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o Introduction to prognostics

o Model-based prognostics

➢ Particle filtering for RUL estimate 

o Applications

➢ Maintenance planning

➢ Prediction of the remaining useful life of electrolyte capacitors

➢ Prediction of the remaining useful life of batteries

In This Lecture
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o Introduction to prognostics

o Model-based prognostics

➢ Particle filtering for RUL estimate 

o Applications

➢ Maintenance planning

➢ Prediction of the remaining useful life of electrolyte capacitors

➢ Prediction of the remaining useful life of batteries

Outline
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Prognostics: objectives

Healthy
Degradation 

initiation

Evolution to… failure

Present time 
(t=k)

Our objectives:

1. Estimate the component  degradation at a the present time t =k
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Prognostics: objectives

Healthy
Degradation 

initiation

Evolution to… failure

Present time 
(t=k)

Our objectives:

Future time 
(t =r)

Our objectives:

1. Estimate the component  degradation at a the present time t =k

2. Estimate the component  degradation at a future time r > k
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Prognostics: objectives

Healthy
Degradation 

initiation

Evolution to… failure

Time at which the 
component will no 
longer perform its 
intended function

(tf)

RUL 
(Remaining Useful Life)

Present time 
(t=k)

Our objectives:

1. Estimate the component  degradation at a the present time t =k

2. Estimate the component  degradation at a future time r > k

3. Estimate the component  Remaining Useful Life (RUL) = tf - k
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Prognostics: An example 8

Component: turbine blade

Degradation mechanism: creeping
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Component: turbine blade

Degradation mechanism: creeping

Degradation indicator: blade elongation

Prognostics: an example

Length(t) – initial length

initial length
( )=tx

Our objectives:

1. Estimate the blade  degradation at  

the present time t =k

2. Estimate the blade degradation at a 

future time r > k

3. Estimate the component Remaining 

Useful Life (RUL)
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Sources of information for prognostics

• Life durations of a set of similar components which have already failed:

𝑇1, 𝑇2, … , 𝑇𝑛

10

Failure time (years)
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Sources of information for prognostics

• Life durations of a set of similar components which have already failed

• Threshold of failure: 

11

Fault Initiation

x

t

thx

ft

thx
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Sources of information for prognostics

• Life durations of a set of similar components which have already failed

• Threshold of failure: 

12

Fault Initiation

x

t

thx

ft

thx

«A blade is discarded when the elongation, x, reaches 1.5%»



13

Sources of information for prognostics

• Life durations of a set of similar components which have already failed

• Threshold of failure

• A sequence of observations collected from the degradation initiation to the 

present time (current degradation trajectory): 𝑧1, 𝑧2… , 𝑧𝑘

13

tz

tk

Threshold 

of failure
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Sources of information for prognostics

• Life durations of a set of similar components which have already failed

• Threshold of failure

• A sequence of observations collected from the degradation initiation to the 

present time (current degradation trajectory): 𝑧1, 𝑧2… , 𝑧𝑘

14

tz

t

Elongation measurements = past evolution of the degradation indicator  

k

Threshold 

of failure
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Sources of information for prognostics

• Life durations of a set of similar components which have already failed

• Threshold of failure

• A sequence of observations collected from the degradation initiation to the 

present time (current degradation trajectory)

• Degradation trajectories of similar components 

15

Fault Initiation

)(tz

t
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Sources of information for prognostics

• Life durations of a set of similar components which have already failed

• Threshold of failure

• A sequence of observations collected from the degradation initiation to the 

present time (current degradation trajectory)

• Degradation trajectories of similar components 

• Information on external/operational conditions (past – present - future)

Past, present and future time evolution of: ,...,,...,, 121 +kk uuuu

16
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Sources of information for prognostics

• Life durations of a set of similar components which have already failed

• Threshold of failure

• A sequence of observations collected from the degradation initiation to the 

present time (current degradation trajectory)

• Degradation trajectories of similar components 

• Information on external/operational conditions (past – present - future)

Past, present and future time evolution of: ,...,,...,, 121 +kk uuuu

17

𝒖𝟏 = T = temperature

𝒖𝟐 =θr = rotational speed
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Sources of information for prognostics

• Life durations of a set of similar components which have already failed

• Threshold of failure

• A sequence of observations collected from the degradation initiation to the 

present time (current degradation trajectory)

• Degradation trajectories of similar components 

• Information on external/operational conditions (past – present - future)

• Measurement equation

18

),( xhz =

Random noise with

known distribution
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Sources of information for prognostics

