

POLITECNICO MILANO 1863

Challenges in RAM&PHM

Piero Baraldi and Enrico Zio Politecnico di Milano

Energy Industry

Nuclear Power Plants:

Operation and maintenance cost = 60%- 70% of the total cost of production¹

•Wind Farms:

Maintenance costs =1.5% - 2% per year of the original turbine investment²

Mining Industry

Maintenance cost > 30% of the total cost of production³

¹R.M. Ayo-Imoru, A.C. Cilliers, "*A survey of the state of condition-based maintenance (CBM) in the nuclear power industry*", Annals of Nuclear Energy", 2018.

²Danish Wind industry Association, (http://xn--drmstrre-64ad.dk/wpcontent/wind/miller/windpower%20web/en/tour/econ/oandm.htm)

³Komljenovic D, Paraszczak J, Kecojevic V. *Potential for improvement of reliability and maintenance in mining operations based on nuclear industry know-how and experience*. In: Mine Planning and Equipment Selection 2005; 2005. p. 143–52.

•<u>Nuclear Power Plants</u>:

Operation and maintenance cost = 60%- 70% of the total cost of production¹

•Wind Farms:

Maintenance costs =1.5% - 2% per year of the original turbine investment²

Mining Industry

Maintenance cost > 30% of the total cost of production³

¹R.M. Ayo-Imoru, A.C. Cilliers, "*A survey of the state of condition-based maintenance (CBM) in the nuclear power industry*", Annals of Nuclear Energy", 2018.

²Danish Wind industry Association, (http://xn--drmstrre-64ad.dk/wp-content/wind/miller/windpower%20web/en/tour/econ/oandm.htm)

³Komljenovic D, Paraszczak J, Kecojevic V. *Potential for improvement of reliability* and maintenance in mining operations based on nuclear industry know-how and experience. In: Mine Planning and Equipment Selection 2005; 2005. p. 143–52.

PHM: The Challenge

PHM: Accuracy

□ Few False Alarms □ Few Missing Alarms

Large Classification Accuracy (for each anomaly type)

POLITECNICO MILANO 1863

PHM: Confidence

Confidence Interval:

- As small as possible
- Good Coverage

PHM: Consistency with Physics

PHM: Explainability

Industrial Systems:

Some Characteristics

Prognostics and Health Management:

- Fault Detection
- Fault Diagnostics
- Fault Prognostics
- Decision Making

Conclusions

Piero Baraldi

- Big data:
 - Hundreds of signals

*Zio E., Baraldi P., Pedroni N.; "Selecting features for nuclear transients classification by means of genetic algorithms»; (2006) IEEE Transactions on Nuclear Science, 53 (3), pp. 1479 - 1493.

Piero Baraldi

- Big data:
 - Hundreds of signals
 - Signals measured at high frequency

*Baraldi P., Cannarile F., Di Maio F., Zio E., *«Hierarchical k-nearest neighbours classification and binary differential evolution for fault diagnostics of automotive bearings operating under variable conditions»;* (2016) Engineering Applications of Artificial Intelligence, 56.

Piero Baraldi

POLITECNICO DI MILANO

- Big data:
 - Hundreds of signals
 - Signals measured at high frequency
 - Images

*Yang Z., Baraldi P., Zio E.; «*A multi-branch deep neural network model for failure prognostics based on multimodal data*»; (2021) Journal of Manufacturing Systems, 59, pp. 42 – 50.

Piero Baraldi

POLITECNICO DI MILANO

- Big data:
 - Hundreds of signals
 - Signals measured at high frequency

Z. Yang, P. Baraldi, E. Zio, "<u>A novel method for maintenance record clustering and its application to a case study of maintenance optimization</u>"; (2020) Reliability Engineering and System Safety, Vol. 203.
D. Valcamonico, P. Baraldi, E. Zio, L. Decarli, A. Crivellari, L. Rosa, <u>«Combining natural language processing and bayesian networks for</u>]

the probabilistic estimation of the severity of process safety events in hydrocarbon production assets; (2024) Reliability Engineering and System Safety, Vol. 241(C).

Piero Baraldi

- Big data → Big Knowledge Information and Data (KID)
 - Hundreds of signals
 - Signals measured at high frequency

Z. Yang, P. Baraldi, E. Zio, "A novel method for maintenance record clustering and its application to a case study of maintenance optimization"; (2020) Reliability Engineering and System Safety, Vol. 203.

Piero Baraldi

POLITECNICO DI MILANO

Industrial systems:

- Big KID
- Fleet of systems

Remote control room

16

Al-Dahidi S., Di Maio F., Baraldi P., Zio E., Seraoui R.; «*A framework for reconciliating data clusters from a fleet of nuclear power plants turbines for fault diagnosis*»; (2018) Applied Soft Computing Journal, 69, pp. 213 – 231.

Piero Baraldi

Industrial systems:

- Big KID
- Fleet of systems in different environmental and operating conditions

Al-Dahidi S., Di Maio F., Baraldi P., Zio E.; *«Remaining useful life estimation in heterogeneous fleets working under variable operating conditions»*; (2016) Reliability Engineering and System Safety, 156, pp. 109-124.

Piero Baraldi

POLITECNICO DI MILANO

Industrial systems:

- Big KID
- Fleet of systems in different environmental and operating conditions
- Evolving environment

Yang Z., Al-Dahidi S., Baraldi P., Zio E., Montelatici L.; "A Novel Concept Drift Detection Method for Incremental Learning in Nonstationary Environments"; (2020) IEEE Transactions on Neural Networks and Learning Systems, 31 (1).

Piero Baraldi

POLITECNICO DI MILANO

Industrial Systems:

Some Characteristics

PHM:

- Fault Detection
- Fault Diagnostics
- Fault Prognostics

Conclusions

Piero Baraldi

Piero Baraldi

Example: Electro-Hydraulic Servo-Actuators

Relevance:

- Safety-critical system:
 - \succ failure \rightarrow engine stall

C. Lai, P. Baraldi, E. Zio, "*Physics-Informed deep Autoencoder for fault detection in New-Design systems*",(2024), Mechanical Systems and Signal Processing, 215.

Piero Baraldi

Piero Baraldi

Example: Empirical Model - AutoEncoder (D)

25

Piero Baraldi

Example: Knowledge (K)

Example: Physics-Informed AE (KD)

Example: Physics-Informed AE (KD)

Example: Results

Industrial Systems:

- Some Characteristics
- **Predictive Maintenance:**
 - Fault Detection
 - Fault Diagnostics
 - Fault Prognostics

Conclusions

Example: Automatic Doors of a Fleet of High-Speed 36 Trains

Relevance:

Faults of doors cause unavailability of the trains.

	A second second
	nomento nel arte carr
DEPARTURE	ES ATTACTO INFORMATION
PARTENZE DEPARTENZE	TRA STRMIONE (19.06) - VE 13
THEM DIST PARTY A	IE 18:05 50
ES 8727 TRIESTE C	E 18:15 35 BURTHINGTO
HU 9977 NAPULI L.L	18:25 CANCELLATO CESTO CAL
FC 10 ZURICH HB	18:29 40' ATE (19.01) - SESTO 414
2 2154 DOMODOSSO	ENTRALE (19.32)
ROMA TERMI	INI 18:30 ID EMILIA AU MEDIOPHUF
HU SUCO NAPOLI C.LE	18:35 30 DECCIO FMILIA (20.00)
Italo AU 9935 ONCONA	18:35 30 - RECORD (19.42)
ES 88CO HILCOLL	18:45 15' ERA DEL GARDA CO POLOG
AU 9753 UUINE	18:50 PADANA (19.36) - BULUC
AU 9555 AREZZU	18.55 CANCELLATO
TENORO MEX24960 RMINAL 2	TERMINI (21,55)
MI 9655 NAPOLI C.LE	19:00 TOPINO PORTA
DOLOSAD TORINO P.N.	19:00 10' ERTH H: TURING PORT

Piero Baraldi

Example: Empirical Model – Adversarial Domain Adaptation

Example: Empirical Model – Adversarial Domain Adaptation

Example: Empirical Model – Adversarial Domain Adaptation

Classification Accuracy on Train B	mean	std
ANN trained using Train A labelled patterns	0.746	0.060
Adversarial domain adaptation method (Train A labelled patterns + 50% train B unlabelled patterns)	0.938	0.029

* B. Wang, P. Baraldi, E. Zio, "Deep Multi-Adversarial Conditional Domain Adaptation Networks for Fault Diagnostics of Industrial Equipment", 2022, IEEE Transactions on Industrial Informatics, 19(8).

Piero Baraldi

POLITECNICO DI MILANO

Piero Baraldi

POLITECNICO DI MILANO

Industrial Systems:

- Some Characteristics
- PHM:
 - Fault Detection
 - Fault Diagnostics
 - Fault Prognostics

Conclusions

N

Fault Prognostics: Data (D) and Information (I)

48

Example: Steam Generator of a Nuclear Power Plant 49

Tube fouling

Maintenance interventions:

- Mechanical cleaning (partial removal of deposit)
- Chemical cleaning (\$\$\$,long unavailability)

Example: Data and Information (K)ID

Images

 Time from last inspection Number of performed chemical **Numerical Values** cleanings • Number of performed mechanical cleanings Signal evolution during plant transients 5000 Time (s)

POLITECNICO DI MILANO

50

(D)

(D)

(I)

Example: Empirical Model - Multi-branch Deep Neural Network

POLITECNICO DI MILANO

Prediction of the SG degradation at the next planned Inspection (50 Steam Generators)

	The best model using one source of information	The best model using two sources of information	Proposed method
Sources of information			H I
Mean Relative Error	10.7%	7.8%	<mark>6.8%</mark>

Z. Yang, P. Baraldi, E. Zio, "A multi-branch deep neural network model for failure prognostics based on multimodal data", Journal of Manufacturing Systems, 59, pp. 42-50, 2021.

- Li-Ion Battery:
 - high-power density
 - low self-discharge
 - relatively long life
 - high cost
 - risk of flame ignition

Predictive Maintenance to avoid failure:

- System safety
- System availability

Example: Empirical Model – Heterogeneous Transfer 58 Learning

Example: Empirical Model - Heterogeneous Transfer 59 Learning

Example: Empirical Model - Heterogeneous Transfer 60 Learning

Example: Empirical Model - Heterogeneous Transfer 61 Learning

Example: Empirical Model - Heterogeneous Transfer 62

Example: Results

63

Few run-to-failure trajectories from in-field applications

Piero Baraldi

POLITECNICO DI MILANO

Industrial Systems:

Some Characteristics

PHM:

- Fault Detection
- Fault Diagnostics
- Fault Prognostics

Conclusions

Baraldi P., Mangili F., Zio E.; «Investigation of uncertainty treatment capability of model-based and data-driven prognostic methods using simulated data»; (2013) Reliability Engineering and System Safety, 112, pp. 94 - 108

Piero Baraldi

Floreale, G., Baraldi, P., Zio, E., & Fink, O. (2023). *Exploiting Explanations to Detect Misclassifications of Deep Learning Models in Power Grid Visual Inspection*. 33rd European Safety and Reliability Conference (ESREL 2023) 3 – 8 September 2023, Southampton, UK.

Piero Baraldi

Piero Baraldi

