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In This Lecture

• Part 1: Model of the Equipment Behavior in 
Normal Condition

• Principal Component Analysis (PCA)

• Part 2: Statistical Test
• 2A) Thresholds-Based

• 2B) Sequential Probability Ratio Test (SPRT)
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Fault Detection: What is? 6
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Fault Detection: What is not? 8
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• Limit-based

• Model-based

• Data-driven

Fault Detection: Approaches



Limit-based fault detection: data & information

• Normal operation ranges of key signals

Normal 
operation 

range

Abnormal condition 

Abnormal condition 

Pressurizer of a nuclear reactor

10.2 m

3.8 m

Water level

Example:

time

10



• Normal operation ranges of key signals

• Limit Value-Based Fault Detection
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Pressurizer of a nuclear reactor
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Limit-based fault detection: the method 11

Water level



• Normal operation ranges of key signals

• Limit Value-Based Fault Detection

Normal 
operation 

range

Abnormal condition 

Abnormal condition 

Pressurizer of a PWR nuclear reactor

10.2 m

3.8 m

Example:

time

Limit-based fault detection: Limitations 

Limitations:
• No early detection
•Not applicable to fault detection during    
operational transients
•Control systems operations may hide small 
anomalies (the signal remains in the normal 
range although there is a process anomaly)
•Considering signal individually can delay 
detection
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• Limit-based

• Model-based

• Data-driven

Fault Detection: Approaches



Model-based & Data-driven fault detection: basic idea
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• Limit-based

• Model-based

• Data-driven

Fault Detection: Approaches



Model-based fault detection: data & information

• Physics-based model of the process (used to reproduce the 
expected behavior of the signals in normal condition)
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Model-based fault detection: limitations

Abnormal Condition
➢ Typically not available
for complex systems
➢Long computational
time
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• Physics-based model of the process (used to reproduce the 
expected behavior of the signals in normal condition)



• Limit-Based

• Model Based

• Data-driven

Fault Detection: Approaches



Data-driven fault detection: data & information

• Historical signal measurements in normal operation

Water level

PressurePressure

Liquid 

temperat

ure

Steam 

temperat

ure

Spray 

flow

Surge 

line 

flow

Heaters 

power
Level

150.2 321 362 539 244 0 7.2

150.4 322 363 681 304 0 7.5

150.3 323 364 690 335 1244 7.7

… … … … … … …

Example:
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Data-driven fault detection: possible methods 20

• Statistical Approaches:
• Principal Component Analysis (PCA)-based

• AutoAssociative Kernel Regression (AAKR)

• …

• Artificial Intelligence (AI)-based
• Feedforward Neural Networks (FNNs)

• AutoAssociative Neural Networks (AANNs)

• AutoEncoders (AEs)

• Self Organizing Maps

• …



In This Lecture

• Part 1: Model of the Equipment Behavior 
in Normal Condition

• Principal Component Analysis (PCA)

• Part 2: Statistical Test
• 2A) Thresholds-Based

• 2B) Sequential Probability Ratio Test (SPRT)
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In This Lecture 22
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PART 1: Model of the Equipment 
Behaviour in Normal Condition

• Principal Component Analysis (PCA)
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What do we need? 24

Data in normal 

conditions

obs-nc = observation in normal condition



Training set, input and output
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Requirement I

• Equipment is in normal condition

26
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Requirement II

• Equipment is in abnormal condition
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PCA: What is it?

PCA:
• Space transformation

• From an n-dimensional space to a 𝑙-dimensional space (𝑙 < 𝑛) 

• Retaining most of the information (loosing the least information)

x1 x2

x3
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IDEA OF PCA 29

• Two signals are highly correlated or dependent
➔One is enough!
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• Key underlying phenomena
➔ Areas of variance in data
➔ Focus on directions along which 
the observations have largest variance
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PCA: Training set, input and output = Slide 25

),...,( 1

obs

n

obsobs xxx =


PCA

obsx1

obsx2

obs

nx

ncx1
ˆ

ncx2
ˆ

nc

nx̂

ncobsX −

)ˆ,...,ˆ(ˆ
1

nc

n

ncnc xxx =


30























=

−−

−−

−

ncobs

NnNj

ncobs

N

knkjk

ncobs

nj

ncobs

ncobs

xxx

xxx

xxx

X

......

