

Fault Prognostics

Prof. Piero Baraldi

Prognostics and Health Management (PHM): what is it?

Piero Baraldi

- Introduction to prognostics
- Model-based prognostics
 - Particle filtering for RUL estimate
- o Applications
 - Maintenance planning
 - Prediction of the remaining useful life of electrolyte capacitors
 - Prediction of the remaining useful life of batteries

\circ Introduction to prognostics

- Model-based prognostics
 - Particle filtering for RUL estimate
- Applications
 - Maintenance planning
 - Prediction of the remaining useful life of electrolyte capacitors
 - Prediction of the remaining useful life of batteries

Evolution to... failure

Our objectives:

1. Estimate the component degradation at a the present time t = k

Evolution to... failure

Our objectives:

- 1. Estimate the component degradation at a the present time t = k
- 2. Estimate the component degradation at a future time r > k

Evolution to... failure

Our objectives:

- 1. Estimate the component degradation at a the present time t = k
- 2. Estimate the component degradation at a future time r > k
- 3. Estimate the component Remaining Useful Life (RUL) = $t_f k$

Component: turbine blade Degradation mechanism: creeping

Prognostics: an example

Component: turbine blade Degradation mechanism: creeping

Degradation indicator: blade elongation $x(t) = \frac{\text{Length}(t) - \text{initial length}}{\text{initial length}}$

Our objectives:

- 1. Estimate the blade degradation at the present time t = k
- 2. Estimate the blade degradation at a future time r > k
- 3. Estimate the component Remaining Useful Life (RUL)

Sources of information for prognostics

• Life durations of a set of similar components which have already failed:

 $T_1, T_2, ..., T_n$

Failure time (years)

• Life durations of a set of similar components which have already failed

11

• Threshold of failure: x^{th}

- Life durations of a set of similar components which have already failed
- Threshold of failure: x^{th}

«A blade is discarded when the elongation, *x*, reaches 1.5%»

- Life durations of a set of similar components which have already failed
- Threshold of failure
- A sequence of observations collected from the degradation initiation to the present time (current degradation trajectory): *z*₁, *z*₂ ..., *z*_k

- Life durations of a set of similar components which have already failed
- Threshold of failure
- A sequence of observations collected from the degradation initiation to the present time (current degradation trajectory): z₁, z₂ ..., z_k

Elongation measurements = past evolution of the degradation indicator

- Life durations of a set of similar components which have already failed
- Threshold of failure
- A sequence of observations collected from the degradation initiation to the present time (current degradation trajectory)
- Degradation trajectories of similar components

- Life durations of a set of similar components which have already failed
 Threshold of failure
- A sequence of observations collected from the degradation initiation to the present time (current degradation trajectory)
- Degradation trajectories of similar components
- Information on external/operational conditions (past present future)

Past, present and future time evolution of:

 $u_1, u_2, \dots, u_k, u_{k+1}, \dots$

- Life durations of a set of similar components which have already failed
- Threshold of failure
- A sequence of observations collected from the degradation initiation to the present time (current degradation trajectory)
- Degradation trajectories of similar components
- Information on external/operational conditions (past present future)

Past, present and future time evolution of:

 $u_1, u_2, \dots, u_k, u_{k+1}, \dots$

- $u_1 = T = temperature$
- $u_2 = \theta_r$ = rotational speed

- Life durations of a set of similar components which have already failed
- Threshold of failure
- A sequence of observations collected from the degradation initiation to the present time (current degradation trajectory)
- Degradation trajectories of similar components
- Information on external/operational conditions (past present future)
- Measurement equation

- Life durations of a set of similar components which have already failed
- Threshold of failure
- A sequence of observations collected from the degradation initiation to the present time (current degradation trajectory)

- Degradation trajectories of similar components
- Information on external/operational conditions (past present future)
- Measurement equation

Sources of information for prognostics

- Life durations of a set of similar components which have already failed •
- Threshold of failure •
- A sequence of observations collected from the degradation initiation to the ٠ present time (current degradation trajectory)
- Degradation trajectories of similar components •
- Information on external/operational conditions (past present future) •
- Measurement equation •

