

Monte Carlo Simulations: Exercise Session

Luca Pinciroli

Politecnico di Milano, Energy Department luca.pinciroli@polimi.it

November 18th 2024

EXERCISE 1

Consider the Weibull distribution:

$$F_T(t) = 1 - e^{-\beta t^{\alpha}}$$
, $f_T(t) = \alpha \beta t^{\alpha - 1} e^{-\beta t^{\alpha}}$

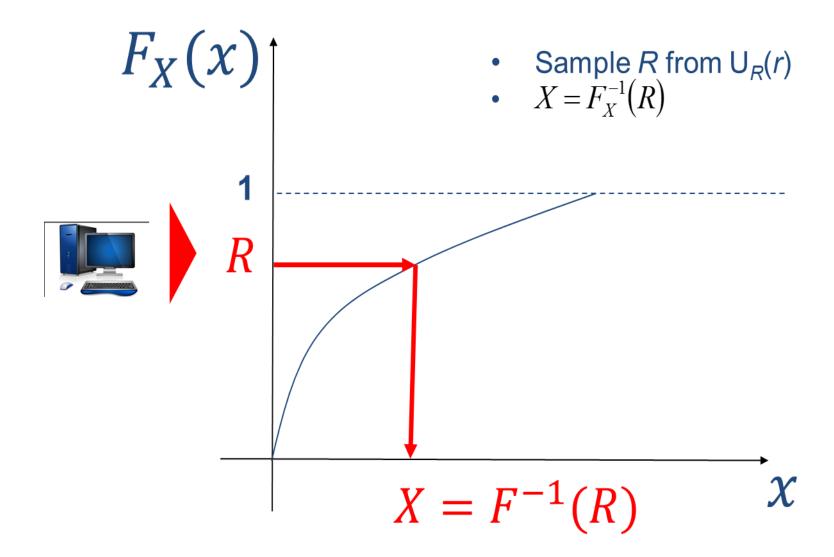
with $\alpha = 1.5, \beta = 1$

- 1. Sample N=400 values from $f_T(t)$
- 2. Verify whether the obtained distribution provides a good approximation of the Weibull distribution. To this aim, you are required to:
 - A. find the empirical probability density function (pdf) of the sampled value in 1
 - B. compare the empirical pdf found in 2A. with the analytical Weibull distribution.

Useful Commands

- np.random.rand(N): provides N random numbers sampled from a uniform distribution in the range [0,1)
- num_samples = matplotlib.pyplot.hist(Y, bins) bins the elements of Y into the bins defined by bins and returns the number of elements in each counter.

Sampling Random Numbers from FX(x)



Example: Weibull Distribution

• Time-dependent hazard rate $\lambda(t) = \beta \alpha t^{\alpha-1}$

cdf:
$$F_T(t) = P\{T \le t\} = 1 - e^{-\beta t^{\alpha}}$$

pdf:
$$f_T(t) \cdot dt = P\{t \le T < t + dt\} = \alpha \beta t^{\alpha - 1} e^{-\beta t^{\alpha}} \cdot dt$$

Sampling a failure time T (by the inverse transform)

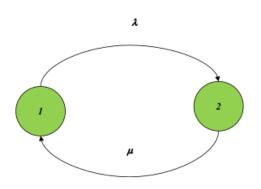
$$R \equiv F_R(r) = F_T(t) = 1 - e^{-\beta t^{\alpha}}$$

$$T = F_T^{-1}(R) = \left(-\frac{1}{\beta}\ln(1-R)\right)^{\frac{1}{\alpha}}$$

EXERCISE 2

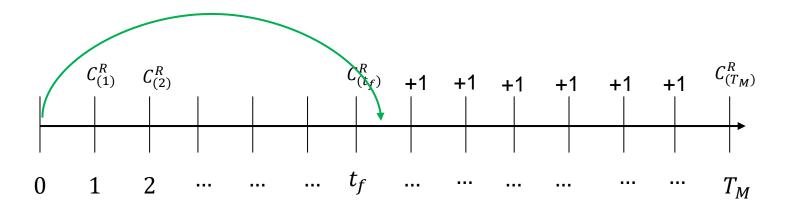
Write the MC code for the estimation of the **time dependent reliability** and **instantaneous availability** of a continuously monitored component with constant failure (λ) and repair (μ) rates

values		
λ	3- 10 ⁻³ h ⁻¹	
μ	25- 10 ⁻³ h ⁻¹	

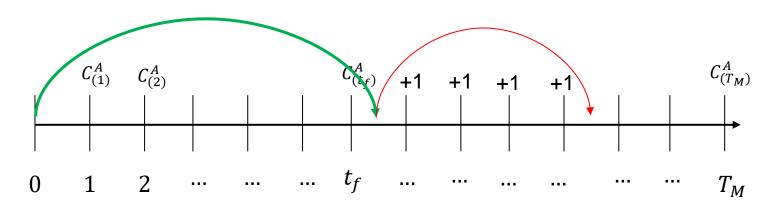


- You can assume a mission time of 10³ time units
- You can compute the time dependent reliability and the instantaneous availability at all times: 0,1,2,3,...10³