• Life durations of a set of similar components which have already failed

• Threshold of failure

• A sequence of observations collected from the degradation initiation to the 

present time (current degradation trajectory)

• Degradation trajectories of similar components 

• Information on external/operational conditions (past – present - future)

• Measurement equation

19

),( xhz =

Random noise with

known distribution

( )2,0 



N

xz
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• Life durations of a set of similar components which have already failed

• Threshold of failure

• A sequence of observations collected from the degradation initiation to the 

present time (current degradation trajectory)

• Degradation trajectories of similar components 

• Information on external/operational conditions (past – present - future)

• Measurement equation

Ultrasonic Monitoring (regularly used in the oil and 

gas industry)

),( xhz =

Sources of information for prognostics

1

0 11 exp ln k
k k

k

x
z d

d x
  

−

  
= − + +  

−  
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Sources of information for prognostics

• Life durations of a set of similar components which have already failed

• Threshold of failure

• A sequence of observations collected from the degradation initiation to the 

present time (current degradation trajectory)

• Degradation trajectories of similar components 

• Information on external/operational conditions (past – present - future)

• Measurement equation

• A physics-based model of the degradation process

21

( )1111 ,,,..., −−−= kkkkk uxxfx 
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Sources of information for prognostics

• Life durations of a set of similar components which have already failed

• Threshold of failure

• A sequence of observations collected from the degradation initiation to the 

present time (current degradation trajectory)

• Degradation trajectories of similar components 

• Information on external/operational conditions (past – present - future)

• Measurement equation

• A physics-based model of the degradation process

22

Norton law for creep growth

x = blade elongation

T = temperature

φ = Kθr
2 = applied stress

θr  =  rotational speed

A, Q, n = equipment inherent parameters

n

RT

Q
A

dt

dx








= -exp

Arrhenius law 

External/operational conditions
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o Prognostics

o What is it?

o Prognostics in practice

o Sources of information

o Prognostic approaches
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Data-

Driven
Experience-

Based

Model-

Based

• Threshold of failure

• Current degradation 

trajectory

• External/operational 

conditions

Life durations of a 

set of 

similar components

• Degradation 

trajectories of similar 

components

• Measurement equation

• A physics-based model     

of the degradation

Prognostic approaches
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o Introduction to prognostics

o Model-based prognostics

o Particle filtering for degradation state estimate

o Particle filtering for RUL estimate 

o Applications

➢ Maintenance planning

➢ Prediction of the remaining useful life of electrolyte capacitors

➢ Prediction of the remaining useful life of batteries

Outline
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Model-Based prognostics: information available 

Data-

Driven
Experience-

Based

Model-

Based

• Threshold of failure

• Current degradation 

trajectory

• External/operational 

conditions

Life durations of a set 

of 

similar components

• Degradation 

trajectories of similar 

components

• Measurement equation

• A physics-based model     

of the degradation
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Model-based prognostics: the methodology

Present time

External/operating conditions

Observations

Degradation statex

z

u

k

Estimation Forecasting
ku kz kx

RUL

x kr

rku :1+

Component
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Main sources of uncertainty

Present time

External/operating conditions

Observations

Degradation statex

z

u

k

Estimation Forecasting
ku kz kx

RUL

xr

rku :1+

Future external/operating 

conditions

are never exactly known

Noise on the observations

(measurements)
Intrinsic randomness

of the degradation process

Component



29

Prognostics = Filtering + Forecasting

Estimation Forecasting
ku kz

kx

RUL

xr

rku :1+

1. The filtering problem: to estimate the degradation state,     , at the 

present time

2. The forecasting problem:

▪ to predict the degradation state,     , at a future time r

▪ to predict the component RUL

kx

rx

Component
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o Model-based prognostics

o Particle filtering for degradation state estimate

o Particle filtering for RUL estimate 

o Applications

➢ Maintenance planning

➢ Prediction of the remaining useful life of electrolyte capacitors

➢ Prediction of the remaining useful life of batteries

Outline
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o Model-based prognostics:

o The filtering problem

o The forecasting problem
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The Filtering Problem

Present time

External/operating conditions

Observations

Degradation statex

z

u

k

Estimation Prediction
ku kz

kx

RUL

xr

rku :1+

Component
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• Physical model of the degradation process

➢ x = hidden degradation state

➢  = random process noise

➢ f = physical model of the degradation process (non-linear dynamic law)

➢ k = time step index 

• Measurement equation:

➢  = random measurement noise

➢ h = non-linear measurement equation

Time-discrete, hidden Markov process

Problem Setting

Estimation
ku kz kx

( )11, −−= kkkk xfx 

( )kkk xhz ,=

Component
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The filtering problem in practice 

(Physical model of the degradation process)

➢ x = hidden degradation state (blade elongation)

➢ = operating conditions

➢ = random process noises

➢ A, K and n = constants related to the material properties

Discretization of the 

dynamics

( )
ndx

e C x
dN

 =

( )
( )( )nK

TR

Q
A

dt

dx
3

2

20

10

-exp 


++










+
=

( )
( )( )nkk K

TR

Q
Axx 3

2

20

10

1 -exp 


++










+
+= −

00 ,T

321 ,, 

Norton law for creep growth

),0( 2

ii N  
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➢ zk = degradation observation (measure of the  creep elongation)

➢ k = gaussian measurement noise

kkkkk xxhz  +== ),(

The filtering problem in practice

(Measurement Equation)
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The Bayesian framework

• Interpretation of the bayesian probability ?

▪ conditional on the background knowledge: the noisy 

measurements

kx

( )kk zxp :1|

( )kk zxp :1|

kk zzzz ,...,, 21:1 =

OBJECTIVE: ( )kk zxp :1|
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➢ state mean (estimate)

➢ state variance (uncertainty)

➢ state percentiles  

The state estimate and its uncertainty

( )kk zxp :1|

( ) = kkkkk dxxzxpx :1|ˆ

( ) ( ) −= kkkkkx dxzxpxx
k :1

22 |ˆ̂

955
ˆ,ˆ xx

5x̂
95x̂

( )kk zxp :1|

kx
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• Let us assume that we know at time k-1

The sequential solution (I)

( )1:11 | −− kk zxp

Prediction

stage

( )1:11 | −− kk zxp ( )1:1| −kk zxp

( )11, −−= kkk xfx 
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• Let us assume that we know at time k-1

The sequential solution (I)

( )1:11 | −− kk zxp

Prediction

stage

( )1:11 | −− kk zxp ( )1:1| −kk zxp

• Prediction stage:

𝑝 𝑥𝑘−1, 𝑥𝑘|𝑧𝑘−1 = 𝑝 𝑥𝑘−1|𝑧1:𝑘−1 𝑝 𝑥𝑘|𝑥𝑘−1

Time k-1 Time k

1−kx
kx

𝑝 𝑋𝑘−1 = 𝐴𝑁𝐷 𝑋𝑘 = =
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The sequential solution (I)

( ) ( ) ( ) −−−−− = 11:1111:1 ||| kkkkkkk dxzxpxxpzxp

Time k-1 Time k

1−kx
kx

• Let us assume that we know at time k-1( )1:11 | −− kk zxp

Prediction

stage

( )1:11 | −− kk zxp ( )1:1| −kk zxp

• Prediction stage: Chapman-Kolmogorov equation

𝑝 𝑋𝑘 = =𝑃 𝑋𝑘−1 = 𝐴𝑁𝐷 𝑋𝑘 =
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The sequential solution (II)

kz

Prediction

stage

( )1:11 | −− kk zxp ( )1:1| −kk zxp
Update 

stage

( )kk zxp :1|
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The sequential solution (II)

posterior
priorLikelihood

( ) ( ) −= kkkkk dxzxpxzpconst 1.1||

From the normalization

( ) 1| :1 = kkk dxzxp

( )
( )

( )1:1:1 |
|

| −= kk
kk

kk zxp
const

xzp
zxp

kz

Prediction

stage

( )1:11 | −− kk zxp ( )1:1| −kk zxp

• Update stage: Bayes Rule

Update 

stage

( )kk zxp :1|

prior posterior
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The sequential solution: What is difficult in 

practice?

• The integrals are difficult to solve analytically!

( ) ( ) ( ) −−−−− = 11:1111:1 ||| kkkkkkk dxzxpxxpzxp
Chapman-

Kolmogorov

equation

( )
( )

( )1:1:1 |
|

| −= kk
kk

kk zxp
const

xzp
zxp

( ) ( ) −= kkkkk dxzxpxzpconst 1:1||

Bayes Rule
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PARTICLE FILTERING

Numerical solution which, in the limit, tends to the exact posterior pdf:

Kalman Filter

Exact only for linear
systems and additive 

Gaussian noises

Available model-based filtering techniques

( )kk zxp :1|
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o Model-based prognostics

o Particle filtering for degradation state estimate

o Particle filtering for RUL estimate 

o Applications

➢ Maintenance planning

➢ Prediction of the remaining useful life of electrolyte capacitors

➢ Prediction of the remaining useful life of batteries

Outline
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o Particle filtering for degradation state estimate

oThe intuitive representation 

oState estimate in practice

oDetailed analytical approach to the problem

oThe pseudocode
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0 0.05 0.1
0

0.5

1

0 0.05 0.1
0

5

10

15

The intuitive representation:

1.  pdf approximation

0x

( )0xp

ix0

iw0

1
1

0 =
=

sN

i

iw

• Time 0, we approximate in the form of a set of Ns random

samples with associated weights

• is approximated by a population of particles:

with:

ix0

s

i

N
w

1
0 =

  s

ii Niwx ,...,1,, 00 =

( )0xp

( )0xp
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The intuitive representation:

prediction stage: Monte Carlo Simulation

Prediction

stage

( )0xp ( )1xp

 ii wx 00 , ( ) iiii wxfx 0001 ,,=

( )001 ,xfx =
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The intuitive representation:

prediction stage: Monte Carlo Simulation

Prediction

stage

( )0xp ( )1xp

 ii wx 00 , ( ) iiii wxfx 0001 ,,=

( )
( )( )nii

i

ii K
TR

Q
Axx 3

2

20

10

01 -exp 


++










+
+=

Prediction stage for particle i

1. Sample a value of 

2. Apply: 

iii

321 ,, 

( )001 ,xfx =
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0 0.05 0.1
0

0.5

1

 

 

Time 0

Time 1

The intuitive representation:

prediction stage: Monte Carlo Simulation

x

w

( )
( )( )nii

i

ii K
TR

Q
Axx 3

2

20

10

01 -exp 


++










+
+=
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The intuitive representation:

update stage: weight modification

1z

Prediction

stage

( )0xp ( )1xp
Update 

stage

( )11 | zxp

• Time 1: measure becomes available → particle weights’ update 058.01 =z

measurement

0.02 0.04 0.06 0.08 0.1
0

0.1

0.2

 

 

prior

posterior

w
1z

 ii wx 00 ,  ii wx 01 ,  ii wx 11 ,
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The intuitive representation:

update stage: weight modification

1z

Prediction

stage

( )0xp ( )1xp
Update 

stage

( )11 | zxp

• Time 1: measure becomes available

• Compute likelihood of the particles:

1z

( )ixzp 11 |

0 0.5 1 1.5 2
0

0.5

1

1.5

2( )ixzp 1|

ix11z

( )ixzp 11 |

 ii wx 00 ,  ii wx 01 ,  ii wx 11,

( )

( )2

1

2

1

,

,0







i

i

xNz

N

xz





+=
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The intuitive representation:

update stage: weight modification

1z

Prediction

stage

( )0xp ( )1xp
Update 

stage

( )11 | zxp

• Time 1: measure becomes available

• Compute likelihood of the particles:

•

1z

( )ixzp 11 |

( )iii xzpww 1101 |~ =

 ii wx 00 ,  ii wx 01 ,  ii wx 11,
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The intuitive representation:

update stage: weight modification

1z

Prediction

stage

( )0xp ( )1xp
Update 

stage

( )11 | zxp

• Time 1: measure becomes available

• Compute likelihood of the particles:

•

1z

( )ixzp 11 |

( )iii xzpww 1101 |~ =

 ii wx 00 ,  ii wx 01 ,  ii wx 11,


=

=
N

i

i

i
i

w

w
w

1

1

1
1

~

~
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• Repeat prediction and update stage each time a new 

measure becomes available

The intuitive representation

Prediction

stage

( )1:11 | −− kk zxp ( )1:1| −kk zxp
Update 

stage

( )kk zxp :1|

kz

 i

k

i

k wx 11, −−  i

k

i

k wx 1, −  i

k

i

k wx ,
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The intuitive representation:

prediction stage: Monte Carlo Simulation

Prediction

stage

( )1:11 | −− kk zxp ( )1:1| −kk zxp

( ) i

k

i

k

i

kk

i

k wxfx 111 ,, −−−= 

0 1 2 3 4 5 6 7
0

0.05

0.1

0.15

0.2

0.25

 

 

Time k-1

Time k

x

w

 i

k

i

k wx 11, −−
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The intuitive representation:

update stage: weight modification

kz

Prediction

stage

( )1:11 | −− kk zxp ( )1:1| −kk zxp
Update 

stage

( )kk zxp :1|

• Time k: measure becomes available → particle weight modification
kz

0 1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

 