Guided

wave probe

- Life durations of a set of similar components which have already failed
- Threshold of failure
- A sequence of observations collected from the degradation initiation to the present time (current degradation trajectory)
- Degradation trajectories of similar components
- Information on external/operational conditions (past present future)
- Measurement equation
- A physics-based model of the degradation process

$$x_k = f_k(x_{k-1}, \dots, x_1, u_{k-1}, \omega_{k-1})$$

- Life durations of a set of similar components which have already failed
- Threshold of failure
- A sequence of observations collected from the degradation initiation to the present time (current degradation trajectory)
- Degradation trajectories of similar components
- Information on external/operational conditions (past present future)
- Measurement equation
- A physics-based model of the degradation process

Prognostics

- o What is it?
- Prognostics in practice
- Sources of information

Prognostic approaches

Prognostic approaches

Introduction to prognostics

- Model-based prognostics
- o Particle filtering for degradation state estimate
- Particle filtering for RUL estimate
- o Applications
 - Maintenance planning
 - Prediction of the remaining useful life of electrolyte capacitors
 - Prediction of the remaining useful life of batteries

Model-Based prognostics: information available

- *k* Present time
- *u* External/operating conditions
- *z* Observations
- *x* Degradation state

- 1. The filtering problem: to estimate the degradation state, x_k , at the present time
- 2. The forecasting problem:
 - to predict the degradation state, x_r , at a future time r

Prognostics = Filtering + Forecasting

to predict the component RUL

Model-based prognostics

- Particle filtering for degradation state estimate
- o Particle filtering for RUL estimate
- Applications
 - Maintenance planning
 - Prediction of the remaining useful life of electrolyte capacitors
 - Prediction of the remaining useful life of batteries

Model-based prognostics:

• The filtering problem

The forecasting problem

 χ Degradation state

• Physical model of the degradation process

$$x_k = f_k(x_{k-1}, \omega_{k-1})$$

- > x = hidden degradation state
- \blacktriangleright ω = random **process noise**
- > f = physical model of the degradation process (non-linear dynamic law)
- > k = time step index
- Measurement equation:
 - υ = random measurement noise
 - > h = non-linear measurement equation

Time-discrete, hidden Markov process

$$z_k = h(x_k, v_k)$$

The filtering problem in practice (Physical model of the degradation process)

x = hidden degradation state (blade elongation)

- > T_0, θ_0 = operating conditions
- ▶ $\omega_1, \omega_2, \omega_3$ = random process noises $\omega_i \propto N(0, \sigma_i^2)$
- \succ A, K and n = constants related to the material properties

$$\frac{dx}{dt} = A \cdot \exp\left(-\frac{Q}{R \cdot (T_0 + \omega_1)}\right) \cdot \left(K \cdot (\theta_0 + \omega_2)^2 + \omega_3\right)^n$$

Norton law for creep growth

$$x_{k} = x_{k-1} + A \cdot \exp\left(-\frac{Q}{R \cdot (T_{0} + \omega_{1})}\right) \cdot \left(K \cdot (\theta_{0} + \omega_{2})^{2} + \omega_{3}\right)^{n}$$

The filtering problem in practice (Measurement Equation)

$$z_k = h(x_k, v_k) = x_k + v_k$$

- \succ z_k = degradation observation (measure of the creep elongation)
- \succ v_k = gaussian measurement noise

OBJECTIVE: $p(x_k | z_{1:k})$

- Interpretation of the bayesian probability $p(x_k | z_{1:k})$?
 - conditional on the background knowledge: the noisy measurements $z_{1:k} = z_1, z_2, ..., z_k$

 $p(x_k \mid z_{1\cdot k})$

> state **mean** (estimate) $\hat{x}_k = \int p(x_k \mid z_{1:k}) \cdot x_k \, dx_k$

state variance (uncertainty)

> state **percentiles** \hat{x}_5, \hat{x}_{95}

• Let us assume that we know $p(x_{k-1} | z_{1:k-1})$ at time k-1

$$p(x_{k-1} | z_{1:k-1})$$
Prediction
$$p(x_k | z_{1:k-1})$$
stage
$$\uparrow$$

$$x_k = f(x_{k-1}, \omega_{k-1})$$

• Let us assume that we know $p(x_{k-1} | z_{1:k-1})$ at time *k*-1

$$\xrightarrow{p(x_{k-1} \mid z_{1:k-1})} \operatorname{Prediction} \xrightarrow{p(x_k \mid z_{1:k-1})} \operatorname{stage}$$

• Prediction stage:

• Let us assume that we know $p(x_{k-1} | z_{1:k-1})$ at time *k*-1

$$\xrightarrow{p(x_{k-1} \mid z_{1:k-1})} \text{Prediction} \xrightarrow{p(x_k \mid z_{1:k-1})} \text{stage}$$

Prediction stage: Chapman-Kolmogorov equation

The sequential solution (II)

Update stage: Bayes Rule

From the normalization

$$\int p(x_k \mid z_{1:k}) dx_k = 1 \quad \longrightarrow \quad$$

$$const = \int p(z_k \mid x_k) \cdot p(x_k \mid z_{1.k-1}) dx_k$$

The sequential solution: What is difficult in practice?

• The integrals are difficult to solve analytically!

Chapman-Kolmogorov equation

$$p(x_k \mid z_{1:k-1}) = \int p(x_k \mid x_{k-1}) p(x_{k-1} \mid z_{1:k-1}) dx_{k-1}$$

$$p(x_k \mid z_{1:k}) = \frac{p(z_k \mid x_k)}{\int const} p(x_k \mid z_{1:k-1})$$

Bayes Rule

$$const = \int p(z_k \mid x_k) \cdot p(x_k \mid z_{1:k-1}) dx_k$$

Kalman Filter

Exact only for linear systems and additive Gaussian noises

PARTICLE FILTERING

Numerical solution which, in the limit, tends to the <u>exact</u> posterior pdf:

$$p(x_k \mid z_{1:k})$$

- Model-based prognostics
- Particle filtering for degradation state estimate
- \circ $\,$ Particle filtering for RUL estimate $\,$
- o Applications
 - Maintenance planning
 - Prediction of the remaining useful life of electrolyte capacitors
 - Prediction of the remaining useful life of batteries

$\,\circ\,$ Particle filtering for degradation state estimate

•The intuitive representation

•State estimate in practice

Detailed analytical approach to the problem

The pseudocode

- Time 0, we approximate $p(x_0)$ in the form of a set of N_s random samples x_0^i with associated weights $w_0^i = \frac{1}{N}$
- $p(x_0)$ is approximated by a population of particles: $\{x_0^i, w_0^i\}, i = 1, ..., N_s$ with: $\sum_{i=1}^{N_s} w_0^i = 1$

Prediction stage for particle i

- 1. Sample a value of $\omega_1^i, \omega_2^i, \omega_3^i$
- 2. Apply:

$$x_1^i = x_0^i + A \exp\left(-\frac{Q}{R(T_0 + \omega_1^i)}\right) \left(K(\theta_0 + \omega_2^i)^2 + \omega_3^i\right)^n$$

$$x_1^i = x_0^i + A \exp\left(-\frac{Q}{R(T_0 + \omega_1^i)}\right) \left(K\left(\theta_0 + \omega_2^i\right)^2 + \omega_3^i\right)^n$$

• Time 1: measure $z_1 = 0.058$ becomes available \rightarrow particle weights' update

• Time 1: measure z_1 becomes available

• Compute likelihood of the particles: $p(z_1 | x_1^i)$

• Time 1: measure z_1 becomes available

• Compute likelihood of the particles: $p(z_1 | x_1^i)$

•
$$\widetilde{w}_1^i = w_0^i \cdot p(z_1 \mid x_1^i)$$

- Time 1: measure z_1 becomes available
- Compute likelihood of the particles: $p(z_1 | x_1^i)$

•
$$\widetilde{w}_1^i = w_0^i \cdot p(z_1 \mid x_1^i)$$
 $w_1^i = \frac{\widetilde{w}_1^i}{\sum_{i=1}^N \widetilde{w}_1^i}$

The intuitive representation

 Repeat prediction and update stage each time a new measure becomes available

57

• Time k: measure z_k becomes available \rightarrow particle weight modification

$$\left\{x_k^i, w_k^i\right\} \quad \longleftrightarrow \quad p(x_k \mid z_{1:k})$$

degradation state mean (estimate)

$$\hat{x}_k = \sum_{i=1}^{N_s} w_k^i x_k^i$$

degradation state variance (uncertainty)

$$\hat{\sigma}_k^2 = \sum_{i=1}^{N_s} w_k^i \left(x_k^i - \hat{x}_k \right)^2$$

Particle filtering for degradation state estimate The intuitive representation

•State estimate in practice

Detailed analytical approach to the problem
 The pseudocode

Degradation state estimate in practice

$$x_k = x_{k-1} + A \exp\left(-\frac{Q}{R(T_0 + \omega_1)}\right) \left(K(\theta_0 + \omega_2)^2\right)^n$$

Initial Condition: Time
$$t=0 \rightarrow x_0 = 0$$

Number of Particles: $N_p = 1000$

Time	Elongation Measure
500	0.2411%

Degradation state estimate in practice

$$x_k = x_{k-1} + A \exp\left(-\frac{Q}{R(T_0 + \omega_1)}\right) \left(K(\theta_0 + \omega_2)^2\right)^n$$

Initial Condition: Time $t=0 \rightarrow x_0 = 0$ Number of Particles: $N_p = 1000$

Time	Elongation Measure
500	0.2411%
1000	0,4600%
1500	0,7129%
2000	0,8938%

n=6 A= 7.5e⁻³ %/(MPa^{n*}day) Q: Activation energy = 290000 J/mol *R*: Ideal gas constant = 8.31 J/(mol*K) *K*=0. 0011 MPa T_0 = 1100 K θ_0 = 3000 rpm $\omega_1 \sim N(0; 11) K$ $\omega_2 \sim N(0; 30)$ rpm

POLITECNICO DI MILANO

Particle filtering for degradation state estimate

oThe intuitive representation

•State estimate in practice

Detailed analytical approach to the problem

 $_{\circ}$ The pseudocode

OBJECTIVE:
$$p(x_{0:k} | z_{1:k})$$

- Let $p(x) \propto \pi(x)$ be a probability density function (pdf) difficult to sample from, with $\pi(x)$ easy to evaluate
- Let q(x) be a proposal pdf easy to sample from: $\{x^i\}_{i=1:N_s}$

Importance density

$$p(x) \approx \sum_{i=1}^{N_s} w^i \delta(x - x^i)$$

where:

$$\widetilde{w}^{i} = \frac{\pi(x^{i})}{q(x^{i})}$$
 $w^{i} = \frac{\widetilde{w}^{i}}{\sum_{i=1,N_{S}} \widetilde{w}^{i}}$

Example: approximation of the pdf distribution

- Particles sampled from: q(x)=U[0,5]
- Corresponding weight obtained from:

$$\widetilde{w}^{i} = \frac{\pi(x^{i})}{q(x^{i})} = \frac{\pi(x^{i})}{1/5}$$

Example: approximation of the pdf distribution

$$p(x_{0:k} \mid z_{1:k}) \approx \sum_{i=1}^{N_s} w_k^i \delta(x_{0:k} - x_{0:k}^i)$$

Arbitrarily chosen

In practice:

- Sample N_s particles from $q(x_{0:k} | z_{1:k})$
- Compute weights from:

$$w_k^i \propto rac{p(x_{0:k}^i \mid z_{1:k})}{q(x_{0:k}^i \mid z_{1:k})}$$

$$p(x_{0:k} \mid z_{1:k}) \approx \sum_{i=1}^{N_s} w_k^i \delta(x_{0:k} - x_{0:k}^i)$$

In practice:

- Sample N_s particles from $q(x_{0:k} | z_{1:k}) = q(x_k | x_{0:k-1}, z_{1:k})q(x_{0:k-1} | z_{1:k-1})$
- Compute weights from:

$$w_{k}^{i} \propto \frac{p(x_{0:k}^{i} \mid z_{1:k})}{q(x_{0:k}^{i} \mid z_{1:k})} = \frac{p(x_{0:k-1}^{i} \mid z_{1:k})}{q(x_{k}^{i} \mid x_{0:k-1}^{i}, z_{1:k})q(x_{0:k-1}^{i} \mid z_{1:k-1})}$$

$$p(x_{0:k} | z_{1:k}) = \frac{p(x_{0:k} | z_{1:k-1})p(z_k | x_{0:k}, z_{1:k-1})}{const}$$

• Bayes Rule

Recursive formula for $p(x_{0:k}^i | z_{1:k})$

Recursive formula for $p(x_{0:k}^i | z_{1:k})$

Recursive formula for $p(x_{0:k}^i | z_{1:k})$

$$p(x_{0:k} | z_{1:k}) = \frac{p(x_{0:k} | z_{1:k-1})p(z_k | x_{0:k}, z_{1:k-1})}{const}$$

$$= \frac{p(x_k | x_{0:k-1}, z_{1:k-1})p(x_{0:k-1} | z_{1:k-1})p(z_k | x_{0:k}, z_{1:k-1})}{const}$$

$$= \frac{p(x_k | x_{0:k-1})p(x_{0:k-1} | z_{1:k-1})p(z_k | x_{0:k})}{const}$$

$$= p(x_{0:k-1} | z_{1:k-1})\frac{p(z_k | x_{0:k})p(x_k | x_{0:k-1})}{const}$$

Rearrangement

Recursive formula for $p(x_{0:k}^i | z_{1:k})$

$$p(x_{0:k} | z_{1:k}) = \frac{p(x_{0:k} | z_{1:k-1})p(z_{k} | x_{0:k}, z_{1:k-1})}{const}$$

$$= \frac{p(x_{k} | x_{0:k-1}, z_{1:k-1})p(x_{0:k-1} | z_{1:k-1})p(z_{k} | x_{0:k}, z_{1:k-1})}{const}$$

$$= \frac{p(x_{k} | x_{0:k-1})p(x_{0:k-1} | z_{1:k-1})p(z_{k} | x_{0:k})}{p(z_{k} | x_{0:k-1})!}$$

$$= p(x_{0:k-1} | z_{1:k-1}) \frac{p(z_{k} | x_{k})p(x_{k} | x_{k-1})}{const}$$
(Markov model)
$$= p(x_{0:k-1} | z_{1:k-1}) \frac{p(z_{k} | x_{k})p(x_{k} | x_{k-1})}{const}$$

Weight updating equation – Sequential Importance Sampling (SIS)

• Where were we?

• SLIDE 62:

$$w_{k}^{i} \propto \frac{p(x_{0:k}^{i} | z_{1:k})}{q(x_{0:k}^{i} | z_{1:k})}$$

$$q(x_{0:k} | z_{1:k}) = q(x_{k} | x_{0:k-1}, z_{1:k})q(x_{0:k-1} | z_{1:k-1})$$
• SLIDE 67:

$$p(x_{0:k} | z_{1:k}) \propto p(z_{k} | x_{k})p(x_{k} | x_{k-1})p(x_{0:k-1} | z_{1:k-1})$$

$$\frac{p(x_{0:k}^{i} | z_{1:k})}{q(x_{0:k}^{i} | z_{1:k})} \propto \frac{p(z_{k} | x_{k}^{i})p(x_{k}^{i} | x_{k-1}^{i})p(x_{0:k-1} | z_{1:k-1})}{q(x_{k}^{i} | x_{0:k-1}^{i}, z_{1:k})q(x_{0:k-1}^{i} | z_{1:k-1})} = \frac{p(z_{k} | x_{k}^{i})p(x_{k}^{i} | x_{k-1}^{i})}{q(x_{k}^{i} | x_{0:k-1}^{i}, z_{1:k})}w_{k-1}^{i}$$

 $w_k^i \propto$

$$MOST POPULAR CHOICE Eas
Physical
$$q(x_{k} | x_{0:k-1}, z_{1:k}) = p(x_{k} | x_{k-1})$$

$$\widetilde{w}_{k}^{i} = w_{k-1}^{i} \frac{p(z_{k} | x_{k}^{i})p(x_{k}^{i} + x_{k-1}^{i})}{q(x_{k}^{i} + x_{0:k-1}^{i}, z_{k})} = w_{k-1}^{i} p(z_{k} | x_{k}^{i})$$

$$W_{k-1}^{i} = w_{k-1}^{i} \frac{p(z_{k} | x_{k}^{i})p(x_{k}^{i} + x_{k-1}^{i})}{q(x_{k}^{i} + x_{0:k-1}^{i}, z_{k})} = w_{k-1}^{i} p(z_{k} | x_{k}^{i})$$$$

Easy! We know the Physical model of the degradation process

> Easy! We know the measurement equation

Advantage:

> easy to implement (both sampling and evaluation of weights)

Drawbacks:

- state-space explored without knowledge of observations
- degeneracy phenomenon

SIS: degeneracy problem

- Reduce number of samples with low weights and increase number of samples with large weights
- Set of unequally weighted samples \rightarrow set of equally weighted particles

$${x_k^i, w_k^i}_{i=1}^{N_s} \to {x_k^{j^*}, 1/N_s}_{j=1}^{N_s}$$

POLITECNICO DI MILANO

Particle filtering for degradation state estimate

•The intuitive representation

•State estimate in practice

Detailed analytical approach to the problem

•The pseudocode

$$\left[\left\{ x_{k}^{i}, w_{k}^{i} \right\}_{i=1}^{N_{s}} \right] = \text{SIR} - \text{PF}\left[\left\{ x_{k-1}^{i}, w_{k-1}^{i} \right\}_{i=1}^{N_{s}}, z_{k} \right]$$

For
$$i = 1$$
: N_s
- Sample: x_k^i using x_{k-1}^i and $x_k = f_k(x_{k-1}, \omega_{k-1})$

- Assign the particles a weight: $\widetilde{w}_k^i = w_{k-1}^i p(z_k | x_k^i)$ End For

For i = 1: N_s - Normalize the weights: $w_k^i = \widetilde{w}_k^i / \sum_{i=1}^{N_s} \widetilde{w}_k^i$ End For

. . .

$$-\left[\left\{x_{k}^{j*}, w_{k}^{j*}=1/N_{s}\right\}_{i=1}^{N_{s}}\right] = \mathsf{RESAMPLE} \left[\left\{x_{k}^{i}, w_{k}^{i}\right\}_{i=1}^{N_{s}}\right]$$

- Bootstrap sample the system states (with replacement)
- Update the weights: $w_k^{j^*} = 1/N_s$
- Compute estimates of interest:
 - Posterior mean:

$$\hat{x}_k = \sum_{i=1}^{N_s} w_k^i x_k^i$$

• Posterior variance:

$$\hat{\sigma}_k^2 = \sum_{i=1}^{N_s} w_k^i \left(x_k^i - \hat{x}_k \right)^2$$

End SIR-PF

- Model-based prognostics
- Particle filtering for degradation state estimate
- \circ $\,$ Particle filtering for RUL estimate $\,$
- \circ Applications
 - Maintenance planning
 - Prediction of the remaining useful life of electrolyte capacitors
 - Prediction of the remaining useful life of batteries

Information available:

- Estimate of the pdf of the state at the current time (from PF): $p(x_k | z_{1:k})$ in the form of $\{x_k^i, w_k^i\}_{i=1}^{N_s}$
- future (random) distribution of the operational/external conditions: $p_r(u_r, \omega_r)$
- physical model of the degradation process $x_k = f_k(x_{k-1}, \omega_{k-1})$
- Estimate $p(x_r | z_{1:k})$
- Estimate RUL

• Prediction of the degradation state one time step ahead:

• Prediction of the degradation state 2 time steps ahead

RUL estimate

$$\hat{rul}_k = \sum_{i=1}^{N_s} w_k^i rul_k^i$$

Time	Elongation Measure
500	0.2411%

POLITECNICO DI MILANO

RUL estimate in practice

POLITECNICO DI MILANO

RUL estimate in practice: performance

• Another test case: one creep elongation measure every month

- Test over N_{tst} = 250 different creep growth trajectories
 - Mean Relative Absolute Error:

$$rMAE = \frac{1}{N_{tst}} \sum_{i=1}^{N_{tst}} \left| \frac{rul_i - r\hat{u}l_i}{rul_i} \right| = 0.150 \pm 0.009$$

• Coverage:

$$Cov = \frac{1}{N_{tst}} \sum_{i=1}^{N_{tst}} c_i; \quad c_i = \begin{cases} 1 & if \quad rul_i \in C_i^{68\%} \\ 0 & if \quad rul_i \notin C_i^{68\%} \end{cases} Cov$$

 $= 0.663 \pm 0.018$

- Model-based prognostics
- Particle filtering for degradation state estimate
- Particle filtering for RUL estimate
- \circ Applications
 - Maintenance planning
 - Prediction of the remaining useful life of electrolyte capacitors
 - Prediction of the remaining useful life of batteries

Applications

Maintenance planning

> Prediction of the remaining useful life of batteries

Component: structure Degradation mechanism: crack propagation Degradation Indicator: crack depth, *x* (not directly measurable) Threshold of failure: *x*th

Physical model of the degradation process

- x = hidden degradation state (crack depth)
- $\blacktriangleright \omega$ = independent Gaussian **process noise**
- > N = load cycle → time k
- \succ C, β and n = constants related to the material properties

Measurement equation

$$z_{k} = d \left[1 - \exp\left(\beta_{0} + \beta_{1} \ln \frac{x_{k}}{d - x_{k}} + \upsilon_{k}\right) \right]^{-1}$$

Logit model: non-destructive ultrasonic inspections

- \succ z_k = degradation observation (vibration measurements)
- \succ v_k = independent non additive **measurement noise**
- > β_0 , β_1 = constants related to the material properties

- Degradation state (crack depth) estimate at the present time
- RUL prediction
- Maintenance planning

Crack growth evolution

- 5 measurements at: $k_1 = 100$; $k_2 = 200$; $k_3 = 300$; $k_4 = 400$; $k_5 = 500$
- 5000 particles

F. Cadini, E. Zio, D. Avram "Monte Carlo-based filtering for fatigue crack growth estimation", Probabilistic Engineering Mechanics, 24, n. 3, pp. 367-373, 2009

POLITECNICO DI MILANO

Crack growth evolution

- 5 measurements at: $k_1 = 100$; $k_2 = 200$; $k_3 = 300$; $k_4 = 400$; $k_5 = 500$
- 5000 particles

F. Cadini, E. Zio, D. Avram "Monte Carlo-based filtering for fatigue crack growth estimation", Probabilistic Engineering Mechanics, 24, n. 3, pp. 367-373, 2009

- 5 measurements at: $k_1 = 100$; $k_2 = 200$; $k_3 = 300$; $k_4 = 400$; $k_5 = 500$
- 5000 particles
- True failure time is 631

Maintenance: ultimate goal of PHM

- A cost model of literature^[*] is considered for the quantification of the costs driving the maintenance strategy
- Hypotheses:
 - > Inspection procedure: periodic inspections are performed at given scheduled times. Results of the inspection are $z_{1:k}$
 - Maintenance actions: either replacement upon failure (cost c_f) or preventive replacement (cost c_p)
- Decision-making policy: at any time a decision can be made on whether to replace the component or to further extend its life, albeit assuming the risk of a possible failure

[*] A.H. Christer, W. Wang, J.M. Sharp, A state space condition monitoring model for furnace erosion prediction and replacement, European Journal of Operational Research, Vol. 101, 1997, pp. 1-14

- Present time: *k*
- Replacement time =*k*+*l*
- Expected cost per unit time, C(k,l) (evaluated at the present time k, assuming that the component will be replaced at time k+l)

 $C(k,l) = f(c_{p'}, c_{f'}, P(RUL < l))$

• Among all future time steps *I*, the best time to replacement *I_{min}* is the one which minimizes:

$$C(k,l) = f(c_{p}, c_{f'} P(RUL < l))$$

Predictive maintenance: results

- Measurements at time steps: $k_1 = 100$, $k_2 = 200$, $k_3 = 300$, $k_4 = 400$
- Number of particles: 5000
- TRUE FAILURE TIME = 452

Time step (<i>k</i>)	K _{min}
100	505
200	516
300	423
400	434

F. Cadini, E. Zio "Model-based Monte Carlo state estimation for condition-based component replacement", Reliability Engineering and System Safety, doi:10.1016/j.ress.2008.08.003, 94, n. 3, pp. 752-758, 2009

POLITECNICO DI MILANO

oApplications

Maintenance planning

Prediction of the remaining useful life of batteries

Component: Li-on Battery

Objective: RUL prediction

Relevance of Li-ion Battery

Issues:

- Most common used energy supply device
- Related with many safety critical functions
- Potential risk: overheat, expand, fire, explosion

Reference Case Study

•Laboratory environment

p ₁ =	0.88,	<i>p</i> ₂ =-0.001
p ₃ =	-0.04,	<i>p</i> ₄ =0.36

•Reality:

p₁=??

*p*₂=??

p₃=??

p₄=??

Unknown but fixed

Prognostics: challenges (3)

and

Information available:

•A model of the degradation process;

$$q(t) = p_1 \exp(p_2 \cdot t) + p_3 \exp(p_4 \cdot t) + N(0, \sigma_p^2)$$

unknown parameters p₁,p₂,p₃,p₄!!

Current degradation trajectory

POLITECNICO DI MILANO

107

References

- P. Baraldi, F. Cadini, F. Mangili, E. Zio, "*Model-based and data-driven prognostics under different available information*", Probabilistic Engineering Mechanics, Vol. 32, pp. 66-79, 2013.
- M. Rigamonti, P. Baraldi, E. Zio, D. Astigarraga, A. Galarza, "*Particle Filter-Based Prognostics for an Electrolytic Capacitor Working in Variable Operating Conditions*", (2016) IEEE Transactions on Power Electronics, 31 (2), pp. 1567-1575.
- Y. Hu, P. Baraldi, F. Di Maio, E. Zio, "A particle filtering and kernel smoothing-based approach for new design component prognostics", Reliability Engineering & System Safety, 134, pp. 19-31, 2015
- F. Cadini, E. Zio, D. Avram *"Monte Carlo-based filtering for fatigue crack growth estimation"*, Probabilistic Engineering Mechanics, **24**, n. 3, pp. 367-373, 2009
- P. Baraldi, F. Mangili, E. Zio, "Investigation of uncertainty treatment capability of model-based and data-driven prognostic methods using simulated data" Reliability Engineering and System Safety, Vol. 112, pp. 94-108, 2013
- F. Cadini, E. Zio "*Model-based Monte Carlo state estimation for condition-based component replacement*", Reliability Engineering and System Safety, doi:10.1016/j.ress.2008.08.003, **94**, n. 3, pp. 752-758, 2009
- A. Doucet, S. Godsill, C. Andrieu, "On Sequential Simulation-Based Methods for Bayesian Filtering", Statistics and Computing, 2000
- A. Doucet, J.F.G. de Freitas and N.J. Gordon, *An Introduction to Sequential Monte Carlo Methods, in Sequential Monte Carlo in Practice,* A. Doucet, J.F.G. de Freitas and N.J. Gordon, Eds., New York: Springer-Verlag, 2001.
- A. Doucet, S. Godsill and C. Andreu, *On Sequential Monte Carlo Sampling Methods for Bayesian Filtering*, Statistics and Computing (2000), Vol 10, pp. 197-208.
- M.S. Arulampalam, S. Maskell, N. Gordon and T. Clapp, A Tutorial on Particle Filters for Online
 Nonlinear/Non-Gaussian Bayesian Tracking, IEEE Trans. On Signal Processing OV PLANTANO
 THE 174 199