POLITECNICO MILANO 1863

FAULT DETECTION Part 1 & 2

Ibrahim Ahmed, Department of Energy, Politecnico di Milano ibrahim.ahmed@polimi.it

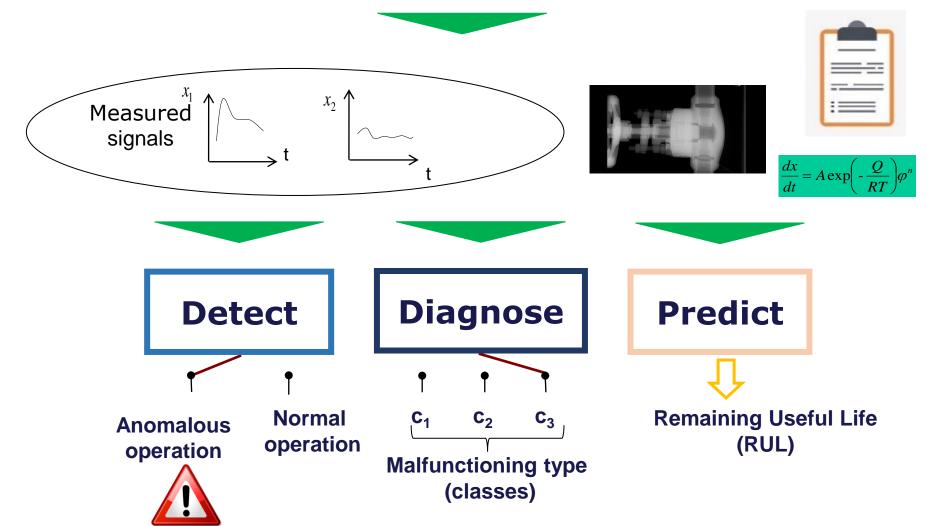
lasar

- Part 1: Model of the Equipment Behavior in Normal Condition
 - 1A) Auto Associative Kernel Regression (AAKR)
 - 1B) Principal Component Analysis (PCA)
- Part 2: Statistical Test
 - 2A) Thresholds-Based
 - 2B) Q-Statistics
 - 2C) Sequential Probability Ratio Test (SPRT)

Overview

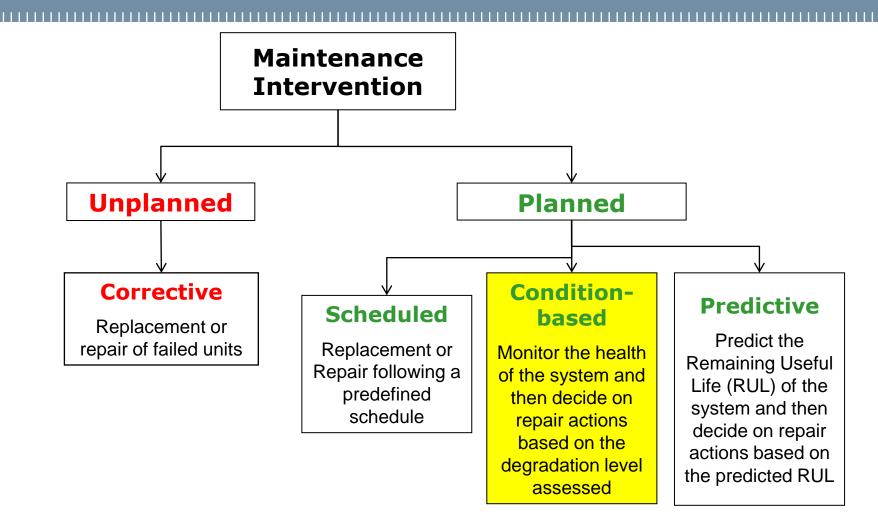
Context: Prognostics and Health Management (PHM)

Equipment (System, Structure or Component)