 

prior

posterior

Measure

w
measurement

kz

 i

k

i

k wx 11, −−  i

k

i

k wx 1, −
 i

k

i

k wx ,
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Example of Particle Trajectories

x

thx

1z 2z 3z
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Estimates of interest


=

=
sN

i

i

k

i

kk xwx
1

ˆ

( )
=

−=
sN

i

k

i

k

i

kk xxw
1

22 ˆ̂

➢ degradation state mean (estimate)

➢ degradation state variance (uncertainty)

 i

k

i

k wx , ( )kk zxp :1|
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o Particle filtering for degradation state estimate

oThe intuitive representation 

oState estimate in practice

oDetailed analytical approach to the problem

oThe pseudocode



Degradation state estimate in practice

( )
( )( )nkk K

TR

Q
Axx

2

20

10

1 -exp 


+










+
+= −

n=6

A= 7.5e-3 %/(MPan*day)

Q: Activation energy = 290000 J/mol

R: Ideal gas constant = 8.31 J/(mol*K)

K=0. 0011 MPa

T0 = 1100 K

θ0 = 3000 rpm

ω1~ N(0; 11) K

ω2~ N(0; 30) rpm

Initial Condition: Time t=0 →

Number of Particles: Np =1000

00 =x

0.15 0.2 0.25 0.3
0

5

10

15

20

25

30

Strain

 

 

pdf estimate

true

meas

x

Time Elongation Measure

500 0.2411% 

Estimate at

time 500

State mean



Degradation state estimate in practice

( )
( )( )nkk K

TR

Q
Axx

2

20

10

1 -exp 


+










+
+= −

n=6

A= 7.5e-3 %/(MPan*day)

Q: Activation energy = 290000 J/mol

R: Ideal gas constant = 8.31 J/(mol*K)

K=0. 0011 MPa

T0 = 1100 K

θ0 = 3000 rpm

ω1~ N(0; 11) K

ω2~ N(0; 30) rpm

Initial Condition: Time t=0 →

Number of Particles: Np =1000

00 =x

x
0.85 0.9 0.95 1
0

5

10

15

20

25

30

x

Time Elongation Measure

500 0.2411% 

1000 0,4600%

1500 0,7129%

2000 0,8938%

Estimate at

time 2000

0.15 0.2 0.25 0.3
0

5

10

15

20

25

30

Strain

 

 

pdf estimate

true

meas

State mean



o Particle filtering for degradation state 

estimate

oThe intuitive representation 

oState estimate in practice

oDetailed analytical approach to the problem

oThe pseudocode



64

Basic Idea: Importance sampling

OBJECTIVE: ( )kk zxp :1:0 |

MAIN IDEA: IMPORTANCE SAMPLING

( ) ( )
=

−
sN

i

i

kk

i

kkk xxwzxp
1

:0:0:1:0 | 
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Importance sampling

• Let                      be a probability density function (pdf) difficult to 

sample from, with          easy to evaluate

• Let             be a proposal pdf easy to sample from:

where: 

( ) ( )xxp 

( )xq  
SNi

ix :1=

( ) ( )
=

−
sN

i

ii xxwxp
1



( )
( )i

i
i

xq

x
w


=~


=

=

SNi

i

i
i

w

w
w

,1

~

~

( )x

Importance density
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Example: approximation of the pdf distribution

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

 

 

analytical cdf

approximated cdf

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
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0.4

0.6

0.8

1

 

 

analytical pdf

particles and associated weights

20 Particles

x x

• Particles sampled from:  q(x)=U[0,5]

• Corresponding weight obtained from:  
( )
( )

( )
5/1

~
i

i

i
i x

xq

x
w


==

ix

iw

( )x

න
−∞

𝑥

𝑝 𝜉 𝑑𝜉
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Example: approximation of the pdf distribution
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analytical cdf

approximated cdf
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analytical pdf

particles and associated weights

20 Particles
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500 Particles

( )x
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Particle Filter: Estimate of the posterior

In practice:

• Sample Ns particles from

• Compute weights from:

( )
( )k

i

k

k

i

ki

k
zxq

zxp
w

:1:0

:1:0

|

|


( ) ( )
=

−
sN

i

i

kk

i

kkk xxwzxp
1

:0:0:1:0 | 

( )kk zxq :1:0 |

Arbitrarily chosen
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Sequential Importance Sampling

