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Probability

Definition: Probability P is a function that maps all events A onto real 

numbers and satisfies the following three axioms: 

1. If S is the set of all possible outcomes, then 𝑃(𝑆) = 1

2. 0 ≤ 𝑃(𝐴) ≤ 1

3. If A and B are mutually exclusive (𝐴 ∩ 𝐵 = ∅) then 

𝑃(𝐴 ∪ 𝐵) = 𝑃(𝐴) + 𝑃(𝐵)

From the three axioms it follows that:

I. 𝑃(∅) = 0

II. If 𝐴 ⊂ 𝐵, then 𝑃(𝐴) ≤ 𝑃(𝐵)

III. 𝑃( ҧ𝐴) = 1 − 𝑃(𝐴)

IV. 𝑃(𝐴 ∪ 𝐵) = 𝑃(𝐴) + 𝑃(𝐵) − 𝑃(𝐴 ∩ 𝐵)
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Conditional probability

Definition of independence: Two events A and B are independent if

𝑃(𝐴 ∩ 𝐵) = 𝑃(𝐴)𝑃(𝐵)

Conditional probability 𝑃(𝐴|𝐵) of A given that B has occurred is 

𝑃 𝐴 𝐵 =
𝑃(𝐴∩𝐵)

𝑃(𝐵)

Note: If A and B are independent, the probability of A (B) does not 

depend on whether B (A) has occurred or not: 

𝑃 𝐴 𝐵 =
𝑃(𝐴 ∩ 𝐵)

𝑃(𝐵)
=

𝑃 𝐴 𝑃(𝐵)

𝑃(𝐵)
= 𝑃(𝐴)
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Law of total probability

If 𝐸1,…., 𝐸𝑛 are mutually exclusive and collectively exhaustive

events, then

𝑃(𝐴) = 𝑃(𝐴|𝐸1)𝑃(𝐸1) + ⋯ + 𝑃(𝐴|𝐸𝑛)𝑃(𝐸𝑛)

Most frequent use of this law:

– Events A and B are mutually exclusive and collectively exhaustive

– Probabilities 𝑃(𝐴|𝐵), 𝑃(𝐴| ത𝐵), and 𝑃(𝐵) are known

– These can be used to compute 

𝑃(𝐴) = 𝑃(𝐴|𝐵)𝑃(𝐵) + 𝑃(𝐴| ത𝐵)𝑃( ത𝐵)
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Bayes’ rule

Bayes’ rule: 𝑃 𝐴 𝐵 =
𝑃(𝐵|𝐴)∙𝑃(𝐴)

𝑃(𝐵)

It follows from:

• Definition of conditional probability: 

𝑃 𝐴 𝐵 =
𝑃(𝐴∩𝐵)

𝑃(𝐵)
; 𝑃 𝐵 𝐴 =

𝑃(𝐵∩𝐴)

𝑃(𝐴)
.

• Commutative laws: 𝑃 𝐵 ∩ 𝐴 = 𝑃 𝐴 ∩ 𝐵 .
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Bayes’ rule

Example: 

▪ The probability of a fire in a certain building is 1/10000 any given day. 

▪ An alarm is activated whenever there is an actual fire, but also once in 

every 200 days for no reason (false alarm). 

▪ Suppose the alarm is activated. What is the probability that there is a 

fire?

Solution: 

𝐹 = 𝐹𝑖𝑟𝑒, ത𝐹 = 𝑁𝑜 𝑓𝑖𝑟𝑒, 𝐴 = 𝐴𝑙𝑎𝑟𝑚, ҧ𝐴 = 𝑁𝑜 𝑎𝑙𝑎𝑟𝑚

𝑃 𝐹 = 0.0001, 𝑃( ത𝐹) = 0.9999, 𝑃(𝐴|𝐹) = 1, 𝑃(𝐴| ത𝐹) = 0.005

Bayes: 𝑃(𝐹|𝐴) =
𝑃(𝐴|𝐹)𝑃 𝐹

𝑃 𝐴
=

1∙0.0001

0.0051
≈ 2%

Law of total probability: 𝑃(𝐴) = 𝑃(𝐴|𝐹)𝑃(𝐹) + 𝑃(𝐴| ത𝐹) 𝑃( ത𝐹) = 0.0051
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Exercise

A test for diagnosing a particular degradation mechanism is known to be 

95% accurate. 

The test is performed on a component and the result is positive. 

Suppose the component comes from a fleet of 100000, where 2000 

suffer from this degradation. 

What is the probability that the component is affected by the considered 

degradation mechanism?
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Bayesian Networks: what? 12

Bayesian Network (BN): is a directed acyclic graph consisting of:

• Nodes 𝑉 = {1, … , 𝑁}, shown as circles, represent the random events 

whose combination can lead to system failure. 

• Directed arcs 𝐸 ⊆ {(𝑖, 𝑗)|𝑖, 𝑗 ∈ 𝑉, 𝑖 ≠ 𝑗} indicate conditional 

dependencies among nodes. Specifically, the arc (𝑖, 𝑗) ∈ 𝐸 which connects 

node 𝑗 ∈ 𝑉 to node 𝑖 ∈ 𝑉 shows that the event at node 𝑗 is conditionally 

dependent to the event at node 𝑖.

Bayesian Network are also called Bayesian Belief Networks (BBNs)



Bayesian Network Example

Gas 

leakage

Detection 

system 1

Detection 

System 2

Alarm

Leakage 

yes

Leakage 

no

0.01 0.99

Leakage DS1: 

Activated

DS1: 

Not Activated

Yes 0.95 0.05

No 0.05 0.95

Detection 

System 1

Detection 

System 2

Alarm: 

yes

Alarm: 

no

Activated Activated 0.99 0.01

Activated Not 

Activated

0.95 0.05

Not 

Activated

Activated 0.95 0.05

Not 

Activated

Not 

Activated

0.01 0.99

Leakage DS2: 

Activated

DS2: 

Not Activated

Yes 0.95 0.05

No 0.05 0.95



Acyclic… what?

A path is a sequence of nodes (𝑖1, 𝑖2, … , 𝑖𝜂), 𝜂 > 1 such that

𝑖𝑗 , 𝑖𝑗+1 ∈ 𝐸; 𝑗 < 𝜂

BBN acyclic → there is no path (𝑖1, 𝑖2, … , 𝑖𝜂),  𝜂 > 1 such that 

𝑖𝑗 , 𝑖𝑗+1 ∈ 𝐸, 𝑗 < 𝜂 and 𝑖1 = 𝑖𝜂
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Bayesian Networks: Consist of two parts 15

F

D E

A B C

1- qualitative part, which is 

its structure, 

2- quantitative part, which contains 

its probabilistic parameters.

The parameters of BN are 

probability distributions (PDs). 

While a dependency between a 

node and its parent is expressed 

by a conditional probability 

distribution (CPD), root nodes are 

described by their marginal 

probability distributions (MPDs).

A is the parent of node D (i.e. node 

D is the child of node A).

Nodes A, B, C that have no parents, 

are root nodes, and Node F that 

has no child is a leaf node



Bayesian Networks, why? 16

Bayesian networks are probabilistic graphical models, which offer a 

convenient and efficient way of generating joint distribution of all its 

events.

• Convenient: causal relationships between events are easy to 
model.

• Efficient: no redundancies in terms of graphical modelling and 
probability computations.

• Flexible: capable of handling imprecise information by 
capturing quantitative and qualitative data.

“Microsoft’s competitive advantage lies in its expertise in Bayesian 
Networks”
-- Bill Gates, quoted in LA Times, 1996



Solving Bayesian Networks

We define: 

• follower nodes of 𝑖 ∈ 𝑉: 𝑉+
𝑖 = {𝑗| 𝑖, 𝑗 ∈ 𝐸}

• predecessor nodes (parent) of 𝑖 ∈ 𝑉: 𝑉−
𝑖 = {𝑗| 𝑗, 𝑖 ∈ 𝐸}

All nodes can be partitioned into

• Leaf nodes 𝑉𝐿 = {𝑖 ∈ 𝑉|𝑉−
𝑖 = ∅}

• Dependent nodes 𝑉𝐷 = 𝑉 \𝑉𝐿 = {𝑖 ∈ 𝑉|𝑉−
𝑖 ≠ ∅}

The depth of node 𝑖 ∈ 𝑉 in the network can be calculated recursively by

𝑑𝑖 = ቐ
0 𝑉−

𝑖 = ∅

1 + max
𝑗∈ 𝑉−

𝑖
𝑑𝑗 𝑉−

𝑖 ≠ ∅
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Solving Bayesian Networks 18

𝑿𝑖 = random variable representing the uncertainty in the state of event at 

node 𝑖 ∈ 𝑉. 

The realization 𝑠 of 𝑿𝑖 belongs to the set of states 𝑆𝑖 = {0, … , |𝑆𝑖|}

𝑿 = 𝑿1, … , 𝑿𝑁 = BN state vector (where 𝑁 is the number of node)

𝑃 𝑿 = ෑ

𝒊=𝟏

𝑵

𝑃 𝑿𝑖 𝑿𝑗 , 𝑗 ∈ 𝑉−
𝑖

 

The BN can be solved by propagating the uncertainty from leaf nodes 𝑉𝐿 

to nodes with the largest depth



Computational issues 19

Theorem:  Computing event probabilities in a Bayesian network is NP-hard.

P

NP

NP-hard

Quickly solvable

(by a proper 

algorithm)

Not quickly solvable,

but given a solution it can be 

checked in a reasonable 

amount of time

Not quickly solvable.

We cannot be sure if a solution 

is the most efficient one

NP-hard: complexity class of problems which

cannot be solved by a Nondeterministic

(ideal) machine in Polynomial time (i.e.,

necessary number of steps upper bounded

by a polynomial function of the number of

inputs)

That means that there is no general way to

solve a NP-hard problem!

Problem complexity classification



Computational issues 20

Theorem:  Computing event probabilities in a Bayesian network is NP-hard

Hardness does not mean it is impossible to perform inference, but:

• There is no general procedure that works efficiently for all networks

• For particular families of networks, there are proved efficient procedures

• Different algorithms are developed for inferences in Bayesian networks

There are available software that efficiently perform Bayesian Network inference 

through a library of functions for several popular algorithms, among those:

• GeNIe Modeler: https://www.bayesfusion.com/genie-modeler

• HUGIN Expert: https://www.hugin.com/

• BayesiaLab: https://www.bayesia.com/

https://www.bayesfusion.com/genie-modeler
https://www.hugin.com/
https://www.hugin.com/


Computational issues

Factored representation may have exponentially fewer parameters than full 

joint 𝑃 𝑿

If |Si|=2 for every i, the number of parameters reduces from 25 – 1 = 31

to 1+1+2+4+2=10

E B

R A

C



Computational issues

Factored representation may have exponentially fewer parameters than full 

joint 𝑃 𝑿

A real case study: Monitoring Intensive-Care Patients

• 37 variables

• 509 parameters, instead of  237

PCWP CO

HRBP

HREKG HRSAT

ERRCAUTERHRHISTORY

CATECHOL

SAO2 EXPCO2

ARTCO2

VENTALV

VENTLUNG VENITUBE

DISCONNECT

MINVOLSET

VENTMACH
KINKEDTUBEINTUBATIONPULMEMBOLUS

PAP SHUNT

ANAPHYLAXIS

MINOVL

PVSAT

FIO2

PRESS

INSUFFANESTHTPR

LVFAILURE

ERRBLOWOUTPUTSTROEVOLUMELVEDVOLUME

HYPOVOLEMIA

CVP

BP
Figure from N. Friedman



Inference

Assume to collect some observation (evidence) from the system. In this 

case the state is said “instantiated”

How would this evidence impact the probabilities of the events? 

Consider the following three schemes:
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A B C Serial connection

A

B C

Diverging connection

A

B C

Converging connection



Serial Connection

• Evidence on A influences successor nodes

• Evidence on C influences predecessor nodes

• Evidence on B makes A and C independent

Example

A: Failure Event (yes/no)

B: Alarm Activation (yes/no)

C: Plant Evacuation (yes/no)

If we have evidence of a Failure Event→ we change the probability of 

Alarm Activation and, then, the probability of having a Plant Evacuation.

If we have evidence of Plant Evacuation → we change the probability of 

Alarm Activation and, then, the probability of having a failure event.

If we know that the alarm is activated (or not), we cut the communication 

between Failure Event and Plant Evacuation

24

A B C



Diverging Connection 25

A

B C

Diverging connection

• Evidence on A influences nodes B and C

• Evidence on C influences A and, then, B

• Evidence on A cuts the communication between B and C

Example

A: Failure Event (yes/no)

B: Detection System 1 (activated/not activated)

C: Detection System 2 (activated/not activated)

If we have evidence of the activation of Detection System 1 → we 

change the probability of failure event and, then, the probability of 

activation of Detection System 2.

If we know that the failure event is occurrred (or not), we know the 

probability of activation of Detection System 1 and Detection System 2, 

which do not influence each other 



Converging Connection 26

C

B A

• Evidence on C influences nodes B and A

• Evidence on B influences node C,only

• Evidence on C and B, influences node A 

differently from influence of node C only 

Example

A: Fuel level in a car (empty/full)

B: Spark plugs (working/failed)

C: Start (Yes/No)

If we have evidence that the car cannot start→ we change the probability 

that the fuel level is empty and sparks are failed.

If we have evidence that the car cannot start and that the fuel is full→ we 

change the probability that sparks are failed



d-separation

In a Bayesian Network, two nodes A and B are d(irectional)-separated if 

for all indirected paths between A and B there is a node C such that at 

least one of the following conditions holds:

• The connection A-B is serial or diverging and C is instantiated

• The connection A-B contains converging structure and neither C nor 

any of C’s successors are instantiated

If events A and B are d-separeted, evidence on A does not influence B

27



Example 28

A C B

D E F

H I J

G

K L

M

Are A and B d-separated?



Example 29

A C B

D E F

H I J

G

K L

M

Are A and B d-separated?

Yes, on 

this path



Example 30

A C B

D E F

H I J

G

K L

M

Are A and B d-separated?

d-connected 

by this path



Inference on Bayesian Networks 31

Question: assume to collect some observations (evidence) from the system; 

how would this evidence impact the probabilities of the events? 

The conditional probability of a random event given the evidence is known as a 

posteriori belief, useful in case of:

• Prediction: computing the probability of an outcome event given the 

starting condition → Target is a descendent of the evidence!

• Diagnosis: computing the probability of disease/fault given symptoms →

Target is an ancestor of the evidence!

Note: probabilistic inference can propagate and combine evidences from all parts 

of the network (the directions of arcs do not limit the directions of the queries)



Computer example 32

Electric failure Malfunction

Computer failure

Use backup power

Restart

P(E)

0.001

P(M)

0.02

E  M P(C)

T  T 0.95
T  F 0.94
F  T 0.29
F  F 0.001

C P(B)

T   0.80
F   0.01

C   P(R)
T   0.90
F   0.05



Examples of inference 33

𝑃 𝐵 𝐸 = 𝑃 𝐵 𝐶 𝑃 𝐶 𝐸 + 𝑃 𝐵 ҧ𝐶 𝑃( ҧ𝐶|𝐸)

𝑃 𝐶 𝐸 = 𝑃 𝐶| ഥ𝑀, 𝐸 𝑃 ഥ𝑀 + 𝑃 𝐶|𝑀, 𝐸 𝑃 𝑀

𝑃 𝐶 𝐸 = 0.98 ∙ 0.94 + 0.02 ∙ 0.95 = 0.94

𝑃 𝐵 𝐸 = 𝑃 𝐶 𝐸 ∙ 0.8 + 𝑃( ҧ𝐶|𝐸) ∙ 0.01

𝑃 𝐵 𝐸 = 0.94 ∙ 0.8 + 0.06 ∙ 0.01 = 0.75

What it is the probability that the backup power is working given an electrical 

failure?



Exercise on inference 34

What it is the probability that the electricity is not working given a backup 

power event (== you RELY on backup power)?



Weather example 35

In the above network there are four nodes. Each node has two states. For 

example the node “sun” has two states: 1- “yes” which represents sunny 

weather, and “no” which represents non sunny weather. Note that nodes can 

have more than two states.

Q1. Calculate the probability of having high temperature : p(Temp=high)=?



Weather example: Solution 36

p(Temp=high)=p(Temp=high/Sun)p(Sun)

Q1. Calculate the probability of 

having high temperature : 

p(Temp=high)=?

p(Temp=high)=p(Temp=high/Sun)p(Sun) =

p(Temp=high/Sun=yes)p(Sun=yes)+ p(Temp=high/Sun=no)p(Sun=no) =

0.8*0.3+0.5*0.7=0.59



Weather Exercise 37

Q1. Calculate the probability of 

having no humid, p(Humid=no)

Q2. Calculate 

p(Humid=yes/Rain=no)
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BNs for Risk and Reliability Analysis 39

Scenario modeling and quantification are pursued through:

FAULT TREE ANALYSIS (FTA)

1. Events are binary events 

(operating/not-operating);

2. Events are statistically independent;

3. Relationships between events and 

causes are represented by logical gates 

(e.g., AND and OR for coherent FT);

4. The undesirable event, called Top 

Event, is postulated and the possible 

ways for the occurrence of this event are 

systematically deduced.



BNs for Risk and Reliability Analysis 40

Scenario modeling and quantification are pursued through:

EVENT TREE ANALYSIS (ETA)

1. System evolution following the hazardous 

occurrence is divided into discrete events;

2. System evolution starts from an initiating 

event;

3. Each event has a finite set of outcomes 

(commonly there are two outcomes: 

occurring event or not occurring) associated 

with the occurrence probabilities; 

4. The leafs of the event tree represent the 

event scenarios to be analyzed.



Mapping FT into Bayesian Network 41

• Procedures:

• Create a leaf node in BN instead of each basic event in FT. Although if

more basic events represent a component, we can create just one leaf node

for BN. In fact, we can create a leaf node in BN for each basic event,

component, subsystem and … of the system.

• For each gate of FT create a node in BN.

• Connect nodes of BN as their respective basic events, components,

subsystems, gates and … in FT are connected.

• The direction of the connections (i.e. edges) is from the nodes that impose

effect toward the nodes that receive the effect.



Mapping FT into Bayesian Network 42

Reference: Bobbio A., 

Portinale L., Minichino M., 

Ciancamerla E., “Improving 

the analysis of dependable 

systems by mapping fault 

trees into Bayesian 

networks”, Reliability 

Engineering and System 

Safety 71, pp. 249–260 

(2001) .

Switching 

from binary 

logic to 

probabilistic 

logic!



Any event tree with three events 𝒆𝟏, 𝒆𝟐, and 𝒆𝟑 can be represented 

by the BN shown below.

Two types of directed arc complete the network: 

▪ Consequence arcs (shown as dotted lines) connect each event node 

to the consequence node. This relationship is deterministic: the 

probability table for the consequence node encodes the logical 

relationship between the events and the consequences.

▪ Causal arcs (shown as solid lines) connect each event node to all 

events later in time. For instance, event 𝒆𝟏 is a causal factor for event 

𝒆𝟐, thus it influences the probability of event 𝒆𝟐.

43Mapping ET into Bayesian Network

Reference: Bearfield G., 

Marsh W., “Generalizing 

Event Trees Using 

Bayesian Networks with 

a Case Study of Train 

Derailment”, Computer 

Safety, Reliability, and 

Security (2005).



44Mapping ET into Bayesian Network 

(alternatives)



Reliability Modeling through BN: example

The generation system fails when the delivered power is under 60KVA

45



Fault Tree 46



Reliability Modeling through BN: example 47

Line 1
Line 2

Line 3



Reliability Modeling through BN: example 48

Line 1
Line 2

Line 3



Reliability Modeling through BN: example 49

Line 1
Line 2

Line 3



Reliability Modeling through BN: example 50

Line 1
Line 2

Line 3



Reliability Modeling through BN: example 51

Line 1
Line 2

Line 3



Advantages of BN model

Multi-state modeling


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5: Probability
	Slide 6: Conditional probability
	Slide 7: Law of total probability
	Slide 8: Bayes’ rule
	Slide 9: Bayes’ rule
	Slide 10: Exercise
	Slide 11
	Slide 12: Bayesian Networks: what?
	Slide 13: Bayesian Network Example
	Slide 14: Acyclic… what?
	Slide 15: Bayesian Networks: Consist of two parts
	Slide 16: Bayesian Networks, why?
	Slide 17: Solving Bayesian Networks
	Slide 18: Solving Bayesian Networks
	Slide 19: Computational issues
	Slide 20: Computational issues
	Slide 21: Computational issues
	Slide 22: Computational issues
	Slide 23: Inference
	Slide 24: Serial Connection
	Slide 25: Diverging Connection
	Slide 26: Converging Connection
	Slide 27: d-separation
	Slide 28: Example
	Slide 29: Example
	Slide 30: Example
	Slide 31: Inference on Bayesian Networks
	Slide 32: Computer example
	Slide 33: Examples of inference
	Slide 34: Exercise on inference
	Slide 35: Weather example
	Slide 36: Weather example: Solution
	Slide 37: Weather Exercise
	Slide 38
	Slide 39: BNs for Risk and Reliability Analysis
	Slide 40: BNs for Risk and Reliability Analysis
	Slide 41: Mapping FT into Bayesian Network
	Slide 42: Mapping FT into Bayesian Network
	Slide 43: Mapping ET into Bayesian Network
	Slide 44: Mapping ET into Bayesian Network (alternatives)
	Slide 45: Reliability Modeling through BN: example 
	Slide 46: Fault Tree
	Slide 47: Reliability Modeling through BN: example 
	Slide 48: Reliability Modeling through BN: example 
	Slide 49: Reliability Modeling through BN: example 
	Slide 50: Reliability Modeling through BN: example 
	Slide 51: Reliability Modeling through BN: example 
	Slide 52: Advantages of BN model