...

...

.........

......

.........

...

...

......

1

1

1111

Signal

Observation

• Training patterns: 

Historical signal measurements 

in normal condition

• Test input: 

Signals measured at current time

• Test Output: 

Signal reconstructions 

(expected values of the signals

in normal condition)



PCA for fault detection: operational steps (1)

Step 1: find Principal Components 
(PCs) in the training set            :

1) PC1
is the direction of maximum 
variance

2) PC2
is orthogonal to PC1 and 
describes the maximum residual 
variance

3) PC3                                                 
is orthogonal to PC1 and PC2 and 
describes the maximum residual 
variance
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Step 1: Mathematical details (1A)

Objective: find principal components

Procedure:

• Compute 𝑉 = covariance matrix of 𝑋𝑜𝑏𝑠−𝑛𝑐

•
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Objective: find principal components

Procedure:

• Compute 𝑉 = covariance matrix of 𝑋𝑜𝑏𝑠−𝑛𝑐

• Find  the n eigenvectors Ԧ𝑝1, Ԧ𝑝2 , … , Ԧ𝑝𝑛 of 𝑉 and the corresponding 
eigenvalues 𝜆1 ≥ 𝜆2 ≥ 𝜆3 ≥ ⋯ ≥ 𝜆𝑛
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Step 1: Mathematical Details (1B)
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Step 1: Properties of the PCs (I)

➢ P is an orthonormal basis:              
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Step 1: Properties of the PCs (II)

➢ P is an orthonormal basis:

➢ Data can be transformed from the original to the transformed 
bases and viceversa without any loss of information 
(multiplication for P and PT)

• 𝑢 = the projection of Ԧ𝑥 on the new basis is given by: 𝑢 = Ԧ𝑥 ∙ 𝑃

35
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Step 1: Properties of the PCs (III) 36

Ԧ𝑥

➢ P is an orthonormal basis:

➢ Data can be transformed from the original to the transformed 
bases and viceversa without any loss of information 
(multiplication for P and PT)

• 𝑢 = the projection of Ԧ𝑥 on the new basis is given by: 𝑢 = Ԧ𝑥 ∙ 𝑃

• Ԧ𝑥 can be obtained from 𝑢 by: Ԧ𝑥 = 𝑢 ∙ 𝑃𝑇



Step 1: Properties of the PCs (III) 37
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➢ P is an orthonormal basis:

➢ Data can be transformed from the original to the transformed 
bases and viceversa without any loss of information 
(multiplication for P and PT)
• 𝑢 = the projection of Ԧ𝑥 on the new basis is given by: 𝑢 = Ԧ𝑥 ∙ 𝑃
• Ԧ𝑥 can be obtained from 𝑢 by: Ԧ𝑥 = 𝑢 ∙ 𝑃𝑇

➢ The percentage of variance retained by the i-th principal
component is:



• Lost small information

• Reduce the number of 

dimensions from n=10 to  = 4

38

Step 2 [PCA approximation]: ignore the PCs of lower 

significance.

PCA for fault detection: operational steps (1)



• Step 2 [PCA approximation]: ignore the PCs of lower significance.

map the observation Ԧ𝑥𝑜𝑏𝑠 in a subspace ℜ𝑙 ⊂ ℜ𝑛 identified by the 
first l< 𝑛 eigenvectors Ԧ𝑝1, … , Ԧ𝑝𝑙:

Ԧ𝑥𝑜𝑏𝑠𝑃𝑙 with 𝑃𝑙 = [ Ԧ𝑝1, … , Ԧ𝑝𝑙]

PCA for fault detection: operational steps (2)
39
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Example of application to the normal condition data:  𝑋𝑜𝑏𝑠−𝑛𝑐



PCA for fault detection: operational steps (3)
40

-10 -8 -6 -4 -2 0 2 4 6 8 10
-10

-8

-6

-4

-2

0

2

4

6

8

10

1x

2x

PC1

ncobsX −

-4 -3 -2 -1 0 1 2 3 4 5
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

𝑋𝑜𝑏𝑠−𝑛𝑐𝑃𝜆

𝑃𝜆 = [ Ԧ𝑝1, … , Ԧ𝑝𝜆]

-3 -2 -1 0 1 2 3
-10

-8

-6

-4

-2

0

2

4

6

8

10

1x

2x

Example of application to the normal condition data:  𝑋𝑜𝑏𝑠−𝑛𝑐

We loose the

noise in the

space of the

measured

signals

• Step 2 [PCA approximation]: ignore the PCs of lower significance.

map the observation Ԧ𝑥𝑜𝑏𝑠 in a subspace ℜ𝑙 ⊂ ℜ𝑛 identified by the first l <
𝑛 eigenvectors Ԧ𝑝1, … , Ԧ𝑝𝑙:

Ԧ𝑥𝑜𝑏𝑠𝑃𝑙 with 𝑃𝑙 = [ Ԧ𝑝1, … , Ԧ𝑝𝑙]

• Step 3: [Antitransformation]: signal reconstructions  Ԧො𝑥𝑛𝑐 = Ԧ𝑥𝑜𝑏𝑠𝑃𝑙 𝑃𝑙
𝑇
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PCA for fault detection: Summary
41
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PCA for fault detection: Summary
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Find       from
• Historical data

• Measured signals at present time:

• Transform and project  

• Antitrnansform
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Ԧො𝑥𝑛𝑐 ≅ Ԧ𝑥𝑜𝑏𝑠→ normal condition

Ԧො𝑥𝑛𝑐 ≠ Ԧ𝑥𝑜𝑏𝑠 → abnormal condition

Signal reconstructions

I’m looking at the measurements 

considering only the directions that 

are most meaningful in normal 

condition (directions of maximum variance)

I loose only the irrelevant noise

The process is changed

𝑃𝑙



Exercise 1
43
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•Measured signals at present time: 

•Signal reconstructions?

•Normal or abnormal condition?

•available historical signal measurements in normal plant condition  

-10 -8 -6 -4 -2 0 2 4 6 8 10
-10

-8

-6

-4

-2

0

2

4

6

8

10

1x

2x



Exercise 1: Solution
44

),( 21

obsobsobs xxx =


•Measured signals at present time: 

•Step 1: find principal components:          ,

•available historical signal measurements in normal plant condition  
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Exercise 1: Solution
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•Measured signals at present time:  

•Step 1: find principal components       ,
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Exercise 1: Solution
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•Measured signals at present time:  

•Step 1: find principal components        ,

•Step 2 (PCA approximation): keep only 1 PC of     ,i.e. 
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Exercise 1: Solution
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),( 21

obsobsobs xxx =


•Measured signals at present time: 

•Step 1: find principal components

•Step 2 (PCA approximation): keep only 1 PC of     ,i.e. 

•Step 3 (antitransform): 

1px obs 


Ԧ𝑥𝑛𝑐 = Ԧ𝑥𝑜𝑏𝑠𝑃𝑙𝑃𝑙
𝑇

ncobs xx

ˆ normal condition

-10 -8 -6 -4 -2 0 2 4 6 8 10
-10

-8

-6

-4

-2

0

2

4

6

8

10

 

 

measuraments

reconstruction

1x

2x



Exercise 2
48
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•Measured signals at present time: 

•Signal reconstructions?

•Normal or abnormal condition?

•available historical signal measurements in normal plant condition  
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Exercise 2: Solution
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•Measured signals at present time: 

•Step 1: find principal components

•Step 2 (PCA approximation): keep only 1 PC of     ,i.e. 
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Exercise 2: Solution
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•Measured signals at present time: 

•Step 1: find principal components

•Step 2 (PCA approximation): keep only 1 PC of     ,i.e. 
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Exercise 2: Solution
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obsobsobs xxx =


•Measured signals at present time: 

•Step 1: find principal components

•Step 2 (PCA approximation): keep only 1 PC of     ,i.e. 

•Step 3 (antitransform): 

1px obs 


Ԧ𝑥𝑛𝑐 = Ԧ𝑥𝑜𝑏𝑠𝑃𝑙𝑃𝑙
𝑇
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PCA remarks: computational time

Computational time:

• Training time = computational time necessary to find the 
Principal Components is proportional to the number of 
measured signals 𝑛

• Execution time: very short (only 2 matrix multiplications) 
→ OK for online applications
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PCA remarks: complex structure

Performance:

Unsatisfactory for dataset characterized by highly non-
linear relationships
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Part 2: Statistical Test 54
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In This Lecture

• Part 1: Model of the Equipment Behavior in 
Normal Condition

• Principal Component Analysis (PCA)

• Part 2: Statistical Test
• 2A) Thresholds-Based

• 2B) Sequential Probability Ratio Test (SPRT)
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PART 2: Statistical Test

• Thresholds-based

• Sequential Probability Ratio Test (SPRT)
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Abnormal condition detection: decision

• Basics of the decision: residual analysis

• Methods
• Thresholds-based approach

• Stochastic approaches:

• Q Statistics

• Sequential Probability Ratio Test (SPRT)

Ԧ𝑟 = Ԧ𝑥𝑜𝑏𝑠 − Ԧො𝑥𝑛𝑐
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PART 2 A: Statistical Test

• Thresholds-based

• Sequential Probability Ratio Test (SPRT)
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Thresholds-based
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Abnormal condition 
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Thresholds-Based: Remarks

Too large thresholds → high missing alarm rates (β)

t

r
Normal conditions

t

r
Abnormal conditions
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Too small thresholds → high false alarm rates (α)

• Easy to apply

• Thresholds setting is difficult and error-prone 



PART 2 B: Statistical Test

• General Idea

• Sequential Probability Ratio Test (SPRT)
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Stochastic approaches

• Residual (r)= random variable described by a probability 
law

• The probability law is different in case of normal/abnormal 
condition

-6 -4 -2 0 2 4 6
0

0.1

0.2

0.3

0.4

0.5

r
-6 -4 -2 0 2 4 6

0

0.1

0.2

0.3

0.4

0.5

r

),0( Nr ~ ),( 1 Nr~

Abnormal condition Normal condition 

62



SPRT

• 𝑅𝑇 = {𝑟 1 , … , 𝑟 𝑇 } sequence of residuals at time 
𝑡 = 1,…𝑇, where 𝑟 𝑡 = 𝑥𝑜𝑏𝑠(𝑡) − ො𝑥𝑛𝑐(𝑡)

• Binary hypothesis test:
• Null hypothesis (H0) ≡ Normal condition

𝑟 𝑡 ~𝒩 0, 𝜎 , ∀𝑡

• Alternative hypothesis (H1) ≡ Abnormal condition
𝑟 𝑡 ~𝒩 𝜇1, 𝜎 , ∀𝑡
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SPRT: the decision

𝐿𝑇 =
𝑃 𝑅𝑇|𝐻1is true
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=
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SPRT Theorem
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SPRT for the positive mean test

• Null hypothesis (H0) ≡ Normal condition 𝑟 𝑡 ~𝒩 0, 𝜎

• Alternative hypothesis (H1) ≡ Abnormal condition 𝑟 𝑡 ~𝒩 𝜇1, 𝜎

Sequential

Formula!
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SPRT: Example
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SPRT: parameters to be set

• the residual variance in normal condition (σ2)

• the expected offset amplitude (μ1)

• the maximum acceptable false alarm rate (α)

• the maximum acceptable missing alarm rate (β)
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Example
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Example: residuals
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Example: SPRT

Parameter Value
α 0.01
Β 0.01
μ0 0
μ1 0.46
σ2 0.12
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𝐿0 = 1 → ln( 𝐿0) = 0

ln 𝐿1 = ln 𝐿0 +
𝜇1
𝜎2

𝑟 1 −
𝜇1
2

ln 𝐿2 = ln 𝐿1 +
𝜇1
𝜎2

𝑟 2 −
𝜇1
2



Example of Applications
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Example of Application 1
73

COMPONENT TO GAS TURBINE 
TO BE MONITORED

Temperature location 1

(°C)
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74Example of Application 2

Wind turbine farm

▪ Main Bearing+ Planetary Gear box + Gearbox + Generator

▪ Monitoring system:  6 accelerometers and 1 sensor measuring the rotating 

speed



Example of Application 3*
75

COMPONENT TO Reactor Coolant Pump of PWR
BE MONITORED Nuclear Power Plant 

x4

__________________________________________________

: 4

* Work developed with EDF-R&D

Measured signals 48 (Temperatures, pressures, flows,…)

Available data
Historical signal measurements in normal plant 

condition [1 year, frequency=1/30 Hz]
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