( ) ( ) ( )1:11:0:11:0:1:0 |,|| −−−= kkkkkkk zxqzxxqzxq

Known from

previous time step

Arbitrarily chosen

i

k

ii xxx 110 ,...,, −
Sample at time k-1:

i

k

i

k

ii xxxx ,,...,, 110 −
Sample at time k:                                  

( )kkk zxxq :11:0 ,| −from
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Particle Filter: Estimate of the posterior

In practice:

• Sample Ns particles from

• Compute weights from:

( )
( )

( )
( ) ( )1:11:0:11:0

:1:0

:1:0

:1:0

|,|
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k
zxqzxxq

zxp

zxq

zxp
w

( ) ( )
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−
sN

i

i
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i

kkk xxwzxp
1

:0:0:1:0 | 

( ) ( ) ( )1:11:0:11:0:1:0 |,|| −−−= kkkkkkk zxqzxxqzxq

?
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Recursive formula for ( )k

i

k zxp :1:0 |

( )
( ) ( )

const

zxzpzxp
zxp kkkkk

kk
1:1:01:1:0

:1:0

,||
| −−=

• Bayes Rule
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Recursive formula for ( )k

i

k zxp :1:0 |

( )
( ) ( )

( ) ( ) ( )
const

zxzpzxpzxxp

const

zxzpzxp
zxp

kkkkkkkk

kkkkk
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1:1:01:11:01:11:0

1:1:01:1:0
:1:0
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−−−−−
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=

=

(conditional probability formula)

( ) ( ) ( )1:11:01:11:01:11:0 |,||,

)()|(),(

−−−−−− =

=

kkkkkkkk zxpzxxpzxxp
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Recursive formula for ( )k

i

k zxp :1:0 |

( )
( ) ( )

( ) ( ) ( )

( ) ( ) ( )
const

xzpzxpxxp

const

zxzpzxpzxxp

const

zxzpzxp
zxp
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:01:11:01:0

1:1:01:11:01:11:0

1:1:01:1:0
:1:0
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|
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−−

=

=

=

(observational independence)



74

Recursive formula for ( )k

i

k zxp :1:0 |
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( ) ( )

( ) ( ) ( )

( ) ( ) ( )
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( ) ( )

const

xxpxzp
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const

xzpzxpxxp

const
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zxzpzxp
zxp
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1:0:0
1:11:0
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|
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|

−
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=

=

=

=

Rearrangement
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Recursive formula for ( )k

i

k zxp :1:0 |
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( ) ( ) ( ) ( )1:11:01:1:0 |||| −−− kkkkkkkk zxpxxpxzpzxp

(Markov model)
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( )
( )

( ) ( ) ( )
( ) ( )

( ) ( )
( )

i

k

k

i

k

i

k

i

k

i

k

i

kk

k

i

kk

i

k

i

k

k

i

k

i

k

i

k

i

kk

k

i

k

k

i

ki

k w
zxxq

xxpxzp

zxqzxxq

zxpxxpxzp

zxq

zxp
w 1

:11:0

1

1:11:0:11:0

1:11:01

:1:0

:1:0

,|

||

|,|

|||

|

|
−

−

−

−−−

−−− =

Weight updating equation – Sequential 

Importance Sampling (SIS)

• Where were we?

▪ SLIDE 62:

▪ SLIDE 67: 
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( ) ( ) ( )1:11:0:11:0:1:0 |,|| −−−= kkkkkkk zxqzxxqzxq

( ) ( ) ( ) ( )1:11:01:1:0 |||| −−− kkkkkkkk zxpxxpxzpzxp
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A possible choice for 

MOST POPULAR CHOICE

( ) ( )1:11:0 |,| −− = kkkkk xxpzxxq

( ) ( )
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1
1 −
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Advantage:

➢ easy to implement (both sampling and evaluation of weights)

Drawbacks:

➢ state-space explored without knowledge of observations

➢ degeneracy phenomenon

( )kkk zxxq :11:0 ,| −

Easy! We know the 

Physical model of the 

degradation process

Easy! We know 

the measurement 

equation
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SIS: degeneracy problem

w

Time 19

w

Time 10

w

Time 1

Time 20

w20
i

w

Time 19

w

Time 10

w

Time 1

Time 0

w1
i

Variance of the weights can only increase 

over time: 

Weight distribution becomes progressively

more skewed

Large effort in updating particles whose

contribution to final estimate is almost 0

Resampling Algorithm

( )i

kk

i

k

i

k xzpww |1−=



Bootstrap resampling procedure 

BOOTSTRAP RESAMPLING WITH REPLACEMENT

j

kw

Resampled index

Cdf (weights)
1

j

Uniform
distribution

1

0
p(i)

