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Challenges in RAM&PHM
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Energy Industry

•Nuclear Power Plants:
Operation and maintenance cost = 60%- 70% of the 
total cost of production1

•Wind Farms: 
Maintenance costs =1.5% - 2% per year of the
original turbine investment2

2

1R.M. Ayo-Imoru, A.C. Cilliers, "A survey of the state of condition-based
maintenance (CBM) in the nuclear power industry”, Annals of Nuclear Energy",
2018.
2Danish Wind industry Association, (http://xn--drmstrre-64ad.dk/wp-
content/wind/miller/windpower%20web/en/tour/econ/oandm.htm)

Mining Industry                                              
    Maintenance cost > 30% of the total cost of 

production3

3Komljenovic D, Paraszczak J, Kecojevic V. Potential for improvement of reliability
and maintenance in mining operations based on nuclear industry know-how and
experience. In: Mine Planning and Equipment Selection 2005; 2005. p. 143–52.

PHM: Market Opportunity
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PHM: Market Opportunity

AI-based 
PHM

Model
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AI-based 
PHM

Model

PHM: The Challenge

Is my PHM model a 
magician?
I don’t believe it!

1) Accurate
2) Confident
3) Consistent with physics
4) Explainable

Trustworthy= 

It is degraded 
due to creeping 
It is going to fail  in: 57:25:18



q Large Classification Accuracy 
(for each anomaly type)

5PHM: Accuracy

Normal

Detection

Diagnostics

Prognostics
Failure 

time
Present 

time

Diagnostics

Anomaly of type 1
Anomaly of Type 2

…
Anomaly of Type c

q Few False Alarms
q Few Missing Alarms

q 𝑅"𝑈𝐿 ≅ 𝑅𝑈𝐿
𝑅"𝑈𝐿



6PHM: Confidence
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Confidence Interval: 
• As small as possible
• Good Coverage



7PHM: Consistency with Physics 

Physics Laws

They should be consistent!



8PHM: Explainability

Disclose the 
internal working of 

the model

Unveil the causes 
behind the AI 

model outcomes
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Industrial Systems:
• Some Characteristics
Prognostics and Health Management:
• Fault Detection
• Fault Diagnostics
• Fault Prognostics

• Decision Making
Conclusions

AI for PHM of Industrial Systems
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Industrial Systems - Some Characteristics

Industrial systems: hundreds of highly interconnected components

10

177°C

215°C
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Industrial Systems - Some Characteristics

Industrial systems: hundreds of highly interconnected components
• Big data:

§ Hundreds of signals

11

215°C

*Hundreds of signals

177°C

*Zio E., Baraldi P., Pedroni N.; "Selecting features for nuclear transients classification by means of genetic algorithms»; (2006) IEEE 
Transactions on Nuclear Science, 53 (3), pp. 1479 - 1493.
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Industrial Systems - Some Characteristics

Industrial systems: hundreds of highly interconnected components
• Big data:

§ Hundreds of signals
§ Signals measured at high frequency

12

215°C

*Hundreds of signals

177°C

*Vibration signals at high 
frequency (up to 25kHz )

*Baraldi P., Cannarile F., Di Maio F., Zio E., «Hierarchical k-nearest neighbours classification and binary differential evolution for fault 
diagnostics of automotive bearings operating under variable conditions»;  (2016) Engineering Applications of Artificial Intelligence, 56.
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Industrial Systems - Some Characteristics

Industrial systems: hundreds of highly interconnected components
• Big data:

§ Hundreds of signals
§ Signals measured at high frequency
§ Images

13

Inverter of 
a FEV

Weld in 
pipelines

Wafer maps in the 
Semiconductor 

industry

*Yang Z., Baraldi P., Zio E.; «A multi-branch deep neural network model for failure prognostics based on multimodal data»; 
(2021) Journal of Manufacturing Systems, 59, pp. 42 – 50.

Power line insulators 
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Industrial Systems - Some Characteristics

Industrial systems: hundreds of highly interconnected components
• Big data:

§ Hundreds of signals
§ Signals measured at high frequency
§ Images
§ Texts

14

Z. Yang, P. Baraldi, E. Zio, “A novel method for maintenance record clustering and its application to a case study of maintenance 
optimization”; (2020) Reliability Engineering and System Safety, Vol. 203.
D. Valcamonico, P. Baraldi, E. Zio, L. Decarli, A. Crivellari, L. Rosa, «Combining natural language processing and bayesian networks for 
the probabilistic estimation of the severity of process safety events in hydrocarbon production assets; (2024) Reliability Engineering and 
System Safety, Vol. 241(C).

Case description Consequence

At 16:00 pm the oil level has risen in 
the separation vessel, which led the oil 
to pass through with the gas to 
…
some valves were not directly 

connected to the drainage system 
which led to the oil to spill in the 
surrounding Area

Fire/Explosion

adaptor

bucket

https://ideas.repec.org/a/eee/reensy/v241y2024ics0951832023005525.html
https://ideas.repec.org/a/eee/reensy/v241y2024ics0951832023005525.html
https://ideas.repec.org/a/eee/reensy/v241y2024ics0951832023005525.html
https://ideas.repec.org/a/eee/reensy/v241y2024ics0951832023005525.html
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Industrial Systems - Some Characteristics

Industrial systems: hundreds of highly interconnected components
• Big data à Big Knowledge Information and Data (KID)

§ Hundreds of signals
§ Signals measured at high frequency
§ Images
§ Texts

15

Z. Yang, P. Baraldi, E. Zio, “A novel method for maintenance record clustering and its application to a case study of maintenance 
optimization”; (2020) Reliability Engineering and System Safety, Vol. 203.

KID

adaptor

bucket

Case description Consequence

At 16:00 pm the oil level has risen in 
the separation vessel, which led the oil 
to pass through with the gas to 
…
some valves were not directly 

connected to the drainage system 
which led to the oil to spill in the 
surrounding Area

Fire/Explosion
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Industrial Systems - Some Characteristics

Industrial systems:
• Big KID
• Fleet of systems

16

Remote control room

Al-Dahidi S., Di Maio F., Baraldi P., Zio E., Seraoui R.; «A framework for reconciliating data clusters from a fleet of nuclear power plants 
turbines for fault diagnosis»; (2018) Applied Soft Computing Journal, 69, pp. 213 – 231.



Piero Baraldi

Industrial Systems - Some Characteristics

Industrial systems:
• Big KID
• Fleet of systems in different environmental and operating 

conditions

17

Al-Dahidi S., Di Maio F., Baraldi P., Zio E.; «Remaining useful life estimation in heterogeneous fleets working under variable operating 
conditions»; (2016) Reliability Engineering and System Safety, 156, pp. 109-124.
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Industrial Systems - Some Characteristics

Industrial systems:
• Big KID
• Fleet of systems in different environmental and operating conditions
• Evolving environment

18

Yang Z., Al-Dahidi S., Baraldi P., Zio E., Montelatici L.; “A Novel Concept Drift Detection Method for Incremental Learning in 
Nonstationary Environments”; (2020) IEEE Transactions on Neural Networks and Learning Systems, 31 (1).
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Industrial Systems:
• Some Characteristics
PHM:
• Fault Detection
• Fault Diagnostics
• Fault Prognostics

Conclusions

AI for PHM of Industrial Systems
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Fault Detection: Knowledge and Data - K(I)D
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MODEL OF SYSTEM 
BEHAVIOUR IN NORMAL 

CONDITION
(AAKR, PCA, Autoencoders, …)

T

P

Normal Condition 

Training Data (D)

Knowledge (K)
Physics-based models

of the system
𝑑𝑥
𝑑𝑡 = 𝐴exp −

𝑄
𝑅𝑇 𝜙!
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23Example: Electro-Hydraulic Servo-Actuators

Relevance: 
• Safety-critical system:

Ø failure à  engine stall 

Electro-Hydraulic 
Servo-Actuators 

(EHSA):

C. Lai, P. Baraldi, E. Zio, "
deep 
New
Systems and 

C. Lai, P. Baraldi, E. Zio, "Physics-Informed deep Autoencoder for fault detection in New-Design systems",(2024), 
Mechanical Systems and Signal Processing, 215.
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24Example: Data (D)

Electro-Hydraulic 
Servo-Actuators 

(EHSA):
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25Example: Empirical Model - AutoEncoder (D)

Electro-Hydraulic 
Servo-Actuators 

(EHSA):

TRAINING

𝒙𝟏

𝒙𝝉

"𝒙𝟏

"𝒙𝝉

Real measurements Signal reconstructions

Pre-flight test

Position Position

AutoEncoder (AE)

ℒ!"#" = (
$%&'"(	
*%$!+#+%$
!"#"

(𝑥# − ,𝑥#),

epoch

ℒ!"#"
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26Example: Knowledge (K) 

Electro-Hydraulic 
Servo-Actuators 

(EHSA):

TRAINING

𝒙𝟏

𝒙𝝉

"𝒙𝟏

"𝒙𝝉

Real measurements Signal reconstructions

Pre-flight test

Position Position

ℒ!"#" = (
$%&'"(	
*%$!+#+%$
!"#"

(𝑥# − ,𝑥#),

epoch

ℒ!"#"

AutoEncoder (AE)
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27Example: Physics-Informed AE (KD)

Electro-Hydraulic 
Servo-Actuators 

(EHSA):

TRAINING

𝒙𝟏

𝒙𝝉

"𝒙𝟏

"𝒙𝝉

Real measurements Signal reconstructions

Pre-flight test

Position Position

Loss Function= ℒ#$%$ + ℒ&'(
(D)          (K)

ℒ!"#" = (
#&"+$+$-
!"#"

(𝑥# − ,𝑥#),

ℒ!"# = #
$%&'('()	
+&$&

𝑀𝑒𝑎𝑠()𝑥$	𝑖𝑛	𝐷𝑖𝑠𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡	𝑤𝑖𝑡ℎ	𝑘𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒)

Physics-Informed
AE
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28Example: Physics-Informed AE (KD)

Electro-Hydraulic 
Servo-Actuators 

(EHSA):

TRAINING

𝒙𝟏

𝒙𝝉

"𝒙𝟏

"𝒙𝝉

Real measurements Signal reconstructions

Pre-flight test

Position Position

Loss Function= ℒ#$%$ + ℒ&'(
(D)          (K)

ℒ!"#" = (
#&"+$+$-
!"#"

(𝑥# − ,𝑥#),

ℒ./0 = (
#&"+$+$-	
!"#"

𝑃𝑜𝑖𝑛𝑡𝑠 ∉ 𝑅𝑒𝑔𝑖𝑜𝑛/1"(#/0

𝑑 ,𝑥
𝑑𝑡

0
𝑣𝑒
𝑙𝑜
𝑐𝑖
𝑡𝑦

Physics-Informed
AE
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Example: Results

Normal Condition Abnormal Condition
Normal Condition 99,50% (99.38%) 0.40%  (0,64%)

Abnormal Condition 0.50% (0.62%) 99,60%  (99,36%)

GROUNDTRUTH
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D
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 A
E)

𝒙𝟏

𝒙𝒕

"𝒙𝟏

"𝒙𝒕

Electro-hydraulic actuators (EHSA) Real measurements Signal reconstructions

≠

Physics-Informed
AE

𝒙𝒕 Position

Pre-flight test

"𝒙𝒕
Position

Pre-flight test𝑥! 𝑥"𝑥# …
𝑥! 𝑥"𝑥# …

False alarm rate

Missed alarm rate
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Example: Trustworthyness 30

Confident
Providing an  

Explanation of the 
Prediction

Consistent with 
Laws of Physics

Trustworthy Fault Detectiom

Accurate

Physics-Informed AE
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Industrial Systems:
• Some Characteristics
Predictive Maintenance:
• Fault Detection
• Fault Diagnostics
• Fault Prognostics

Conclusions

Normal

Detection

Prognostics
Failure 

time
Present 

time

RUL

Knowledge Extraction

Diagnostics

Anomaly of type 1
Anomaly of Type 2

…
Anomaly of Type c

AI for PHM of Industrial Systems
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32Fault Diagnostics - Method

Empirical 
Classifier

(kNN, SVM, NN,…)

C0 = «Normal»

…
C1 = «Anomaly of    

Type 1»

C2 = «Anomaly of 
Type 2»
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33Fault Diagnostics – Data (D)

Empirical 
Classifier

(kNN, SVM, NN,…)
…

TRAINING

Real data «x1,x2,…xn, class»

C0 = «Normal»

C1 = «Anomaly of    
Type 1»

C2 = «Anomaly of 
Type 2»
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34Fault Diagnostics – Data (D)

Empirical 
Classifier

(kNN, SVM, ANN,…)
…

x1
x2

x 3

Real data «x1,x2,…xn, class»
x1

x2

x 3 TRAINING

Labels not available
Imbalanced classes

C0 = «Normal»

C1 = «Anomaly of    
Type 1»

C2 = «Anomaly of 
Type 2»
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TRAINING

Labels not available
Imbalanced classes

Data from  other components of the same fleet

35Fault Diagnostics – Data (D)

Empirical 
Classifier

(kNN, SVM, ANN,…)
…

Real data «x1,x2,…xn, class»

C0 = «Normal»

C1 = «Anomaly of    
Type 1»

C2 = «Anomaly of 
Type 2»
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Example: Automatic Doors of  a Fleet of High-Speed 
Trains

36

AI
Classifier

Healthy

Anomaly of type 1

Faults of doors cause unavailability 
of the trains.

ØRelevance:

Anomaly of type 2

Anomaly of type 3
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37Example: Data (D)
 

AI
Classifier

Healthy

Anomaly of type 1

Anomaly of type 2

Anomaly of type 3
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time

time

Example: Method
 

Train A

Train B

A
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Feature 1
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A
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Domain Adaptation
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Train	b

Train	A
NN-based 

Feature Extractor

Extracted
features f

NN- classifier 

Healthy 

Degradation 
Type 3

…

…

Example: Empirical Model – Adversarial Domain Adaptation
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1) Minimize classification error on 
Train A data

Ø Training Objectives: 

Train	b

Train	A
NN-based 

Feature Extractor

Extracted
features f

f	(A)

𝑓(𝐵)

f(A)

2) Minimize divergence between Train A and 
Train B in the space of the extracted features 

f

NN- classifier 

Healthy 

Degradation 
Type 3

…

…

Example: Empirical Model – Adversarial Domain Adaptation
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1) Minimize classification error on 
Train A data

Ø Training Objectives: 

Train	b

Train	A
NN-based 

Feature Extractor

Extracted
features f

f	(A)

𝑓(𝐵)

f(A)

2) Minimize divergence between Train A and 
Train B in the space of the extracted features 

f

Domain 
Discriminator

Train	A

Train	B	

Adversarial Learning:

NN-based 
Feature Extractor

is trained 
to cheat

Domain 
Discriminator

NN- classifier 

Healthy 

Degradation 
Type 3

…

…

Example: Empirical Model – Adversarial Domain Adaptation
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44Example: Results 

Classification Accuracy on Train B mean std
ANN trained using Train A labelled patterns 0.746 0.060

Adversarial domain adaptation method 
(Train A labelled patterns +

50% train B unlabelled patterns)
0.938 0.029

* B. Wang, P. Baraldi, E. Zio, “Deep Multi-Adversarial Conditional Domain Adaptation Networks for Fault Diagnostics of Industrial 
Equipment", 2022, IEEE Transactions on Industrial Informatics, 19(8).



Piero Baraldi

Example: Trustworthyness 45

Confident
Providing an  

Explanation of the 
Prediction

Consistent with 
Laws of Physics

Trustworthy Fault Diagnostics

Accurate

Domain 
Adaptation

Data from other 
components of the 

same fleet
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Industrial Systems:
• Some Characteristics
PHM:
• Fault Detection
• Fault Diagnostics
• Fault Prognostics

Conclusions

Normal

Detection

Prognostics
Failure 

time
Present 

time

RUL

Knowledge Extraction

Diagnostics

Anomaly of type 1
Anomaly of Type 2

…
Anomaly of Type c

AI for PHM of Industrial Systems



Fault Prognostics: Methods 47

Prediction
Model

Data 
Driven
(ANN, 
RNN, 
RVM,
Similarity-
based,…)

Model-
Based
 (Kalman 
Filter, 
Particle 
Filter,…)



48Fault Prognostics: Data (D) and Information (I)

(D)

(D)

(I)
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Example: Steam Generator of a Nuclear Power Plant 49

Prognostic
Model

Failure 
Threshold

Current
Time

Degradation mechanisms:
• Clogging of tube support plates
• Tube fouling  

Maintenance interventions:
• Mechanical cleaning (partial removal of deposit)
• Chemical cleaning  ($$$,long unavailability)

degradation

malfunctioning plant outage



Example: Data and Information (K)ID 50

Numerical Values
• Time from last inspection
• Number of performed chemical 

cleanings
• Number of performed mechanical 

cleanings

Images

Signal evolution during 
plant transients

Inspection reports Description of the 
condition of SG based on 
nondestructive testing and 
maintenance intervention

Texts

(D)

(D)

(I)



Example: Empirical Model - Multi-branch Deep 
Neural Network
 

51
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Example - Results 52

t

Degradation 
indicator

Threshold of 
mechanical cleaning

Threshold of 
chemical cleaning

0

Inspection

Record of chemical cleaning

Record of mechanical cleaning

Record of no maintenance

Transient 
signal

The best model using one 
source of information

The best model using two 
sources of information

Proposed
method

Sources of 
information

Mean 
Relative Error

10.7% 7.8% 6.8%

Prediction of the SG degradation at the next planned Inspection (50 Steam Generators)

Present  
time

Next
Inspection

Z. Yang, P. Baraldi, E. Zio, “A multi-branch deep neural network model for failure prognostics based on multimodal data”, Journal of 
Manufacturing Systems, 59, pp. 42-50, 2021.
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Example: Trustworthyness 53

Confident
Providing an  

Explanation of the 
Prediction

Consistent with 
Laws of Physics

Trustworthy Fault Prognostics

Accurate

Multi-branch
Deep Neural 

Network



54Fault Prognostics: Data (D)

Few run-to-failure trajectories 
from in-field applications

TRAINING
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Example: Li-Ion Battery 55

Prognostic
Model RUL

Discarging Cycle

• Li-Ion Battery: 
• high-power density
• low self-discharge
• relatively long life
• high cost
• risk of flame ignition

Predictive Maintenance to avoid failure:
• System safety    
• System availability
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Example: Data 56

In-field Applications

• Degradation is not measurable
• Few incomplete trajectories

time

𝑉𝑜
𝑙𝑡
𝑎𝑔
𝑒	

time

time

D
eg

ra
da

tio
n

Failure Threshold

?
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Example: Data 57

Laboratory 
(controlled environment)

• Run to Failure trajectories
• Measure degradation

In-field Applications

• Degradation is not measurable
• Few incomplete trajectories

time

D
eg

ra
da

tio
n

Failure Threshold

time

time

time

time

D
eg

ra
da

tio
n

Failure Threshold

?

𝑉𝑜
𝑙𝑡
𝑎𝑔
𝑒	

𝑉𝑜
𝑙𝑡
𝑎𝑔
𝑒	



Example: Empirical Model – Heterogeneous Transfer 
Learning

58



59

𝑥!"𝑥!#

𝑑!

𝑥$"

𝑥$#

```LSTM

𝑓2

𝑓3

Source domain

Target domain

Regressor 1

FC
1

FC
2

FC
3

𝑥$"𝑥$#

4𝑑$LSTM LSTM

epoch

ENCODER 1

Example: Empirical Model - Heterogeneous Transfer 
Learning
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𝑥!"𝑥!#

𝑑!

𝑥$"

𝑥$#

```LSTM

𝑓2

𝑓3

Source domain

Target domain

Regressor 1

FC
1

FC
2

FC
3

𝑥$"𝑥$#

4𝑑$LSTM LSTM

Loss function 1:
Maximum 

Mean 
Discrepancy 

(MMD)

Loss function 2:
Mean 

Squared 
Error 
(MSE)

epoch

=
1
𝑁!
0 𝑑! − 3𝑑!

"

ENCODER 1

Example: Empirical Model - Heterogeneous Transfer 
Learning



61

𝑥!"𝑥!#

𝑑!

𝑥$"

𝑥$#

```LSTM

𝑓2

𝑓3

Source domain

Target domain

Regressor 1

FC
1

FC
2

FC
3

𝑥$"𝑥$#

4𝑑$LSTM LSTM

Loss function 1:
Maximum 

Mean 
Discrepancy 

(MMD)

(LSTM= Long Short-Term Memory
Used to catch the time-dependent
behavior embedded in time-series
signals)

Loss function 2:
Mean 

Squared 
Error 
(MSE)

epoch

=
1
𝑁!
0 𝑑! − 3𝑑!

"

Example: Empirical Model - Heterogeneous Transfer 
Learning
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𝑥!"𝑥!#

𝑑!

Data in lab

```LSTM

Encoder 2 𝑓2

𝑓3

Source domain

Regressor 2

FC
1

FC
2

FC
3

𝑥$"𝑥$#
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LSTM LSTM
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Loss function 1:
Maximum Mean Discrepancy 

(MMD)

𝑓#

𝑓"

epoch

Loss function 2:
Mean Squared Error 

(MSE)

epoch

=
1
𝑁!
0 𝑅𝑈𝐿! −8𝑅𝑈𝐿!

"

Domain 
Adaptation 

Model 1

Reconstructed
target domain
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time

Example: Empirical Model - Heterogeneous Transfer 
Learning
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Method

Performance Metric

Cumulative Relative 
Accuracy

Traditional LSTM Model 
(no use of in-field data) 0.24

Homogeneous Domain Adaptation 
(HDA)

(no use of degradation data in source 
domain)

0.81

Heterogeneous Transfer Learning 
(HTL)

(developed method)
0.87

𝑅𝐴 = 1 −
𝑅:𝑈𝐿 − 𝑅𝑈𝐿$%

𝑅𝑈𝐿$%

Time

R
U

L

RUL predictions of one test battery
(In-field Application)

Ground Truth
LSTM
HDA
HTL

Time
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Estimation of 
Uncertainty of the 

Prediction

Providing an  
Explanation of the 

Prediction

Consistent with 
Laws of Physics

Trustworthy Fault Prognostics

Accurate

Domain 
Adaptation

Few run-to-failure 
trajectories 
from in-field 
applications
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Industrial Systems:
• Some Characteristics
PHM:
• Fault Detection
• Fault Diagnostics
• Fault Prognostics

Conclusions

Normal

Detection

Prognostics
Failure 

time
Present 

time

RUL

Knowledge Extraction

Diagnostics

Anomaly of type 1
Anomaly of Type 2

…
Anomaly of Type c

AI for PHM of Industrial Systems
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AI for PHM of Industrial Systems: Trustworthiness
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67AI for PHM: How Can We Trust It? 

Confident
Providing an  

Explanation of the 
Prediction

Consistent with 
Laws of Physics

Trustworthy PHM

Accurate
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68AI for PHM: How Can We Trust It? 

Confident
Providing an  

Explanation of the 
Prediction

Consistent with 
Laws of Physics

Trustworthy PHM

Accurate

Physics-
Informed

Neural 
Networks

Domain 
Adaptation

Multi-
branch
Deep 

Neural 
Network
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69AI for PHM: How Can We Trust It? 

Confidence
Providing an  

Explanation of the 
Prediction

Consistent with 
Laws of Physics

Trustworthy PHM

Accurate

Sources of uncertainty:
 1) noise on the measurements
 2) stochasticity of the degradation 

process
 3) unknown future 
external/operational conditions 
 4) Modeling errors, i.e. inaccuracy 

of the prognostic model used to 
perform the prediction

• Bootstrapped Ensemble
• Monte Carlo Dropout
• …

0 500 1000 1500 2000
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Time [days]
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L 
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Confidence Interval
True RUL
Predicted RUL

Baraldi P., Mangili F., Zio E.; «Investigation of uncertainty treatment capability of model-based and data-driven prognostic methods using 
simulated data»; (2013) Reliability Engineering and System Safety, 112, pp. 94 - 108
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Confident
Providing an  

Explanation of the 
Prediction

Consistent with 
Laws of Physics

Trustworthy Artificial Intelligence

Accurate

eXplainable AI:
• LIME
• SHAP
• CARTOONX
• …

RUL is 57 H because of 
Signal 3 strange behaviour 

Insulator is classified as 
broken because of this area

Floreale, G., Baraldi, P., Zio, E., & Fink, O. (2023). Exploiting Explanations to Detect Misclassifications of Deep Learning Models in Power Grid 
Visual Inspection. 33rd European Safety and Reliability Conference (ESREL 2023) 3 – 8 September 2023, Southampton, UK.



Piero Baraldi

71

AI-based 
PHM

Model
It is degraded due to creeping 
It is going to fail  in: 57:25:18

Conclusion: PHM – When Will We Trust It?

Estimation of 
Uncertainty of the 

Prediction

Providing an  
Explanation of the 

Prediction

Consistent with 
Laws of PhysicsAccurate

I believe it! I will do 
maintenance within 3 
days
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