


In This Lecture 2

 Part 1. Model of the Equipment Behavior in

Normal Condition
 Principal Component Analysis (PCA)

 Part 2: Statistical Test

« 2A) Thresholds-Based
« 2B) Sequential Probability Ratio Test (SPRT)
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Overview




Context: Prognostics and Health Management

Equipment (System, Structure or Component)
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In This Lecture: Fault Detection

Equipment (System, Structure or Component)

X
Measured
signals

—~————
m Diagnose Predict
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Anomalous Normal 1 C  Cy Remaining Useful Life
operation ~ ©Operation Y (RUL)

Malfunctioning type
A (classes)
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Fault Detection: What is?

Normal condition
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Fault Detection: What is?

*— Normal condition
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Danger|

.

N

Measured
signals

POLITECNICO MILANO 1863



Fault Detection: What Is not?

*— Normal condition

.

N

Measured
signals

N\
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Fault Detection: Approaches

 Limit-based
« Model-based
 Data-driven
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Limit-based fault detection: data & information

* Normal operation ranges of key signals

Example:

Pressurizer of a nuclear reactor

Water level

Upper —m

10.2 m
Normal

operation
range

time
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Limit-based fault detection: the method

* Normal operation ranges of key signals
—~———

e Limit Value-Based Fault Detection

Example:

Pressurizer of a nuclear reactor

Water level

Upper —m

10.2 m
Normal

operation
range

time

3.8 m

“ “[
I
ML Lo |
Standard 2-Loop | i o |i
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Limit-based fault detection: Limitations

* Normal operation ranges of key signals

—~———

e Limit Value-Based Fault Detection

Example:
Pressurizer of a PWR nuclear reactor

Water level

Upper ——m-
Head

10.2 m

3.8 m

kL’f
)' |
’il : ‘M. A
Standard 2-Loop | i} L. il

£

Limitations:

* No early detection

*Not applicable to fault detection during
operational transients

*Control systems operations may hide small
anomalies (the signal remains in the normal
range although there is a process anomaly)
*Considering signal individually can delay
detection

Normal
operation
range

time
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Fault Detection: Approaches

 Limit-based
« Model-based
 Data-driven
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Model-based & Data-driven fault detection: basic idea

Signal Real
reconstructions measurements

MODEL OF THE
EQUIPMENT BEHAVIOR
IN NORMAL CONDITION

=7
Statistical
Test

LU
"
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Fault Detection: Approaches

 Limit-based
« Model-based
 Data-driven
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Model-based fault detection: data & information

* Physics-based model of the process (used to reproduce the
expected behavior of the signals in normal condition)

Example:
Signal
reconstructions

Pressurizer model

v

L
"

v
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Model-based fault detection: limitations

* Physics-based model of the process (used to reproduce the
expected behavior of the signals in normal condition)

Example:
Signal Real

reconstructions measurements

Pressurizer model

v

LK
L o

v
A

» Typically not available =

for complex systems Abnormal Condition
»Long computational

time
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Fault Detection: Approaches

 Limit-Based
« Model Based
 Data-driven
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Data-driven fault detection: data & information

 Historical sighal measurements in normal operation

Example:
Liquid | Steam Surge
|Pressureftemperatitemperat Sffors\y line H?)?/;ers Level Pressure
ure ure flow P
150.2{ 321 [ 362 [ 539 [ 244 | 0 | 7.2 1
150.4| 322 [ 363 [ 681 [ 304 | 0 | 75 g .
e, :'°°°:°;°:..
150.3| 323 | 364 | 690 | 335 | 1244 | 7.7 o oo e lITtet
Water level
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Data-driven fault detection: possible methods

 Statistical Approaches:
* Principal Component Analysis (PCA)-based
» AutoAssociative Kernel Regression (AAKR)

« Artificial Intelligence (Al)-based

» Feedforward Neural Networks (FNNSs)
AutoAssociative Neural Networks (AANNS)
AutoEncoders (AES)
Self Organizing Maps
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In This Lecture

« Part 1: Model of the Equipment Behavior

iIn Normal Condition
 Principal Component Analysis (PCA)

 Part 2: Statistical Test

« 2A) Thresholds-Based
« 2B) Sequential Probability Ratio Test (SPRT)
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In This Lecture

Signal

=7

Statistical
Test

LU
"

Real

COnStrUCtion measurements
Part 2

Ly

A

L

Standard 2-Loop | kij 1.riil

POLITECNICO MILANO 1863



23

PART 1. Model of the Equipment
Behaviour in Normal Condition

 Principal Component Analysis (PCA)




What do we need?