( ) i

k

i

k

j

k wxxp ==*
l

kw

• Reduce number of samples with low weights and increase number of

samples with large weights

• Set of unequally weighted samples → set of equally weighted particles

    ss N

js

j

k

N

i

i

k

i

k Nxwx
1

*

1
/1,,

==
→



o Particle filtering for degradation state 

estimate

oThe intuitive representation 

oState estimate in practice

oDetailed analytical approach to the problem

oThe pseudocode



Sampling Importance Resampling (SIR) PF

     k

N

i

i

k

i

k

N

i

i

k

i

k zwxwx
ss

,,PF-SIR,
1111 =−−=

=

…

For i = 1: Ns

- Sample:      using         and 

- Assign the particles a weight: ( )i

kk

i

k

i

k xzpww |~
1−=

End For

- Normalize the weights: 
=

=
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i

k

i
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i

k www
1

~~
For i = 1: Ns

End For

i

kx i

kx 1− ( )11, −−= kkkk xfx 



…
- = RESAMPLE   sN
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k wx
1
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- Compute estimates of interest:

• Posterior mean:

• Posterior variance:
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End SIR-PF

• Bootstrap sample the system states (with replacement)

• Update the weights: s

j

k Nw 1* =

Sampling Importance Resampling (SIR) PF

  sN
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j

k Nwx
1

** /1,
=
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o Model-based prognostics

o Particle filtering for degradation state estimate

o Particle filtering for RUL estimate 

o Applications

➢ Maintenance planning

➢ Prediction of the remaining useful life of electrolyte capacitors

➢ Prediction of the remaining useful life of batteries

Outline



Estimation Prediction
ku kz ( )kk zxp :1|

RUL

xr

rku :1+

The forecasting problem

Information available:

• Estimate of the pdf of the state at the current time (from PF):                    

in the form of

• future (random) distribution of the operational/external conditions:

• physical model of the degradation process

• Estimate

• Estimate RUL   

( )kk zxp :1|

( )rrr up ,
( )11, −−= kkkk xfx 

( )kr zxp :1|

  sN

i

i

k

i

k wx
1

,
=

Component



RUL estimate: Method

• Prediction of the degradation state one time step ahead:

( )i

k

i

k

i

k xfx ,1 =+

Prediction

stage

( )kk zxp :1|

 i
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i

k wx ,  i

k

i

k wx ,1+

• Prediction of the degradation state 2 time steps ahead
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Prediction

stage
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Prediction
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k wx ,2+

( )kk zxp :11 |+
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( )kk zxp :12 |+



RUL estimate: Method

• Prediction stage at l=r-k time step ahead:

• RUL estimate

Particles

k r=k+l

x

thx
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i

r wx ,:0
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=
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i
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i

kk rulwlur
1

ˆ



RUL estimate in practice

Time Elongation Measure

500 0.2411% 
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RUL estimate in practice

Time Elongation Measure

500 0.2411% 

1000 0,4600%

1500 0,7129

2000 0,8938
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RUL estimate in practice: performance

• Another test case: one creep elongation measure every month

• Test over Ntst = 250 different creep growth trajectories

• Mean Relative Absolute Error:

• Coverage:


=

=
−

=
tstN

i i
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o Model-based prognostics

o Particle filtering for degradation state estimate

o Particle filtering for RUL estimate 

o Applications

➢ Maintenance planning

➢ Prediction of the remaining useful life of electrolyte capacitors

➢ Prediction of the remaining useful life of batteries

Outline



oApplications

➢Maintenance planning

➢Prediction of the remaining useful life of batteries



x

d

d*

0

The degrading component

Component: structure

Degradation mechanism: crack propagation

Degradation Indicator: crack depth, x (not directly measurable)

Threshold of failure: xth

thx



Physical model of the degradation process

Paris-Erdogan model

( )
ndx

e C x
dN

 = ( )1

1 1
k

n

k k kx x e C x N
 −

− −= + 
Discretization of 

the dynamics

x

d

d*

0

➢ x = hidden degradation state (crack depth)

➢  = independent Gaussian process noise

➢ N = load cycle → time k

➢ C,  and n = constants related to the material properties



Measurement equation

1

0 11 exp ln k
k k

k

x
z d

d x
  

−

  
= − + +  

−  

Logit model: non-destructive
ultrasonic inspections

➢ zk = degradation observation (vibration measurements)

