25.2	IF2M CARD 63*E1 120ohm)	1.894	161,9		2,82E-6	2	1:n				
SM10-25.12	LSU CARD 63*E1 120ohm)	<u>705</u>	228,3	4	<u>6,74E-6</u>	2	2				
0,3 Failure in	tensity of fibre (failures(100ki	m/year):									
	Fibre per km	342	333,3	12	4,11E-6	200 km	200 km				
F	ailure rates in FIT (1FIT=1Fail	ure/10 ⁹ h)	Main pa	ath		138.301	72.603				
	MTBF in years	0,83	1,57								
	Non-availability of unprotecte	1,10E-3	8,38E-4								
	Non-availability of paths 1 & 2	2									
	Non-availability of 1+1 protec	ted parts									
	Total Non-availability					1,10E-3	8,38E-4				
	Total Non-availability in min/y	/ear				578,76	440,64				
	Total Availability in %	99,8899	99,9162								
Computatio	n rules : The signal flow through	equipment	t is marked by	the figure	s in the releva	nt columns.					
Remark: The	results for the main transmission	on path are	related to one	bi-direction	onal signal/cha	annel.					
vailability/	Reliability Table			Page 1	1	ICN CN S M EP2/Eberlin/12.05.2					
-vanability/				Fage 1 -		2004_A&Btel_MTBF-Spares.x					

Example: Availability of a Ring network:

Path 2

(no current values)

SIEMENS

The FIT-values are statistical values and based only upon the random failure rate corresponding to the "flat" component of the typical bathtub curve. The calculation method is in acc.with IEC 61709!

		Quantity of items for following items:										
	Main transmission path (Main Path)				Non-	King-Protection from A to B						
Item-No	Name		(year)	(h)	Availab.	parts	Path 1	Path 2				
SM10-1.11	Subrack	540	211,4	4	2,16E-6	2	2	1				
SM10-1.12	SCOH	0	infinite	4	0							
SM10-5.1	CLU	2.024	56,4	4	8,10E-6	1+1	1+1	1+1				
SM10-8.1	SWITCH FABRIC VC-4	2.302	49,6	4	9,21E-6	1+1	1+1	1+1				
SM10-20.1	STM-16 BOARD	3,242	35,2	4	1,30E-5		4	3				
SM10-20.32	STM-16 MODULE L-16.2/3	500	228,3	4	2,00E-6		6	4				
SM10-6.1	SWITCH FABRIC VC-12	4.014	28,4	4	1,61E-5	1+1						
SM10-25.2	IF2M CARD 63*E1 120ohm)	1.894	161,9	4	2,82E-6	<u>1+n</u>						
SM10-25.12	LSU CARD 63*E1 120ohm)	<u>705</u>	228,3	4_	<u>6,74E-6</u>	2						
0,3 Failure in	tensity of fibre (failures(100k	m/year):										
	Fibre per km	342	333,3	12	4,11E-6	0 km	150 km	100 km				
F	ailure rates in FIT (1FIT=1Fail	2,490	68.418	45.513								
	MTBF in years	45,85	1,67	2,45								
	Non-availability of unprotecte	9,96E-6										
	Non-availability of paths 1 & 2	2					6,85E-4	4,60E-4				
	Non-availability of 1+2 protec	ted parts				3,15E-7						
	l otal Non-availability					<u>1,03E-5</u>						
	Total Non-availability in min/y	5,40										
O a manufaction	Total Availability in %	99,9990										
Remark: The	results for the main transmission	on path are	related to one	bi-directio	s in the releva onal signal/cha	nt columns. Innel.						
Availability/	Reliability Table	ICN CN S M EP2/Eberlin/12.05.2004 2004_A&Btel_MTBF-Spares.xls										

Example: Availability for a meshed network (no current values) SIEMENS The FIT-values are statistical values and based only upon the random failure corresponding to the "flat" component of the typical bathtub curve. The calculation method is in acc. with IEC 61709!							Node A	Edge Edge		Node 2 M Node 5	Edge	3 (Nor B 6	
	,		,	Qua	antity of i	tems for f	ollowing	items:					
ltem-No	Name	λ _{main}	MTBFma	MDT	Non-	Unprotect	Edge 1	Node 2	Edge 3	Edge 4	Node 5	Edge 6	Edge 7
	Subreak DO	FIT	(year)	(h)	Availab	Parts A,B	<u>A,E,F,C</u>	<u> </u>	<u>C,J,B</u>	A,G,D	<u>D</u>	D,K,L,B	<u>C,M,D</u>
SM10-1.21 SM10-5-1		200	400,U 56.4	4	1,07E-0	<u>¥</u> 1+1	Z 1+1	<u>1</u> 1+1	1 1+1	1 1+1	1+1	<u>7</u>	<u>4</u>
SM10-8.1	SWITCH FABRIC VC-4	2.302	49.6	4	9.21E-6	1+1	1+1	1+1	1+1	1+1	1+1	1+1	1+1
SM10-20.1	STM-16 BOARD	3,242	35,2	4	1,30E-5		4		3	3		4	3
SM10-20.32	STM-16 MODULE L-16.2/3	500	228,3	4	2,00E-6		6		4	4		6	4
SM10-6.1	SWITCH FABRIC VC-12	4.014	28,4	4	1,61E-5	1+1	1+1	1+1	1+1	1+1	1+1	1+1	1+1
SM10-25.2	IF2M CARD 63*E1 120ohm) 1.894	161,9	4	2,82E-6	1+1							
<u>SM10-25.12</u>	LSU CARD 63*E1 120ohm)	<u>705</u>	_2 <u>28,</u> 3_	<u> </u>	<u>6,74E-6</u>	<u> 2 </u>							
0,3 Failure	e intensity of fibre (failures)	100km/yea	nr):	40	4 4 4 5 6		940 km		404 km	474		004 km	457
Non avails	Fibre per km	342	<u>333,3</u>	<u>: 12</u>	4,11E-0	7 795 6	249 KM		<u>161 km</u>	174 KM		231 KM	157 KM
Non-availa	ability of each Edges/Nodes		anu nou	<u>, D</u>	•••••	<i>','0</i> E-0	1 09F-3	1 07E-6	7 10F-4	7 63E-4	1 07E-6	1 02F-3	6 93E-4
Non-availa	ability over all Edges/Nodes	17	••••••	•••••	•••••	•••••			*	1.55E	-6	w/o	Edge 7
Total Non-availability related to 2Mb end to end 9.341E-6 1.094E-5											94E-5		
Total Non-availability in min/year related to 2Mb end to end 5,750 5,750											750		
Total Avai	lability in % related to 2Mb	99,999066 99,998906											
Computation rules: The signal flow through equipment is marked by the figures in the relevant columns.													
Remark: The results for the main transmission path are related to one bi-directional signal/channel.													
Availabili	vailability/Reliability Table Page 1 - 1												
2004_Adbiei_MTBF-Spares.Als													