Data in normal
conditions

Signal

Observation
X obs —nc

obs-nc = observation in normal condition
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Training set, input and output

« Training patterns: Signal
Historical signal measurements [ obs-ne y o
. . 11 1j |- 1n
in normal condition _ . lobservation
X P S Xi1 Xy Xin
Xﬁbls—nc . XNj i Xﬁ?]s—nc
: _ob b b
« Testinput: X =(X" 0, X0 0)
Signals measured at current time
X obs—nc
« Test Output: X™ =(X°,...,X’°)
Signal reconstructions obs ~ne
: X X
(expected values of the signals 1_) 1 s
in normal condition) bs | Modelof the ="

X, equipment X,
behaviour in
x°bs normal Qne

——>3| conditions |_5
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Requirement |

* Equipment is in normal condition

: o : Real
: Reconstructions ' Measurements
X bes
MODEL OF THE /\\ : :
EQUIPMENT :
BEHAVIOR t ¢
IN NORMAL : : :

CONDITION Pogne © xS
L) t :

=reconstruction
nc= normal condition
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Requirement Il

* Equipment is in abnormal condition

Signal Real
. Reconstructlons ' Measurements
f{lc xi)bs
MODEL OF THE /k\ : : A
EQUIPMENT
BEHAVIOR ¢ t

IN NORMAL

CONDITION %, - xolg
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PCA: What Is it?

PCA:
« Space transformation
« From an n-dimensional space to a [-dimensional space (Il < n)
* Retaining most of the information (loosing the least information)

original data space

component space

*

ARAYE
E

P%],

i
u]
Ei
i
i

PC1

POLITECNICO MILANO 1863



IDEA OF PCA

« Two signals are highly correlated or dependent

= One is enough! XA |
1 1
>
x, X=| 00

« Key underlying phenomena
=>» Areas of variance in data
= Focus on directions along which X2
the observations have largest variance -

a4k
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PCA: Training set, input and output = Slide 25

« Training patterns: Signal
Historical signal measurements [ obs-ne y o
. . 11 1j - 1n
in normal condition _ . lobservation
X oPene X1 Xy Xin
Xﬁbls—nc XNj i X&?}s—nc
: ob b b
« Testinput: X =(X" 0, X0 0)
Signals measured at current time
X obs—nc
« Test Output: X™ =(X°,...,X’°)
Signal reconstructions obs ~ne
: X X
(expected values of the signals 1 1 s
in normal condition)  Obs E qne
—_l 2
PCA >
obs o ne
X, X
—_ —_—
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PCA for fault detection: operational steps (1)

Step 1. find Principal Components
(PCs) in the training set X ™"

1) PCl=—>
IS the direction of maximum
variance

2) PC2 ==
Is orthogonal to PC1 and
describes the maximum residual

variance

3) PC3—2
Is orthogonal to PC1 and PC2 and
describes the maximum residual
variance
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Step 1: Mathematical details (1A)

Obijective: find principal components

Procedure:
+ Compute V = covariance matrix of X °bs—n¢

- (Xobs—nc _ yobs-nc )T (Xobs—nc B Xvobs—nc)

X2 Empirical
C T T U U [ U U U mean
8- .o ] matrix

)
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Step 1: Mathematical Details (1B)

Obijective: find principal components

Procedure:
+ Compute V = covariance matrix of X °bs—n¢

 Find the n eigenvectors p4,p,, ..., p, Of V and the corresponding
eigenvalues 1, >4, =213 = - > 4,

X

| VP = p
o : ——
o 1,=9.50 largest p,=[0.28 0.96]
2,=0.04 smallest p,=[-0.96 0.28]
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Step 1: Properties of the PCs (I)

P=[r>1,r>2]={

0.28 -0.96
096 0.28

> P s an orthonormal basis:

P L P, Vi ]
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Step 1: Properties of the PCs (lI)

> P Is an orthonormal basis:

» Data can be transformed from the original to the transformed
bases and viceversa without any loss of information
(multiplication for P and PT)

« 1 =the projection of X on the new basis is given by: 4 = x - P

PC, -

i PC,
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Step 1: Properties of the PCs (lI)

> P Is an orthonormal basis:

» Data can be transformed from the original to the transformed
bases and viceversa without any loss of information
(multiplication for P and PT)

« 1 =the projection of X on the new basis is given by: 4 = x - P
« X can be obtained from u by: ¥ = 1 - PT

0
Xyl

X

PC,
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Step 1: Properties of the PCs (lI)

> P s an orthonormal basis:

» Data can be transformed from the original to the transformed
bases and viceversa without any loss of information
(multlpllcatlon for P and PT)

. = the projection of x¥ on the new basis is given by: 4 = X - P
. f can be obtained from u by: ¥ = 1 - PT
» The percentage of variance retained by the i-th principal
component is:

%Var (PC, ) = 4

Zz

_11 1
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PCA for fault detection: operational steps (1)

Step 2 [PCA approximation]: ignore the PCs of lower

significance.
E“'  Lost small information
1:_ * Reduce the number of
. dimensions from n=10to =4

Pl PG2Z PCE OPC4 PCE PCE PCT O PCE PSS PCID
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PCA for fault detection: operational steps (2)

« Step 2 [PCA approximation]: ignore the PCs of lower significance.
—~——

map the observation ¥°?S in a subspace R! c R" identified by the
first I< n eigenvectors pq, ..., b;:

%°Psp, with P, = [By, ..., B]

Example of application to the normal condition data: X°Ps—n¢

X obs—nc yobs—ncp
X2 PC2 -

o
ke

& ‘ obs—nc
: X P,

. of ol DRI Gt [ [
f; PC1

We consider only the
Xl PC1 directions that are most
meaningful in  normal
condition (directions of
maximum variance)
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PCA for fault detection: operational steps (3)

- Step 2 [PCAEBPIOXIMaL0ON]: ignore the PCs of lower significance.

v

map the observation X¥°?S in a subspace R! c R" identified by the first 1 <
n eigenvectors py, ..., b;:

fObSPl W|th Pl = [ﬁl! ...,ﬁl]

« Step 3: _]: signal reconstructions x"¢ = x°bsp, pT

Example of application to the normal condition data: X°bs—"¢
obs—nc P, =I[8 > We loose the
X X 2 = [Py Pl X, | | noise in the
2 . Xobs—nCp/1 | space of the
f i | measured
: e | signals
] : PC1 |
¢ 1
X
1
X
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PCA for fault detection: Summary

Xflbs—nc le anbs—nc
 Historical data x**™=| x, ..x; .. X _
’ " Find P, from X °PS—NC
_Xﬁbls—nc XNj . Xﬁlt;s—nc_
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PCA for fault detection: Summary

 Historical data x°®™=| x e Xep e Xy, _
“ ! ‘ Find P, from X °PS—NC
Xﬁbls—nc XNj . Xﬁzs—nc

»  Measured signals at present time:  X** = (x>,..., x>>)

I’'m looking at the measurements

. >0bs considering only the directions that
* Transform and pI’OjeCt xR are most meaningful in normal

condition (directions of maximum variance)
v
. 3 _ 2 b T
«  AntitrnansformX”"© = X°”° PP,

—~—————

gnec ~ gobs = normal condition

Signal reconstructions

| loose only the irrelevant noise

The process is changed

X" = X°°S 3 gbnormal condition
POLITECNICO MILANO 1863




Exercise 1

-Measured signals at present time:  X°*° = (x, x3*) o
«Signal reconstructions?
*Normal or abnormal condition?

X

«available historical signal measurements in normal plant condition

POLITECNICO MILANO 1863



Exercise 1: Solution

Measured signals at present time: ~ X°” = (x**,x3”) e
Step 1: find principal components: [_jl : rjz

X2

«available historical signal measurements in normal plant condition
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Exercise 1: Solution

Measured signals at present time: ~ X°* = (X, x2*) o
-Step 1: find principal components [J;, P,

.. ° ot -
° B .
: .
: ; r : : ; : : : -10 : . . . L L L t L
8 5 P 2 0 2 4 6 8 n 10 8 - -4 2 0 2 4 6 10
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Exercise 1: Solution

Measured signals at present time: ~ X°* = (X, x2*) o
*Step 1: find principal components [0, , P, e
-Step 2 (PCA approximation): keep only 1 PC of * ji.e. X -],

X 10 T T T T T LB — T T X2 10
2 o ]

-0 8 6 4 2 0 2 4 6 10
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Exercise 1: Solution

-Measured signals at present time:  X°* = (x>, x3*)

«Step 1: find principal components

Step 2 (PCA approximfi\tion): keep only 1 PC of °,i.e. X - P,

*Step 3 (antitransform)x™® = X°**PP| @
X2 Lo T T T T T - T T T

8 |-
@ measuraments

reconstruction

e

R r r r r r r r r r
-10 -8 -6 -4 -2 0 2 4 6 8 10

X
~ 1 - -
X% = g » normal condition
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Exercise 2

obs ObS) o

‘Measured signals at present time:  X° = (X, X,
Signal reconstructions?
Normal or abnormal condition?

10

.{'
6 ?’

«available historical signal measurements in normal plant condition
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Exercise 2: Solution

-Measured signals at present time:  X** = (x2*, x3™)

Step 1: find principal components ], P,
Step 2 (PCA approximation): keep only 1 PC of ° i.e. X P,

X 10 X 10
2 o
&
o
6 5 6
.Y
4 ¥ 4
2 2
0 [ ] 0 oo
2+ 2
([
4 4t
L]
-6 by - 6
\8
. ° * 3 2 1 0 1 2 3 . 5
. 4 E P -
-8 : - 8k . -
. .
I A PC1
-10 -8 -6 -4 -2 0 2 4 6 8 10 -10 -8 -6 -4 -2 o] 2 4 6 10
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Exercise 2: Solution

-Measured signals at present time:  X** = (x2*, x3™)

Step 1: find principal components ], P,
Step 2 (PCA approximation): keep only 1 PC of ° i.e. X P,

X 10 X 10
2 o
&
o
6 5 6
.Y
4 ¥ 4
2 2
0 ° 0 PN -
2+ 2
4 4t
L]
-6 by - 6
\8
. ° * 3 2 1 0 1 2 3 . 5
. 4 E P -
-8 : - 8k . -
. .
I A PC1
-10 -8 -6 -4 -2 0 2 4 6 8 10 -10 -8 -6 -4 -2 o] 2 4 6 10
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Exercise 2: Solution

-Measured signals at present time:  X°* = (x>, x3*)

«Step 1: find principal components
Step 2 (PCA approximfi\tion): keep only 1 PC of °,i.e. X - P,
*Step 3 (antitransform)x™® = X°**PP| @

X,

X7 #X Abnormal condition

POLITECNICO MILANO 1863



PCA remarks: computational time

Computational time:

 Training time = computational time necessary to find the
Principal Components is proportional to the number of
measured signals n

« Execution time: very short (only 2 matrix multiplications)
- OK for online applications
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PCA remarks: complex structure

Performance:

Unsatisfactory for dataset characterized by highly non-
linear relationships

POLITECNICO MILANO 1863



Part 2: Statistical Test

Signal Real
construction measurements
Part 2

=7

Statistical
Test

LU
"
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In This Lecture

 Part 1. Model of the Equipment Behavior in

Normal Condition
 Principal Component Analysis (PCA)

e Part 2: Statistical Test

« 2A) Thresholds-Based
« 2B) Sequential Probability Ratio Test (SPRT)
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PART 2: Statistical Test

e Thresholds-based

« Sequential Probabllity Ratio Test (SPRT)




Abnormal condition detection: decision

« Basics of the decision: residual analysis

e 2 I ~0 — Normal condition
I #0— Abnormal condition

 Methods

» Thresholds-based approach
« Stochastic approaches:

« Q Statistics
« Sequential Probability Ratio Test (SPRT)
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PART 2 A: Statistical Test

e Thresholds-based

« Sequential Probabllity Ratio Test (SPRT)




Thresholds-based

Abnormal condition
r 4 detection
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Thresholds-Based: Remarks

« Easy to apply
« Thresholds setting is difficult and error-prone

Too small thresholds - high false alarm rates (a)

A Normal conditions
r
o \ >

Too large thresholds = high missing alarm rates (j3)
A

r .
Abnormal conditions
>

t
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PART 2 B: Statistical Test

 General Idea
« Sequential Probability Ratio Test (SPRT)




Stochastic approaches

* Residual (r)=random variable described by a probability

law
» The probability law is different in case of normal/abnormal
condition
Normal condition Abnormal condition

0.5 : : : : : : : 0.5
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SPRT

« R = {r®M, ..., r(M} sequence of residuals at time
t = 1,..T, where r® = xPs(¢) — £"¢(¢)

 Binary hypothesis test:
* Null hypothesis (H,) = Normal condition

rO~n(0,0), vVt

| f,(r)=N(0,0)

« Alternative hypothesis (H,) = Abnormal condition
rO~N(uy,0),Vt
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SPRT: the decision

L P{Rr|H,is true} fl(r(l)) -fl(r(z)) f1(T(T))
T P(RrlHistrue}  fo(rM) - fG @) ... o)

In(L7)

Not enough
information
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SPRT Theorem

False alarm

/

1-5
o “P[D.|Hyistiue}<a
H

94
A:|ni P{DO ‘ 1@2,3
-« \

Missing alarm
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SPRT for the positive mean test

« Null hypothesis (H,) = Normal condition r(©~N (0, o)
- Alternative hypothesis (H,) = Abnormal condition r®~N (u,, o)

L PO r T LS i (n-2r®) | ST (r0-)
T per®, . r™M|Hy)

\/
T T—-1
H1 H1 H1 H1 H1 H1
=53 (10 -8) 550 -1) )
nllr) =5 — 0% Lo ' 2) T2\" T2 Sequential
[ Uy - Formula!
=In(Lr_y) + 22 (rm - £2)
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SPRT. Example

LO =1—)1n(L0)=0

In(L,) =In(Ly) + % (r(l) — %)
In(L,) = In(Ly) + % (r(z) — %)
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SPRT: parameters to be set

* the residual variance in normal condition (o?)

* the expected offset amplitude (u,)

« the maximum acceptable false alarm rate (a)

« the maximum acceptable missing alarm rate ()
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Example

Time interval | Simulated

Offset
[0-200] No

[201-400] Yes . ﬂ*’“\i

(amplitude =
50 T )
49
; observed T

0.11)
[401-600] es
(amplitude =
023) 48# * Reconsvtr ction
[601-800] Yes 4 .
(amplitude =

0.34) 26"

0 100 200 300 400 500 600 700 800 900 1000

[801-1000] Yes rime
(amplitude =

0.46)

53¢

52

Signal value
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Example: residuals

0.8

a1
W ‘%WW WMWWW N‘W W
o}

-

—

Residuals

-0.4
-0.6
-0.8 : . : . : : . .
0 100 200 300 400 500 600 700 800 900 1000
fime Maximum
Ximu
No offset
offset
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Example: SPRT

S S S S 2

Parameter | Value = In=—&= ...ﬁ-—- - o=
a 0.01 o 4 . ° °
B 0.01 == === Upper Threshold | & .« 0
Uy 0 3H Lower Threshold . o,
My 0.46 * SPRTalue PRRD
2 . o o
0’ 0.12 . cew® o
w 1 e t}i: ° rT'r‘:
() (] °
° %, o™ ,°° ® ° . °
£ 0 L o % o..o d o’
L0=1_>1n(L0)=0 E LY - * .- ‘....o : °
Hy Ui @ 1 T e ety 'y %
In(L,) = In(Ly) + F(ﬂﬂ - 7) I IRRERS HNE
H1 H1 )
In(L,) = In(L +—(<2>——) .
n(ly) = L) + o5 (r@ -5

800 900 1000

>

Il

=
T
g

0 100 200 300 600
Time Maxi

No offset aximum

offset
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Example of Applications




Example of Application 1

COMPONENT TO GAS TURBINE
TO BE MONITORED

Measured Signals
Temperature location 1

(°C)
Temperature location 2
. (°C)
1. Inlet Section :
2. Compressor Temperature location 3
3. Combustion System
4, Tur'c&r-; ) (OC)
5. Exhaust System -
6. Exhaust Diffuser Temperature location 4
Courtesy of Siemens Westinghouse (0 C)

Temperature location 5
(°C)
Temperature location 6
(°C)

POLITECNICO MILANO 1863




Example of Application 2

1 x Accaleration sensor

{Main bearing) Wind turbine farm

3 x Acceleration sensors
{gearbox )

High-Speed  Generator

Shaft /

Mam Man
Beanng  Shan

= Main Bearing+ Planetary Gear box + Gearbox + Generator

= Monitoring system: 6 accelerometers and 1 sensor measuring the rotating
speed
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Example of Application 3*

COMPONENT TO Reactor Coolant Pump of PWR
BE MONITORED Nuclear Power Plant

Measured signals 48 (Temperatures, pressures, flows,...)

Historical signal measurements in normal plant
condition [1 year, frequency=1/30 Hz]

Available data

* Work developed with EDF-R&D
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