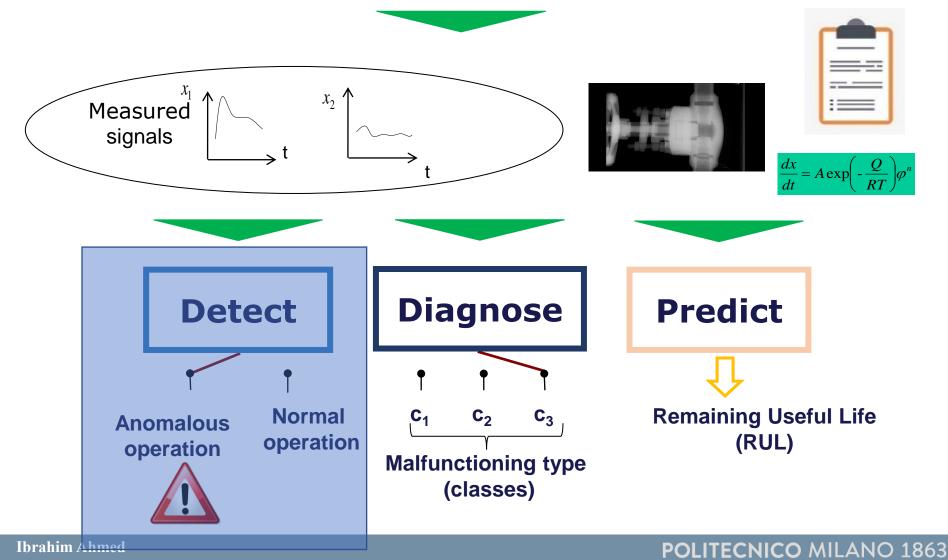
Ibrahim Ahmed

Context: Maintenance Interventions & PHM



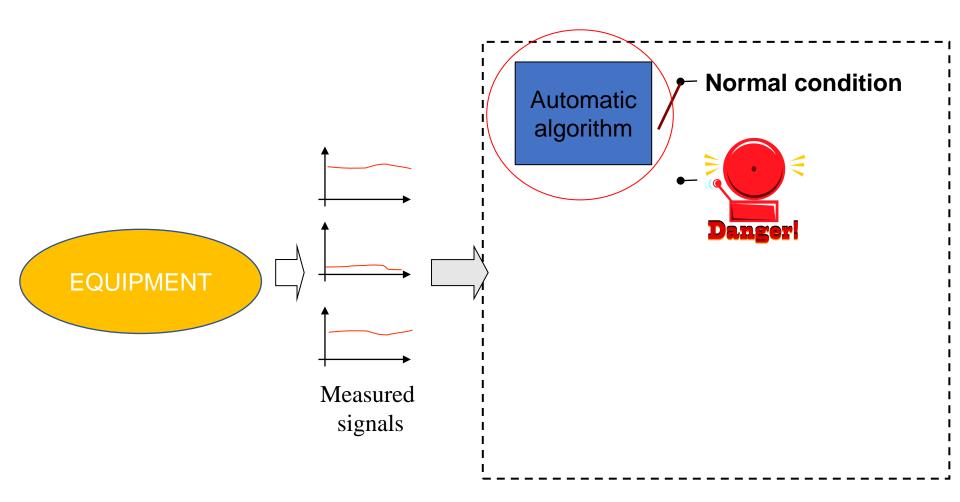
In This Lecture: Fault Detection

Equipment (System, Structure or Component)

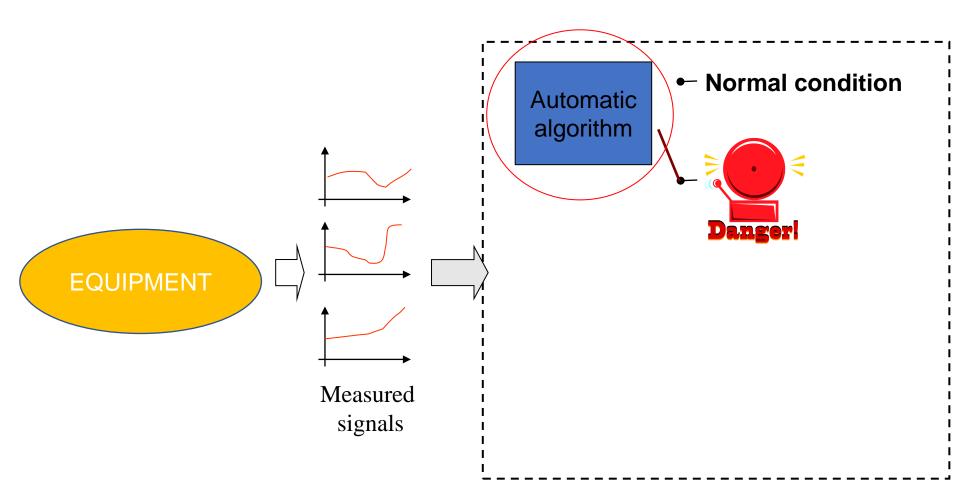


Ibrahim Ahmed

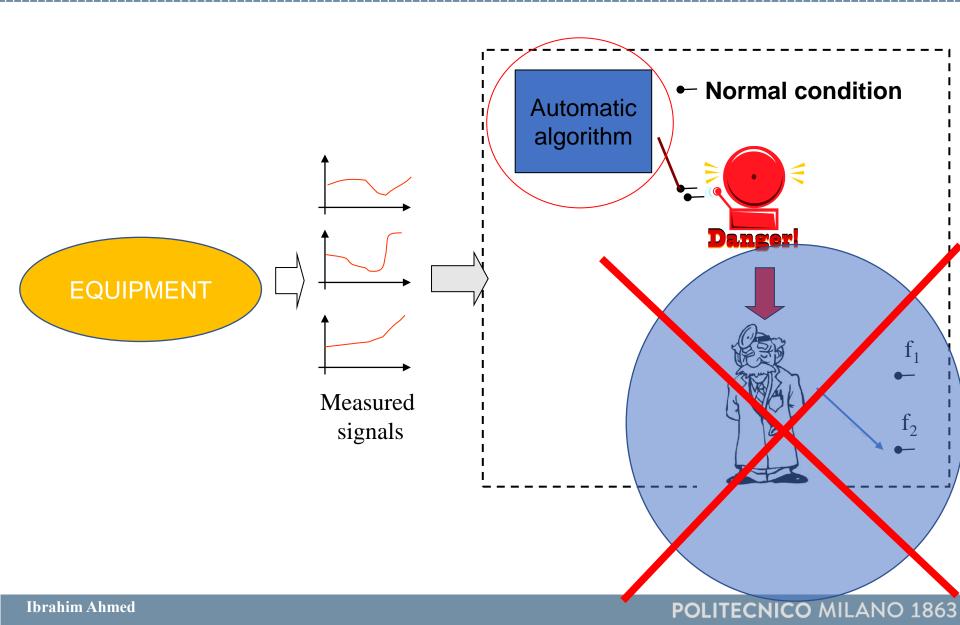
Fault Detection: What is?



Fault Detection: What is?



Fault Detection: What is not?



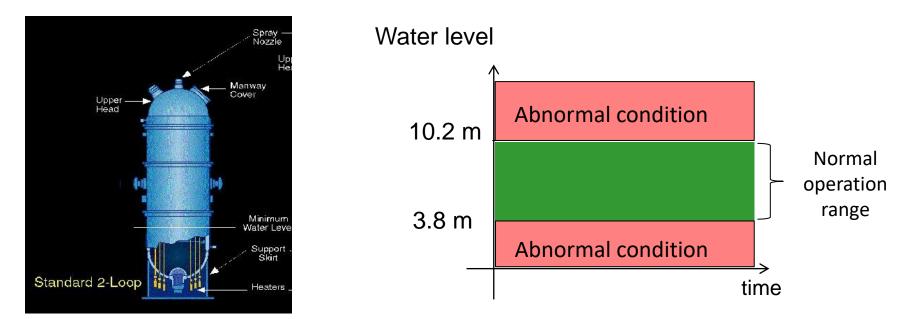
- Limit-based
- Model-based
- Data-driven

Limit-based fault detection: data & information

Normal operation ranges of key signals

Example:

Pressurizer of a nuclear reactor



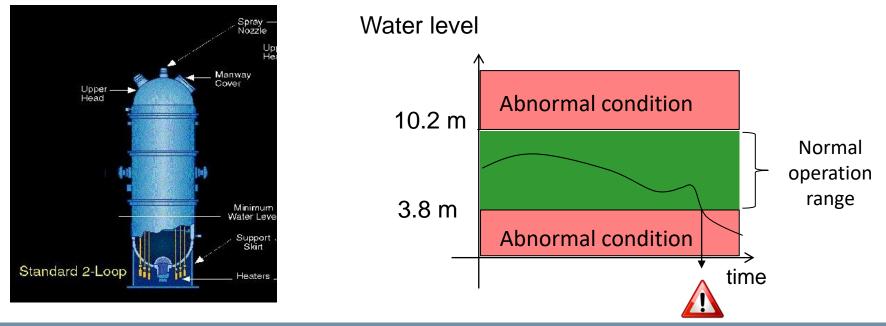
Limit-based fault detection: the method

• Normal operation ranges of key signals

Limit Value-Based Fault Detection

Example:

Pressurizer of a nuclear reactor

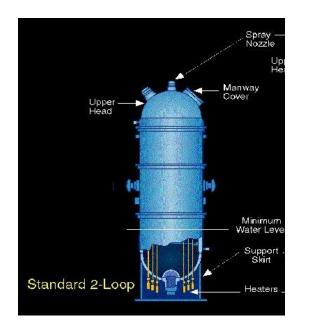


Limit-based fault detection: Limitations

Water level

Normal operation ranges of key signals

Example:

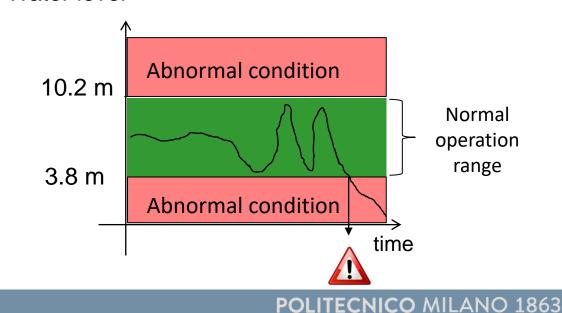


Pressurizer of a PWR nuclear reactor

Limitations:

- No early detection
- •Not applicable to fault detection during operational transients

Control systems operations may hide small anomalies (the signal remains in the normal range although there is a process anomaly)
Considering signal individually can delay detection

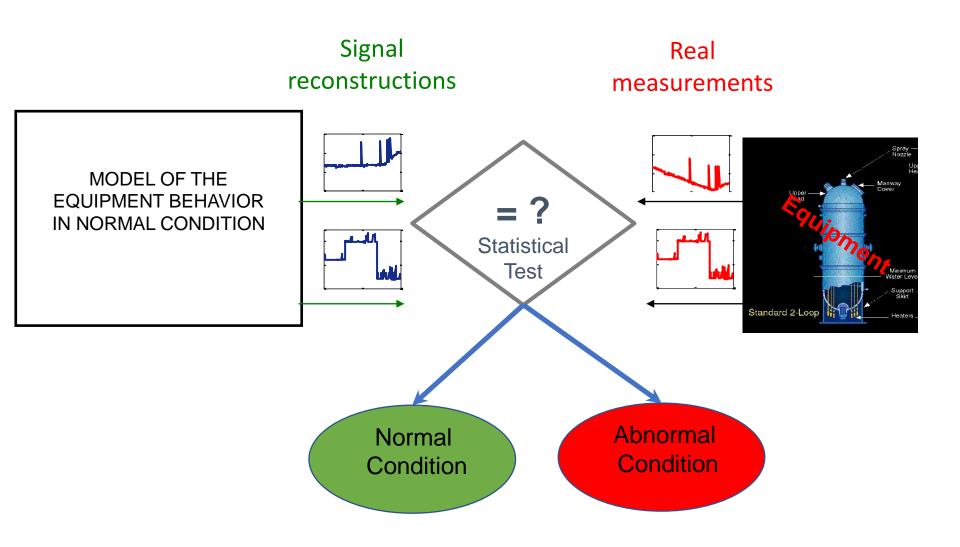


Ibrahim Ahmed

Fault Detection: Approaches

- Limit-based
- Model-based
- Data-driven

Model-based & Data-driven fault detection: basic idea



POLITECNICO MILANO 1863

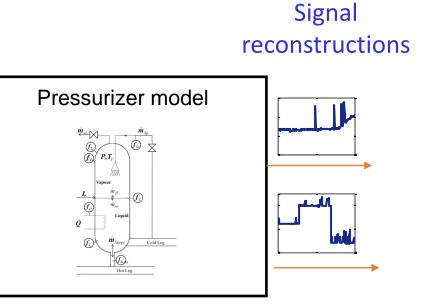
Ibrahim Ahmed

Fault Detection: Approaches

- Limit-based
- Model-based
- Data-driven

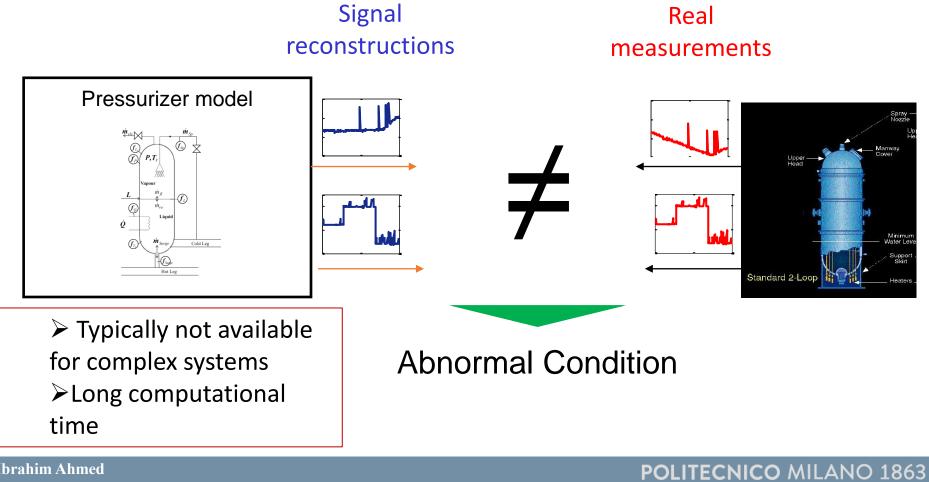
Model-based fault detection: data & information

• Physics-based model of the process (used to reproduce the expected behavior of the signals in normal condition)



 Physics-based model of the process (used to reproduce the expected behavior of the signals in normal condition)

Example:



Fault Detection: Approaches

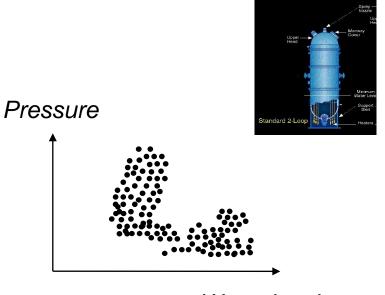
- Limit-Based
- Model Based
- Data-driven

Data-driven fault detection: data & information

Historical signal measurements in normal operation

Example:

Pressure	Liquid temperat ure	Steam temperat ure	Spray flow	Surge line flow	Heaters power	Level
150.2	321	362	539	244	0	7.2
150.4	322	363	681	304	0	7.5
150.3	323	364	690	335	1244	7.7

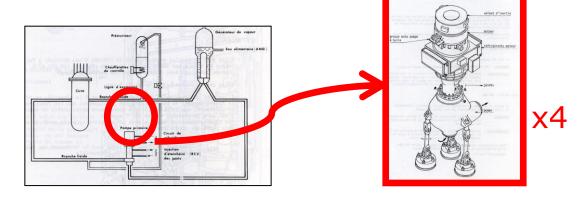


Water level

Example of Application 1*

COMPONENT TO BE MONITORED

Reactor Coolant Pump of PWR Nuclear Power Plant

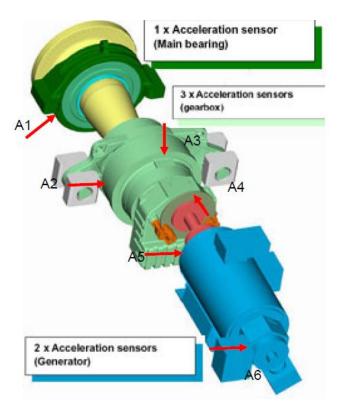


Measured signals	48 (Temperatures, pressures, flows,)
Available data	Historical signal measurements in normal plant condition [1 year, frequency=1/30 Hz]

* Work developed with EDF-R&D

Ibrahim Ahmed

Example of Application 2



Measured signals	6 vibration signals measured by accelerometers
Available data	Historical signal measurements in normal plant condition [3 years, frequency=5 kHz]

Ibrahim Ahmed

Data-driven fault detection: possible methods

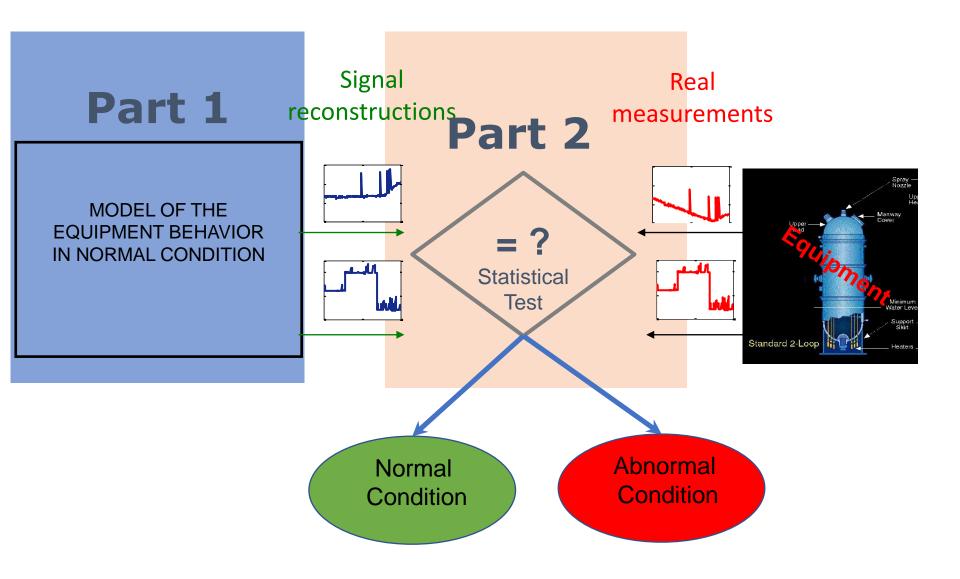
- Statistical Approaches:
 - AutoAssociative Kernel Regression (AAKR)
 - Principal Component Analysis (PCA)-based
 - ...
- Artificial Intelligence (AI)-based
 - Feedforward Neural Networks (FNNs)
 - AutoAssociative Neural Networks (AANNs)
 - AutoEncoders (AEs)
 - Self Organizing Maps
 - ...

Part 1: Model of the Equipment Behavior in Normal Condition

- 1A) Auto Associative Kernel Regression (AAKR)
- 1B) Principal Component Analysis (PCA)
- Part 2: Statistical Test
 - 2A) Thresholds-Based
 - 2B) Q-Statistics
 - 2C) Sequential Probability Ratio Test (SPRT)

24

In This Lecture



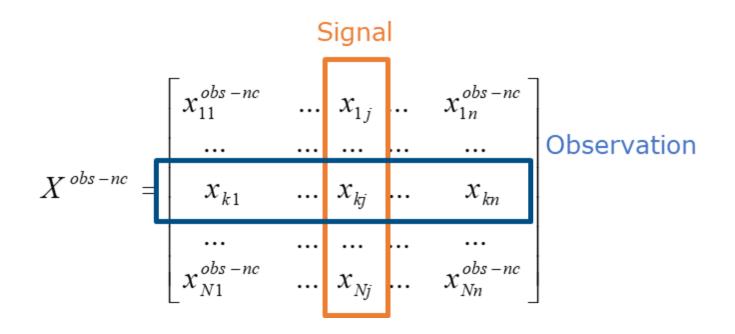
POLITECNICO MILANO 1863

Ibrahim Ahmed

PART 1: Model of the Equipment Behaviour in Normal Condition

- Auto Associative Kernel Regression (AAKR)
- Principal Component Analysis (PCA)

Data in normal conditions

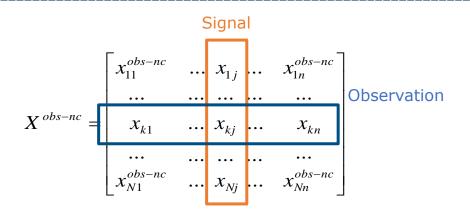


obs-nc = observation in normal condition

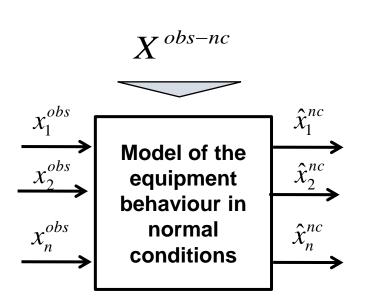
Ibrahim Ahmed

Training set, input and output

 Training patterns: Historical signal measurements in normal condition

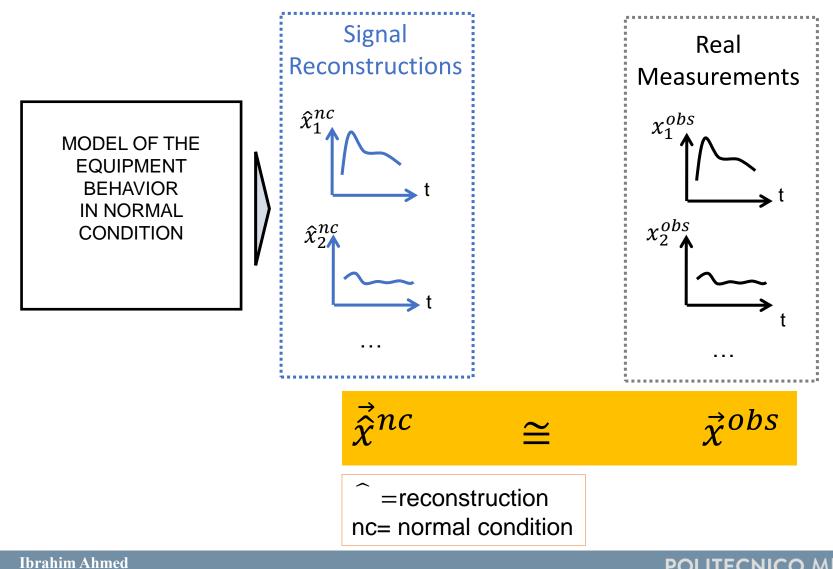


- Test input: $\vec{x}^{obs} = (x_1^{obs}, ..., x_n^{obs})$ Signals measured at current time
- Test Output: $\vec{\hat{x}}^{nc} = (\hat{x}_1^{nc}, ..., \hat{x}_n^{nc})$ Signal reconstructions (expected values of the signals in normal condition)