Availability of a component under periodic maintenance

• **Objective**: computation of the average unavailability over the lifetime $[0, T_M]$

$$\overline{q_{0T_M}} = \frac{\overline{T_D}}{T_M}$$

- Hypoteses:
 - The component is initially working: q(0) = 0; p(0) = 1
 - Failure causes:
 - 1. random failure at any time $T \sim F_T(t)$
 - 2. on-line switching failure on demand $\sim Q_0$
 - 3. maintenance disables the component ~ γ_0 (human error during inspection, testing or repair)

CRC

 The probability of finding the component DOWN at the generic time t is due either to the fact that it was demanded to start but failed or to the fact that it failed unrevealed randomly before t. The average DOWNtime is:

$$q_{0A}(t) = Q_0 + (1 - Q_0) F_T(t)$$

$$\overline{T}_{D(0A)} = \int_{0}^{\tau} q_{0A}(t) dt = \int_{0}^{\tau} \left[Q_0 + (1 - Q_0) \cdot F_T(t) \right] dt = Q_0 \cdot \tau + (1 - Q_0) \cdot \int_{0}^{\tau} F_T(t) dt$$

 During the maintenance period the component remains disconnected and the average DOWNtime is the whole maintenance time:

$$T_{D(AB)} = \tau_R$$

 The component can be found failed because, by error, it remained disabled from the previous maintenance or because it failed on demand or randomly before *t*. The average DOWNtime is:

$$q_{BC}(t) = \gamma_0 + (1 - \gamma_0) \cdot \left[Q_0 + (1 - Q_0) \cdot F_T(t) \right]$$
$$\overline{T}_{D(BC)} = \int_0^\tau q_{BC}(t) dt = \gamma_0 \cdot \tau + (1 - \gamma_0) \cdot \left[Q_0 \cdot \tau + (1 - Q_0) \cdot \int_0^\tau F_T(t) dt \right]$$

4) The normal maintenance cycle is repeated throughout the component lifetime T_M . The number of repetitions, i.e. the number of AB-BC maintenance cycles, is:

$$k = \frac{T_M}{\tau + \tau_R}$$

• The total expected DOWNtime is:

 $\overline{T}_D = Q_0 \tau + (1 - Q_0) \cdot \int_0^\tau F_T(t) dt + \frac{T_M}{\tau + \tau_R} \cdot \left\{ \tau_R + \gamma_0 \tau + (1 - \gamma_0) \cdot \left[Q_0 \cdot \tau + (1 - Q_0) \cdot \int_0^\tau F_T(t) dt \right] \right\}$

$$\overline{Q}_{T_{M}} = \frac{\overline{T}_{D(0T_{M})}}{T_{M}} = \frac{Q_{0}\tau}{T_{M}} + \frac{1-Q_{0}}{T_{M}} \cdot \int_{0}^{\tau} F_{T}(t)dt + \frac{1}{\tau+\tau_{R}} \cdot \left\{\tau_{R} + \gamma_{0}\tau + (1-\gamma_{0}) \cdot \left[Q_{0}\cdot\tau + (1-Q_{0})\cdot\int_{0}^{\tau} F_{T}(t)dt\right]\right\}$$

POLITECNICO DI MILANO

• Q_0 and $F_T(t)$ are generally small, and since typically $\tau_R \ll \tau$ and $\tau \ll T_M$, the average unavailability can be simplified to:

$$\overline{q}_{T_M} \cong \frac{\tau_R}{\tau} + \gamma_0 + (1 - \gamma_0) \cdot \left[Q_0 + \frac{1 - Q_0}{\tau} \cdot \int_0^{\tau} F_T(t) dt \right]$$

- Consider an exponential component with small, constant failure rate $\lambda \Rightarrow F_T(t) = 1 e^{-\lambda \cdot t} \cong \lambda \cdot t$
- Since typically γ₀<<1, Q₀<<1, the average unavailability reads:

