

Fault Diagnostics Methods

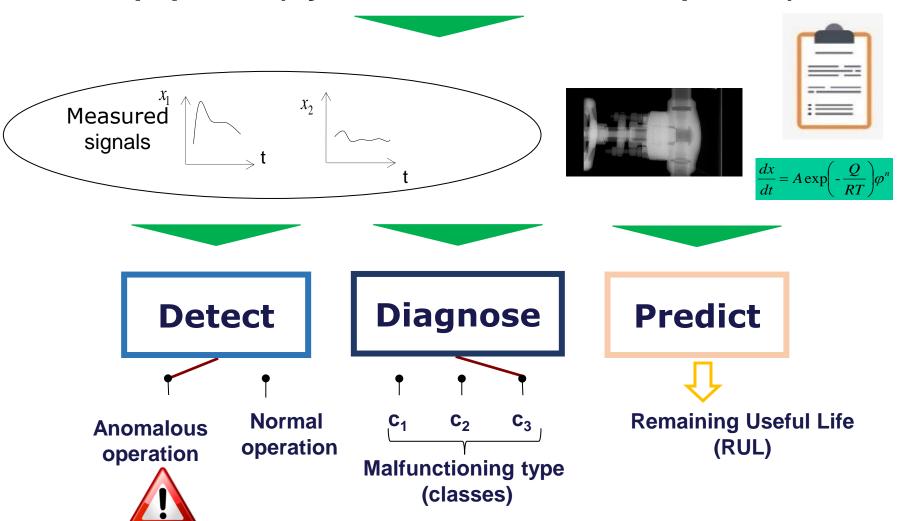
Joaquín Figueroa

Politecnico di Milano, Energy Department joaquineduardo.figueroa@polimi.it

November 18th 2024

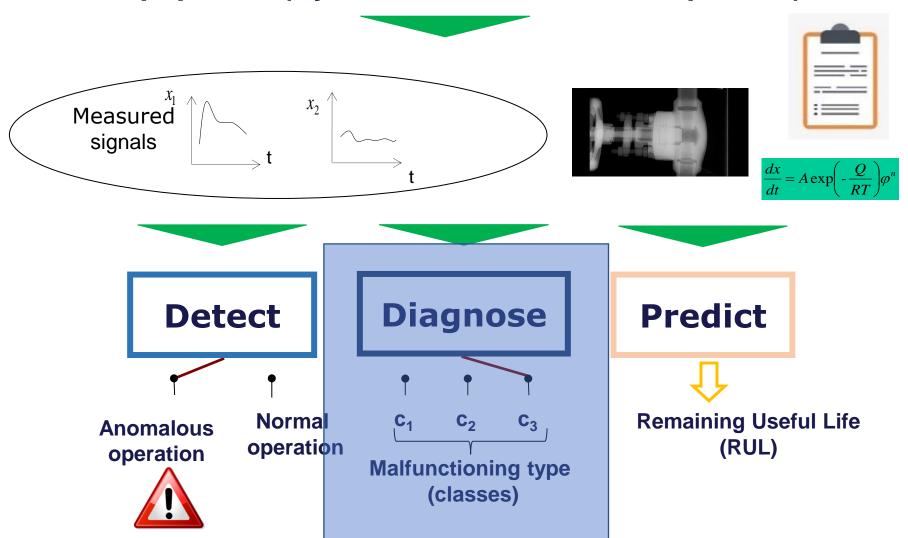
Context: Prognostics and Health Management

Equipment (System, Structure or Component)

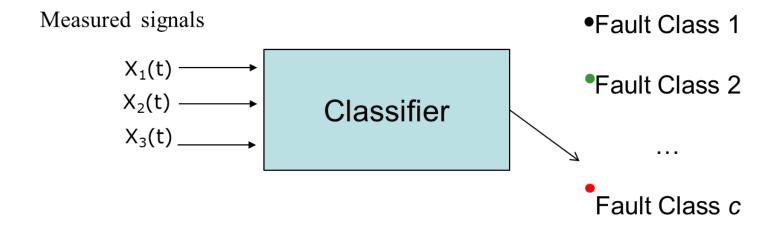


In This Lecture: Fault Diagnostics

Equipment (System, Structure or Component)

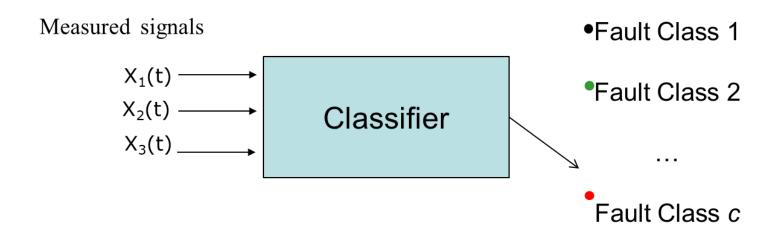


Fault Diagnostics: Objective



Fault Diagnostics: Approaches

- Model-Based Approaces
 - Inverse Problem → Difficult to develop
- Data-driven Approaches



In This Lecture

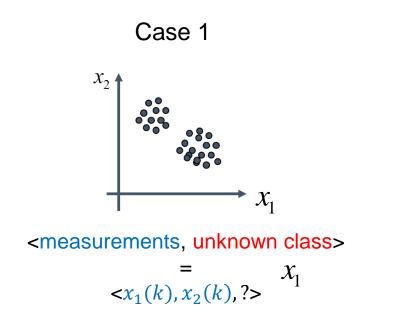
- 1. Procedural steps for developing a fault diagnostic system
- 2. Supervised classification methods for fault diagnostics

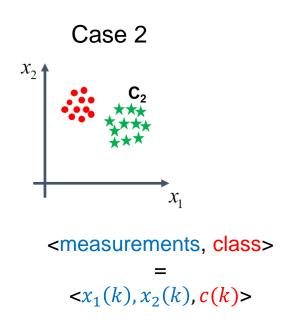
- Identify fault/degradation classes:
 - System Analysis (FMECA, Event Tree Analysis, ...)
 - Good engineering sense of practice

$$\{C_1 \qquad C_2\}$$

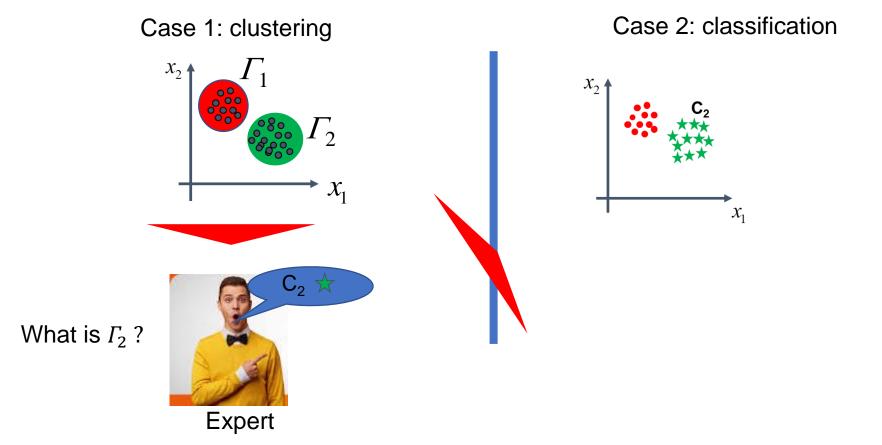
$$\bullet \qquad \bigstar$$

- 1. Identify fault/degradation classes
- 2. Analysis of the historical data



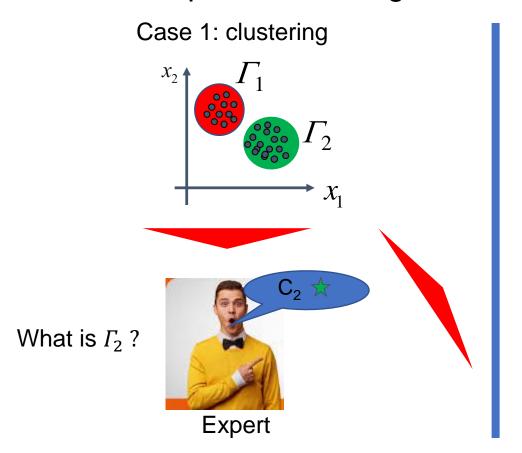


- 1. Identify fault/degradation classes
- 2. Analysis of the historical data
- 3. Develop the clustering and/or classification methods:

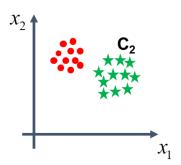


10

- 1. Identify fault/degradation classes
- 2. Analysis of the historical data
- 3. Develop the clustering and/or classification methods:

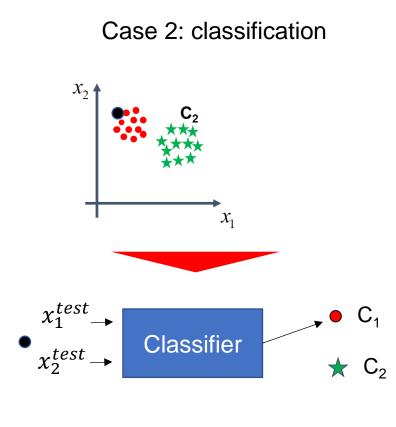


Case 2: classification



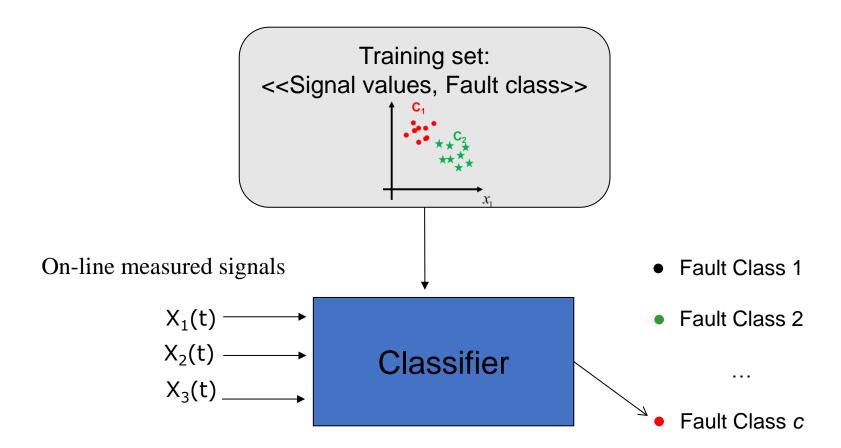
- 1. Identify fault/degradation classes
- 2. Analysis of the historical data
- 3. Develop the clustering and/or classification methods:





In This Lecture

- 1. Procedural steps for developing a fault diagnostic system
- 2. Supervised classification methods for fault diagnostics



- K-Nearest Neighbor Classifier
- Support Vector Machines
- Fuzzy similarity-based approaches
- Artificial Neural Networks (ANNs)
 - Deep Neural Networks (DNNs)
 - Convolutional Neural Networks (CNNs)
 - Generative Adversarial Networks (GANs)
- Neurofuzzy Systems
- Relevant Vector Machines
- Ensemble Systems

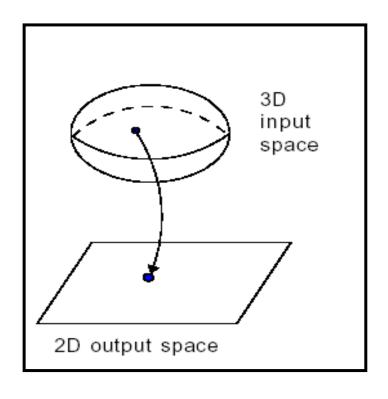
•

FAULT DIAGNOSTICS METHODS

- Artificial Neural Networks (ANNs)
- Convolutional Neural Network (CNN)

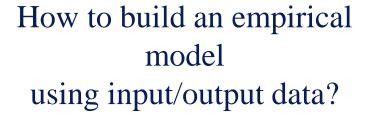
The problem

$$t = g(x)$$



g is unknown!

- g is highly non linear
- g is complex



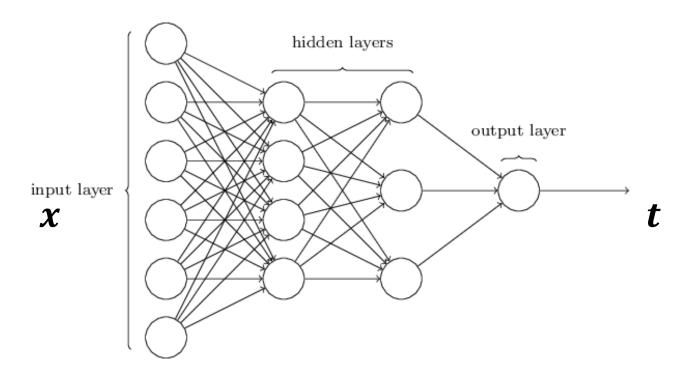
$$x_1^{(1)}, x_2^{(1)}, x_3^{(1)} | t_1^{(1)}, t_2^{(1)}$$

 $x_1^{(2)}, x_2^{(2)}, x_2^{(2)} | t_1^{(2)}, t_2^{(2)}$

. . .

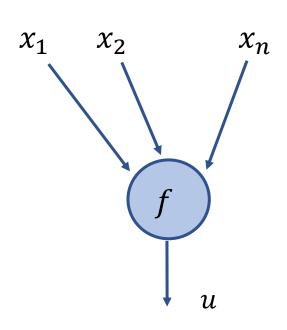
What Are (Artificial) Neural Networks?

An artificial neural network is composed by several simple computational units (also called nodes or neurons) directionally connected by weighted connections organized in a proper architecture



Computational unit (node, neuron)

The output (u) of a node is the result of a (possibly nonlinear) transformation f on the input variables $(x_1, x_2, ..., x_n)$ transmitted along the links of the graph.



$$x^* = \sum_{i=1}^n x_i$$

$$u = f(x^*)$$

Activation function *f* :

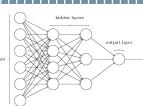
- Linear $f(x^*) = x^*$
- Sigmoid $f(x^*) = 1/(1 + e^{-x^*})$

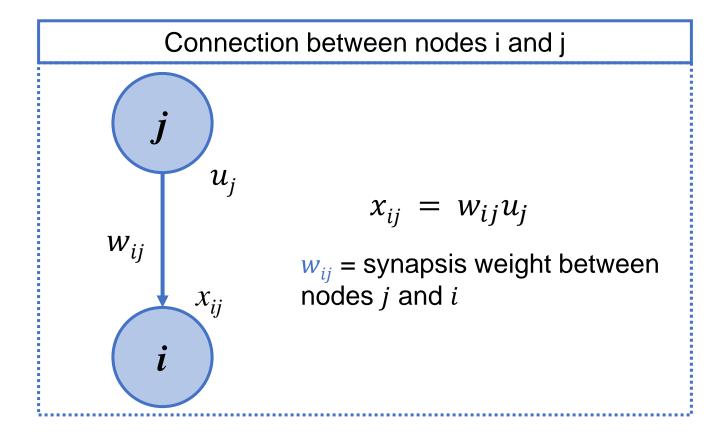
$$f' = f(1-f)$$

- ReLU $f(x) = \max(0, x)$
- ...

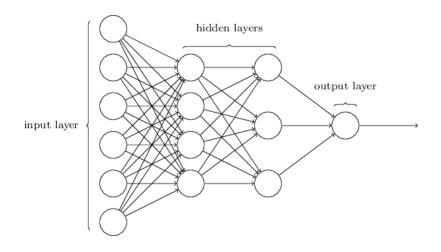
The weighted connection

An artificial neural network is composed by several simple computational units (also called nodes or neurons) directionally connected by weighted connections

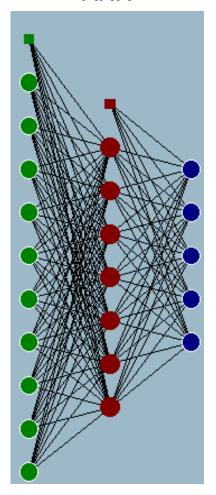




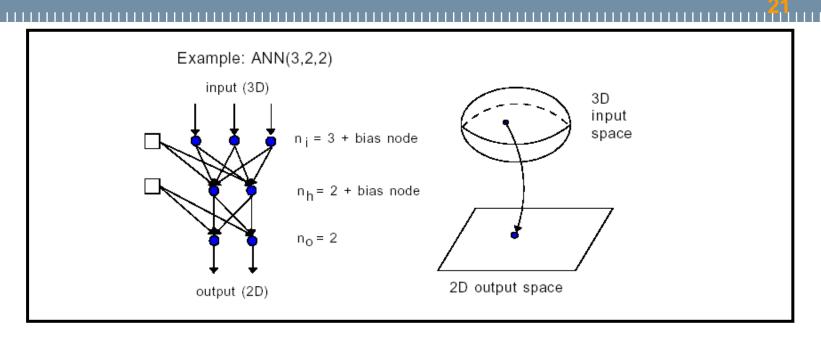
Multilayered Feedforward ANN



1 hidden layer feedforward ANN



1 Hidden Layer ANN: Forward Calculation (input-hidden)

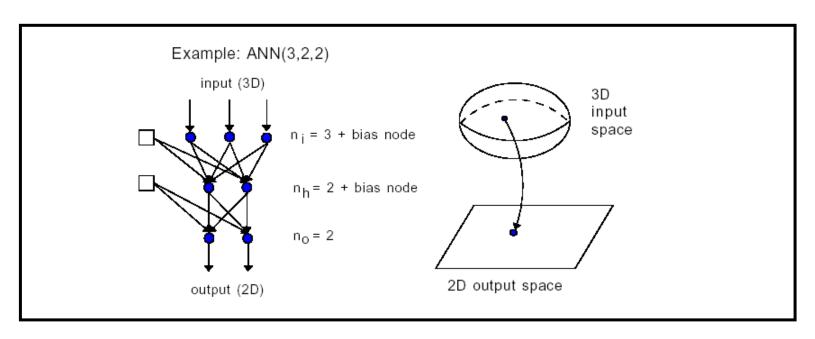


INPUT LAYER:

Each k-th node $(k = 1, 2, ..., n_i)$ receives the value of the k-th component of the input vector x and delivers the same value

HIDDEN LAYER:

Each *j*-th node $(j = 1, 2, ..., n_h)$ receives: $x_1 w_{j1}, ..., x_i w_{ji}, ..., x_{n_i} w_{jn_i}, w_{j^0}$ and delivers $u_j^h = f^h(\sum_{k=1}^{n_i} x_k w_{jk} + w_{j0})$ with f^h typically sigmoidal/ReLU



OUTPUT LAYER:

Each l-th node (l=1, 2, ..., n_o) receives: $u_1^h w_{l1}, \ldots, u_j^h w_{lj}, \ldots, u_{n_h}^h w_{ln_h}, w_{l0}$ and delivers $u_l^o = f^o \left(\sum_{j=1}^{n_h} u_j^h w_{lj} + w_{l0} \right)$ f^o typically linear or sigmoidal

What are the mathematical bases behind Artificial Neural Networks?

Cybenko Theorem

Let $\sigma(\bullet)$ be a sigmoidal continuous function. The linear combinations:

$$\sum_{j=1}^{N} \alpha_j \sigma \left(\sum_{k=1}^{n} x_k w_{kj} + \vartheta_{k0} \right)$$

are dense in $[0,1]^n$

Any function $f: [0,1]^n \to \mathcal{R}$ can be approximated by a linear combinations of sigmoidal functions

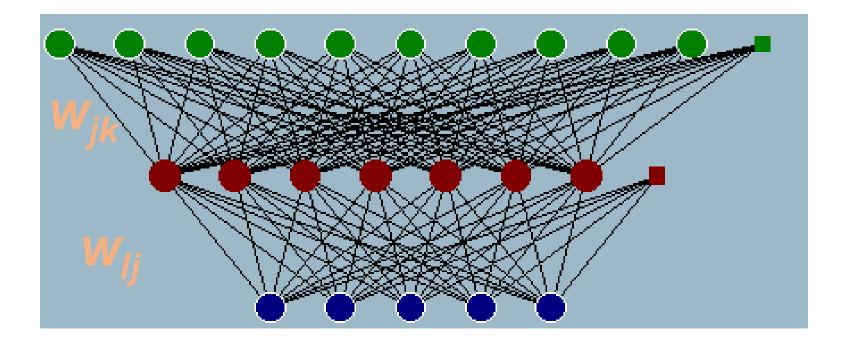
Notice that the theorem does not specify the values of N, w_{ij} and $\alpha_i!$

How to train an Artificial Neural Networks?

ANN Training: the ANN parameters to be estimated

26

Once the ANN architecture has been fixed (number of layers, number of nodes for layer), the only parameters to be set are the **synapsis** weights (w_{jk}, w_{lj})



Available input/output patterns

$$x_1^{(1)}, x_2^{(1)} \mid t_{(1)}$$

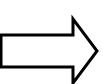
$$x_1^{(2)}, x_2^{(2)} \mid \mathbf{t}_{(2)}$$

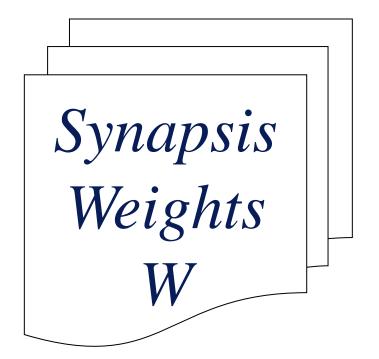
• • • • • • •

$$x_1^{(p)}, x_2^{(p)} \mid \mathbf{t}_{(p)}$$

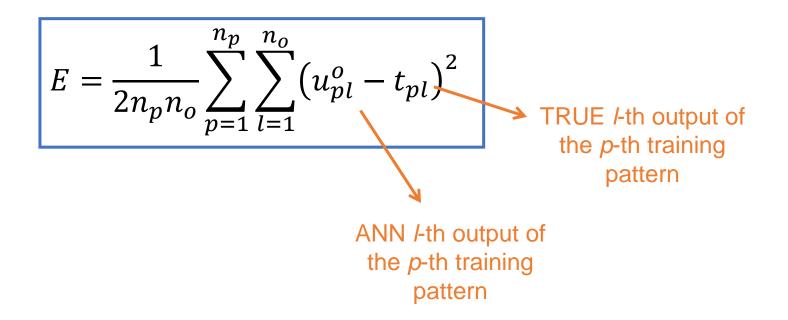
• • • • • • •

$$x_1^{(np)}, x_2^{(np)} \mid t_{(np)}$$



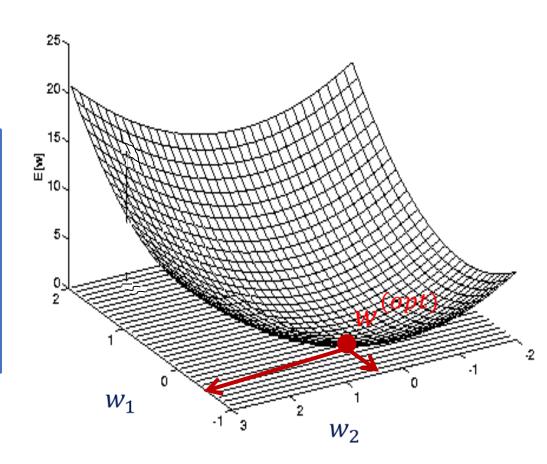


Training Objective: minimize the average squared output deviation error (also called Energy Function):



E is a function of the ANN outputs

E is a function of the synapsis weights $[w_{jk}]$



The Error Backpropagation Algorithm

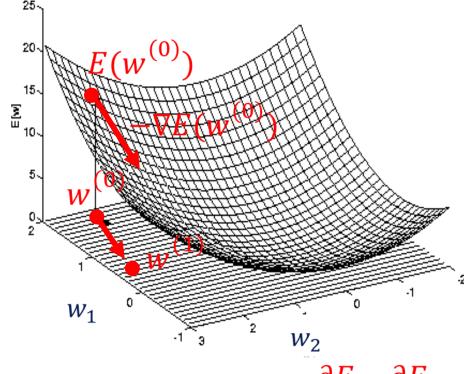
1. Initialize weights to random values:

$$w_{jk}^{(0)} = rand$$

- 2. While *E* is small:
 - Update $w_{jk}^{(i)}$ using the gradient descent method:

$$w_{jk}^{(i+1)} = w_{jk}^{(i+1)} - \eta \frac{\partial E}{\partial w_{jk}}$$

Learning coefficient



gradient
$$\nabla E(w) = (\frac{\partial E}{\partial w_1}, \frac{\partial E}{\partial w_2})$$

Error Backpropagation (hidden-output)

• Updating of w_{lj} :

$$w_{lj}^{(i+1)} = w_{lj}^{(i)} - \eta \frac{\partial E}{\partial w_{lj}}$$

with

$$E = \frac{1}{2n_p n_o} \sum_{p=1}^{n_p} \sum_{l=1}^{n_0} (u_{pl}^o - t_{pl})^2$$

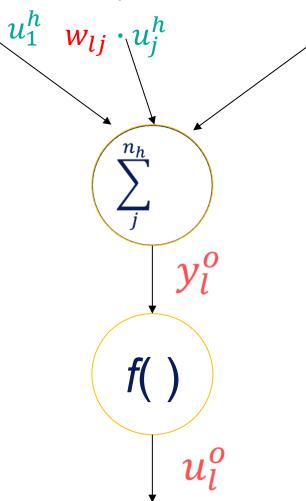
Without loss of generality, set n_p=1

$$E = \frac{1}{2n_o} \sum_{l=1}^{n_o} (u_l^o - t_l)^2 \qquad \frac{\partial E}{\partial w_{lj}} = ?$$

Error Backpropagation (hidden-output)

$$E = \frac{1}{2n_o} \sum_{l'=1}^{n_o} \left(u_{l'}^o - t_{l'} \right)^2$$

$$\frac{\partial E}{\partial w_{lj}} = \frac{\partial E}{\partial u_l^o} \frac{\partial u_l^o}{\partial w_{lj}} = \frac{2(u_l^o - t_l)}{2n_o} \frac{\partial u_l^o}{\partial w_{lj}}$$



Output layer neuron

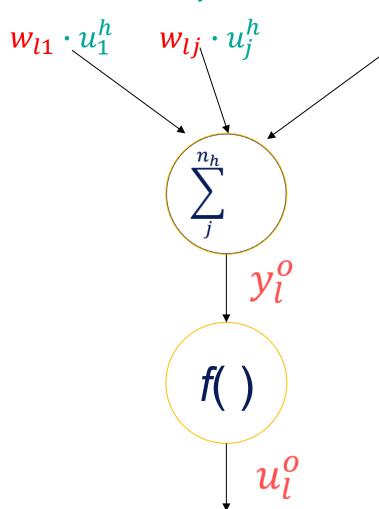
Hidden layer neurons

$$E = \frac{1}{2n_o} \sum_{l'=1}^{n_o} (u_{l'}^o - t_{l'})^2$$

$$\frac{\partial E}{\partial w_{lj}} = \frac{2(u_l^o - t_l)}{2n_o} \frac{\partial u_l^o}{\partial w_{lj}}$$

$$= \frac{(u_l^o - t_l)}{n_o} \frac{\partial u_l^o}{\partial y_l^o} \frac{\partial y_l^o}{\partial w_{lj}} =$$

$$= \frac{(u_l^o - t_l)}{n_o} f'(y_l^o) \frac{\partial \left(\sum_{j'=1}^{n_h} w_{lj'} \cdot u_{j'}^h + w\right)}{\partial w_{lj}}$$
$$= \frac{(u_l^o - t_l)}{n_o} f'(y_l^o) u_j^h$$



Output layer neuron

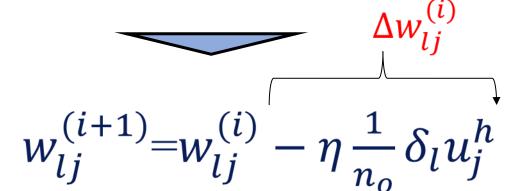
Error Backpropagation (hidden-output)

• Updating of w_{lj} :

$$w_{lj}^{(i+1)} = w_{lj}^{(i+1)} - \eta \frac{\partial E}{\partial w_{lj}}$$

with

$$\frac{\partial E}{\partial w_{lj}} = \frac{(u_l^o - t_l)}{n_o} f'(y_l^o) u_j^h = \frac{1}{n_o} \delta_l u_j^h$$



$$\Delta w_{lj}^{(i)} \qquad \delta_l = (u_l^o - t_l) f'(y_l^o)$$

Error Backpropagation (hidden-output)

• Updating of w_{lj} :

$$w_{lj}^{(i+1)} = w_{lj}^{(i+1)} - \eta \frac{\partial E}{\partial w_{lj}}$$

with

$$\frac{\partial E}{\partial w_{lj}} = \frac{(u_l^o - t_l)}{n_o} f'(y_l^o) u_j^h = \frac{1}{n_o} \delta_l u_j^h$$

momentum

$$w_{lj}^{(i+1)} = w_{lj}^{(i)} + \Delta w_{lj}^{(i)} + \alpha \Delta w_{lj}^{(i-1)}$$

Error Backpropagation (input-hidden)

• Updating of w_{kj} :

$$w_{kj}^{(i+1)} = w_{kj}^{(i)} - \eta \frac{\partial E}{\partial w_{kj}}$$

with

$$E = \frac{1}{2n_p n_o} \sum_{p=1}^{n_p} \sum_{l=1}^{n_0} (u_{pl}^o - t_{pl})^2$$

• Without loss of generality, set $n_p=1$

$$\frac{\partial E}{\partial w_{kl}} = \frac{1}{2n_o} \sum_{l=1}^{n_o} \frac{2(u_l^o - t_l)}{2n_o} \frac{\partial u_l^o}{\partial w_{kj}} = \frac{1}{n_o} \sum_{l=1}^{n_o} (u_l^o - t_l) \frac{\partial u_l^o}{\partial y_l^o} \frac{\partial y_l^o}{\partial u_j^h} \frac{\partial u_j^h}{\partial y_j^h} \frac{\partial y_j^h}{\partial w_{kj}} = \sum_{l=1}^{n_o} \frac{(u_l^o - t_l)}{n_o} f'(y_l^o) w_{jl} f'(y_j^h) u_k^i = u_k^i f'(y_j^h)$$

Similarly to the updating of the output-hidden weigths,

Updating weight w_{jk} (hidden-input connections) $\Delta \bar{w}_{jk} = -\eta \frac{\partial E}{\partial \bar{w}_{jk}}$

$$\frac{\partial E}{\partial \bar{w}_{jk}} = \frac{1}{n_o} \sum_{l=1}^{n_o} \phi_l^+(u_l^o - t_l) \frac{\partial u_l^o}{\partial y_l^o} \frac{\partial y_l^o}{\partial u_j^h} \frac{\partial u_j^h}{\partial y_j^h} \frac{\partial y_j^h}{\partial \bar{w}_{jk}} \quad \text{being} \quad \begin{cases} y_k^i = x_k \ y_j^i = \sum_{n_t} \bar{w}_{jk} u_k^i + \bar{w}_{jo} \ , \ u_j^h = f(y_j^h) \end{cases}$$

$$= \frac{1}{n_o} \sum_{l=1}^{n_o} \phi_l^+(u_l^o - t_l) f'(y_l^o) w_{lj} f'(y_j^h) u_k^i$$

$$= -\frac{1}{n_o} \bar{\delta}_j u_k^i \qquad \qquad \bar{\delta}_j = f'(y_j^h) \sum_{l=1}^{n_o} \delta_l w_{lj}$$

$$\Delta \bar{w}_{jk} = \frac{1}{n_o} \eta \, \bar{\delta}_j u_k^i \qquad \qquad \Delta \bar{w}_{jk} (n-1)$$

$$\text{Learning coefficient} \qquad \text{Momentum}$$

Advantages:

- No physical/mathematical modelling efforts
- Able to learn nonlinear mappings

Disadvantages:

 "black box": difficulties in interpreting the underlying physical model.

Application

ANN for Fault Diagnostics

Objective:

Build and train a neural network to classify different types of malfunctions of plant components

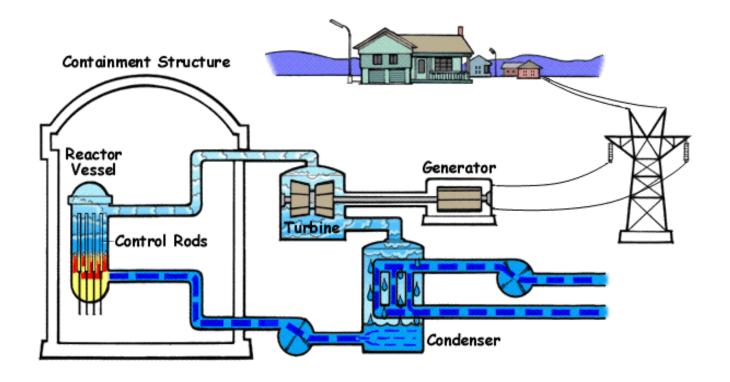
Input/Output patterns

Input: signal measurements

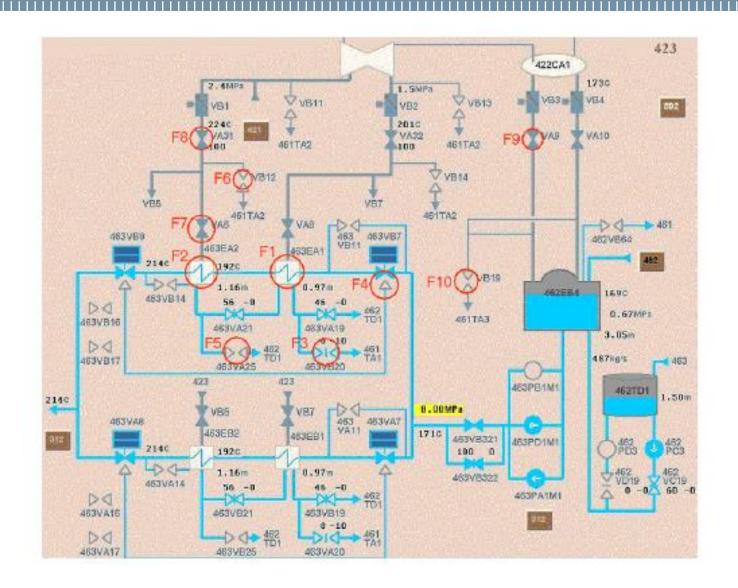
Output: number (label) of the class of the failure

ANN Example: Boiling Water Reactor

Transient classification in a Feedwater System of a Boiling Water Reactor (BWR)

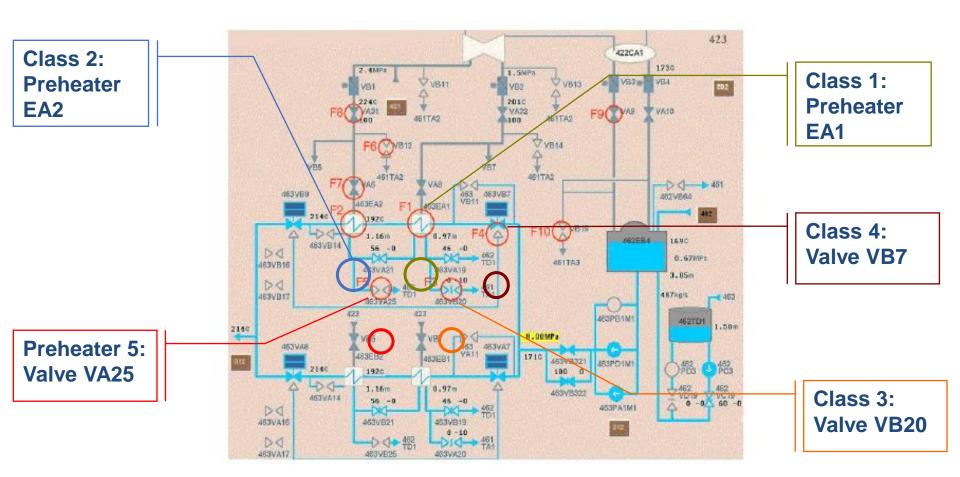


ANN Example: Secondary System



43

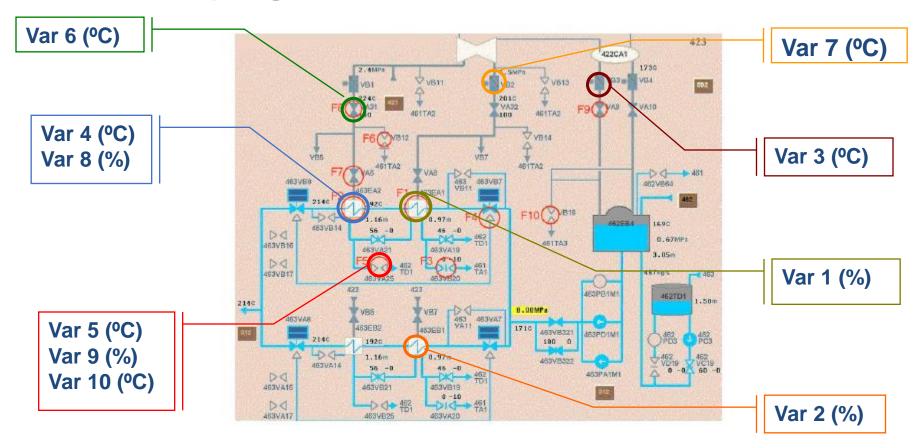
- Class 1: Leakage through the second high-pressure preheater
- Class 2: Leakage in the first high-pressure preheater to the drain tank
- Class 3: Leakage through the first high-pressure preheater drain back-up valve to the condenser
- Class 4: Leakage through high-pressure preheaters bypass valve
- Class 5: Leakage through the second high-pressure preheater drain back-up valve to the feedwater tank



Variables inputs

Variable	Signal	Unit
1	Position level for control valve EA1	%
2	Position level for control valve EB1	%
3	Temperature drain before VB3	٥C
4	Temperature feedwater after EA2 train A	٥C
5	Temperature feedwater after EB2 train B	٥C
6	Temperature drain 6 after VB1	٥C
7	Temperature drain 5 after VB2	°С
8	Position level control valve before EA2	%
9	Position level control valve before EB2	%
10	Temperature feedwater before EB2 train B	°C

■ Measurement: 36 sampling instants in [80, 290]s, one each 6s.

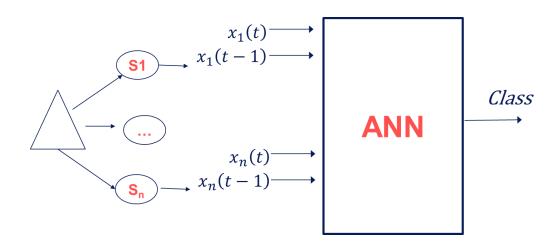


Input/Output patterns

47

 Input: a two-step time window of the measured signals at times t-1 and t

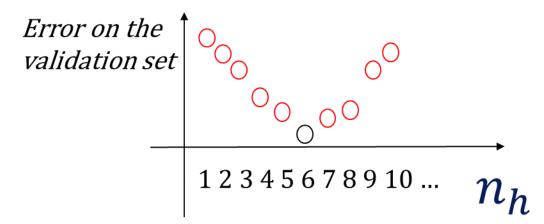
Output: label of the class to which the transient belongs



- A training set was constructed containing 8 transients for each class.
- For a transient of a given class the 35 patterns used to train the network take the following form

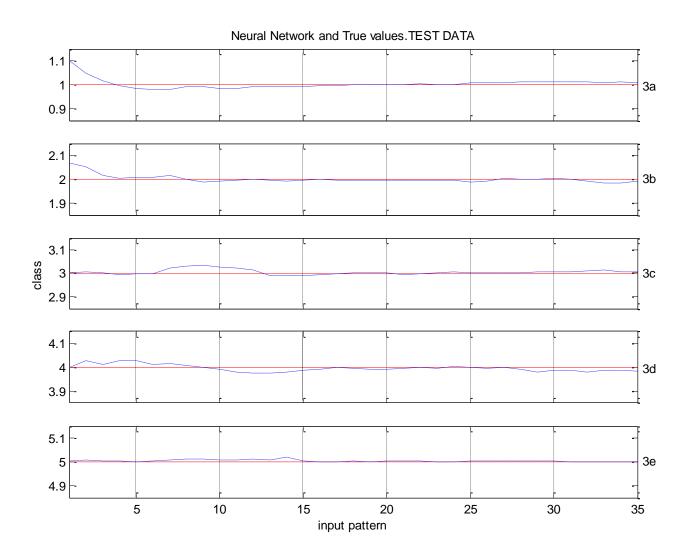
How to set the ANN architecture

- □ Paramers to be set:
 - riangle Number of neurons in the hidden layer (n_h)
 - Learning coefficient
 - Momentum
- ☐ Method:
 - Divide the training data into:
 - A training set (it will be used to find the synapsis weight
 - A validation set (it will be used to find the optimal value of the parameters)
 - Proceed by trial-and-error



• N_h , η , $\alpha \rightarrow grid optimization$

- Optimal values
 - N_h: 17
 - η: 0.55
 - $\alpha : 0.6$



Fault Diagnostics Methods

Joaquín Figueroa

Politecnico di Milano, Energy Department joaquineduardo.figueroa@polimi.it

November 18th 2024