Estimation of the System Reliability

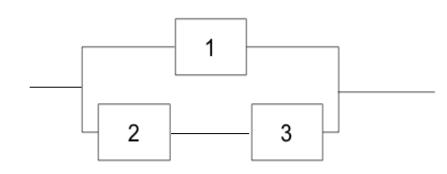


Estimation of the System Availability



Consider the system in figure composed of three components(A, B, C). Each component can be in two different health states (1-nominal, 2-failed) with exponentially distributed transition times between them. Assuming a mission time $T = 500 \ hours$, write the MC code for the estimation of:

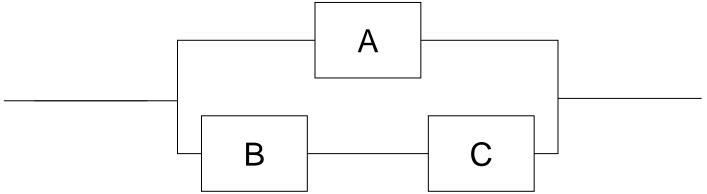
- The time dependent reliability
- The instantaneous availability.
- The estimators uncertainty



	1	2	3
λ	1- 10 ⁻³ h ⁻¹	2· 10 ⁻² h ⁻¹	5· 10 ⁻² h ⁻¹
μ	3⋅ 10 ⁻² h ⁻¹	5- 10 ⁻² h ⁻¹	5· 10 ⁻³ h ⁻¹

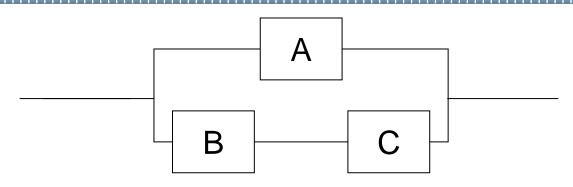
HOMEWORK

Consider the following system



 Components can be in three states and the time of transition from one state to another is exponentially distributed:

Arrival Initial	1	2	3
1(nominal)	0	$\lambda_{1\rightarrow2}^{A(B,C)}$	$\lambda_{1\rightarrow 3}^{A(B,C)}$
2 (degraded)	0	0	$\lambda_{2\rightarrow 3}^{A(B,C)}$
3 (failed)	$\lambda_{3\to 1}^{A(B,C)}$	$\lambda_{3\rightarrow 2}^{A(B,C)}$	0



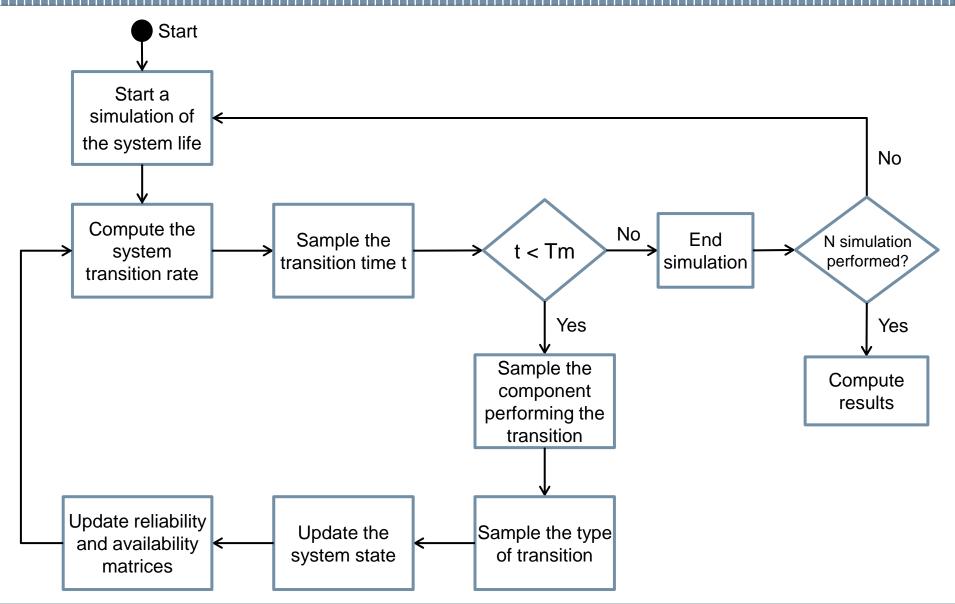
Α	1	2	3
1	-	3 10 ⁻³	10 ⁻³
2	ı	1	6 10 ⁻³
3	8 10 ⁻³	5 10 ⁻³	-

В	1	2	3
1	1	1 10 ⁻³	5 10 ⁻³
2	-	-	4 10 ⁻³
3	7.5 10 ⁻³	3.5 10 ⁻³	-

С	1	2	3
1	-	8 10 ⁻³	2.5 10 ⁻³
2	-	-	2 10 ⁻³
3	4 10 ⁻³	1.5 10 ⁻³	-

- Estimate the **reliability** of the system at $T_{miss} = 4000$
- Estimate the time dependent reliability R(t)
- Estimate the instataneous availability A(t)

Flow diagram



Sampling the time of transition

- The rate of transition of the system out of its current configuration
- (1, 1, 1) is:

$$\lambda^{(1,1,1)} = \lambda_{1\to 2}^A + \lambda_{1\to 3}^A + \lambda_{1\to 2}^B + \lambda_{1\to 3}^B + \lambda_{1\to 2}^C + \lambda_{1\to 3}^C$$

• We are now in the position of sampling the first system transition time t_1 , by applying the **inverse transform method**:

$$t_1 = t_0 - \frac{1}{\lambda^{(1,1,1)}} \ln(1 - R_t)$$

where $R_{t} \sim U[0,1)$

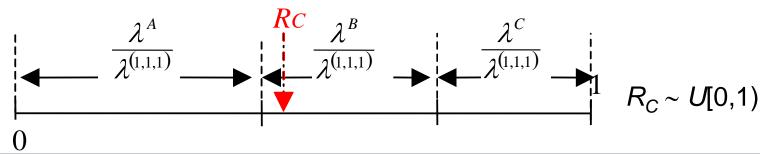
Sampling the kind of Transition

- Assuming that $t_1 < T_M$ (otherwise we would proceed to the successive trial), we now need to determine which component has undergone the transition
- The probabilities of components A, B, C undergoing a transition out of their initial nominal states 1, given that a transition occurs at time t_1 , are:

$$\frac{\lambda^A}{\lambda^{(1,1,1)}}, \quad \frac{\lambda^B}{\lambda^{(1,1,1)}}, \quad \frac{\lambda^C}{\lambda^{(1,1,1)}}$$

$$\lambda^A = \lambda_{1 \to 2}^A + \lambda_{1 \to 3}^A \qquad \lambda^B = \lambda_{1 \to 2}^B + \lambda_{1 \to 3}^B \qquad \lambda^C = \lambda_{1 \to 2}^C + \lambda_{1 \to 3}^C$$

 Thus, we can apply the inverse transform method to the discrete distribution

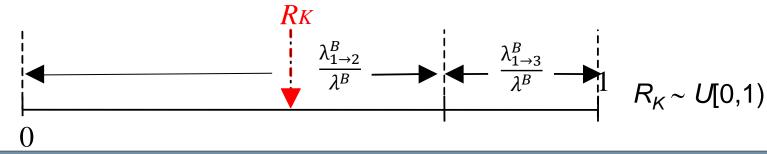


Sampling the kind of Transition

- Since component B is the one undergoing the transition we need to sample the new state of component B.
- The probabilities of components B undergoing a transition out of their initial nominal states 1 given that a transition occurs at time t₁, are:

$$\frac{\lambda_{1\to 2}^B}{\lambda^B} \qquad \frac{\lambda_{1\to 3}^B}{\lambda^B}$$

 Thus, we can apply the inverse transform method to the discrete distribution



- As a result of this first transition, at t₁ the system is operating in configuration (1,2,1).
- The simulation now proceeds to sampling the next transition time t_2 with the updated transition rate

$$\lambda^{(1,2,1)} = \lambda_{1\to 2}^A + \lambda_{1\to 3}^A + \lambda_{2\to 3}^B + \lambda_{1\to 2}^C + \lambda_{1\to 3}^C$$