➢ k = independent non additive measurement noise

➢ 0, 1 = constants related to the material properties



Objectives

• Degradation state (crack depth) estimate at the present time

• RUL prediction

• Maintenance planning



Crack growth evolution

F. Cadini, E. Zio, D. Avram “Monte Carlo-based filtering for fatigue crack growth estimation”, Probabilistic Engineering Mechanics, 24, n. 3, pp.
367-373, 2009

( )0:k kp x z



• 5 measurements at: k1 = 100; k2 = 200; k3 = 300; k4 = 400; k5 = 500
• 5000 particles



Crack growth evolution

F. Cadini, E. Zio, D. Avram “Monte Carlo-based filtering for fatigue crack growth estimation”, Probabilistic Engineering Mechanics, 24, n. 3, pp.
367-373, 2009

( )0:k kp x z



• 5 measurements at: k1 = 100; k2 = 200; k3 = 300; k4 = 400; k5 = 500
• 5000 particles



RUL estimate

• 5 measurements at: k1 = 100; k2 = 200; k3 = 300; k4 = 400; k5 = 500

• 5000 particles

• True failure time is 631

p(tf|z1:k)



Maintenance: ultimate goal of PHM

Maintenance 
Intervention

Unplanned

Corrective

Replacement or repair 
of failed units

Planned

Scheduled

Perform 
inspections, and 
possibly repairs, 

following a 
predefined 
schedule

Condition- based

Monitor the health 
of the system and 

then decide on 
repair actions 
based on the 

degradation level 
assessed

Predictive

Predict the 
Remaining Useful 
Life (RUL) of the 
system and then 
decide on repair 
actions based on 

the predicted RUL

Particle 
Filtering



[*] A.H. Christer, W. Wang, J.M. Sharp, A state space condition monitoring model for furnace erosion prediction and replacement, European Journal
of Operational Research, Vol. 101, 1997, pp. 1-14

Predictive maintenance

• A cost model of literature[*] is considered for the quantification of
the costs driving the maintenance strategy

• Hypotheses:

➢ Inspection procedure: periodic inspections are performed at given
scheduled times. Results of the inspection are z1:k

➢ Maintenance actions: either replacement upon failure (cost cf) or
preventive replacement (cost cp)

• Decision-making policy: at any time a decision can be made on whether

to replace the component or to further extend its life, albeit assuming the risk
of a possible failure



Predictive maintenance planning

• Present time: k

• Replacement time =k+l

• Expected cost per unit time, C(k,l) (evaluated at the present time k, assuming
that the component will be replaced at time k+l)

C(k,l)= f(cp, cf, P(RUL<l))

•

• Among all future time steps l, the best time to replacement lmin is the one
which minimizes:

C(k,l)= f(cp, cf, P(RUL<l))

Particle filter!!P(RUL<l)



• Measurements at time steps: k1 = 100, k2 = 200, k3 = 300, k4 = 400

• Number of particles: 5000

• TRUE FAILURE TIME = 452

Expected cost per unit time

k1=100

k2=200

k3=300

k4=400

F. Cadini, E. Zio “Model-based Monte Carlo state estimation for condition-based component replacement”, Reliability Engineering and System Safety, doi:10.1016/j.ress.2008.08.003, 
94, n. 3, pp. 752-758, 2009

Predictive maintenance: results

Time

step (k)
Kmin

100 505

200 516

300 423

400 434



oApplications

➢Maintenance planning

➢Prediction of the remaining useful life of batteries



Reference Case Study

Component: Li-on Battery

Objective: RUL prediction

Remaining Useful Life

C
a
p

a
ci

ty

Failure threshold

RUL

present time t

Predicted 

failure time

104



,

, Relevance of Li-ion Battery

Issues:

➢ Most common used energy supply device

➢ Related with many safety critical functions

➢ Potential risk: overheat, expand, fire, explosion

105
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Reference Case Study

Capacity

t

•Laboratory  environment •Reality:

Failure threshold

( )2

1 2 3 4( ) exp( ) exp( ) 0, pC t p p t p p t N =  +  +

p1=  0.88,  p2=-0.001
p3= -0.04,  p4=0.36

p1=??
p2=??
p3=??
p4=??

Laboratory

Reality

Unknown but fixed



Prognostics: challenges (3) 107

Information available:
•A model of the degradation process; 

unknown parameters p1,p2,p3,p4!!
• Current degradation trajectory 

( )2

1 2 3 4( ) exp( ) exp( ) 0, pq t p p t p p t N =  +  +
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