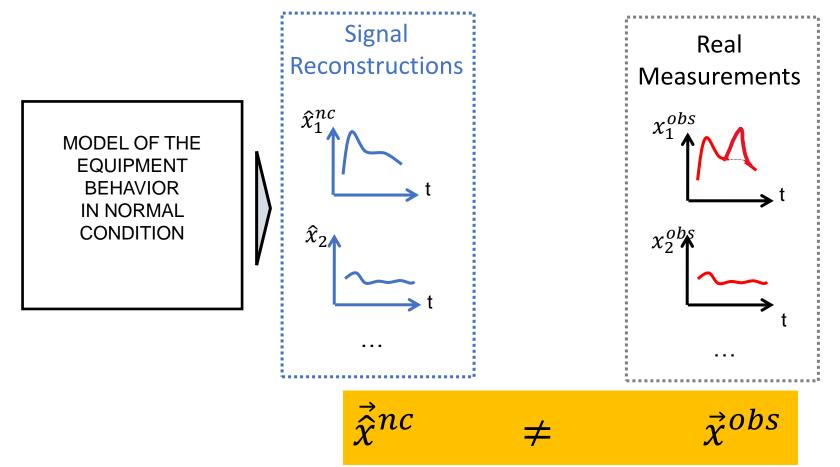
Requirement I

Equipment is in normal condition



Requirement II

• Equipment is in abnormal condition

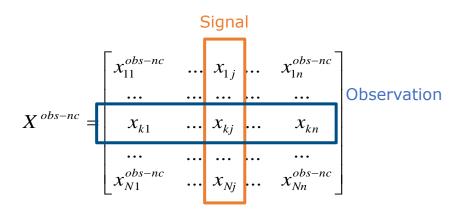


PART 1: Model of the Equipment Behaviour in Normal Condition

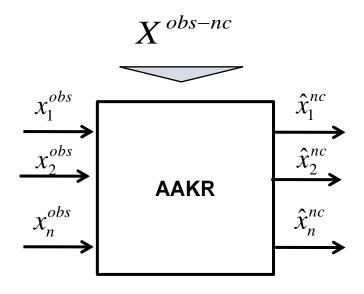
- 1A) Auto Associative Kernel Regression (AAKR)
 1D) Dringing Component Applying (DCA)
- 1B) Principal Component Analysis (PCA)

AAKR: Training set, input and output = Slide 26

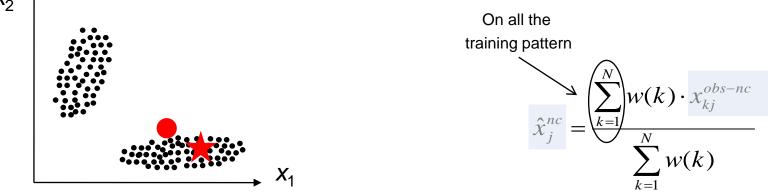
 Training patterns: Historical signal measurements in normal condition



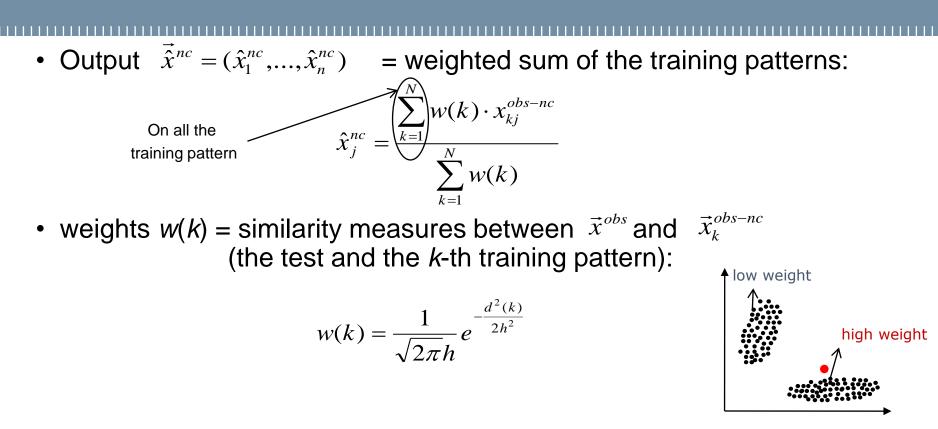
- Test input: $\vec{x}^{obs} = (x_1^{obs}, ..., x_n^{obs})$ Signals measured at current time
- Test Output: $\vec{\hat{x}}^{nc} = (\hat{x}_1^{nc}, ..., \hat{x}_n^{nc})$ Signal reconstructions (expected values of the signals in normal condition)



AAKR: the algorithm (1)



AAKR: the algorithm (2)

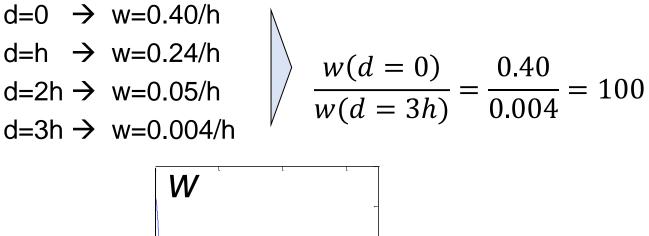


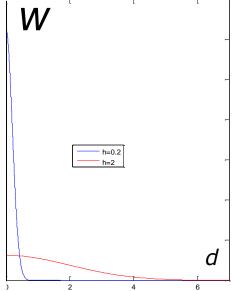
h = bandwidth parameter (it controls the decay speed)

POLITECNICO MILANO 1863

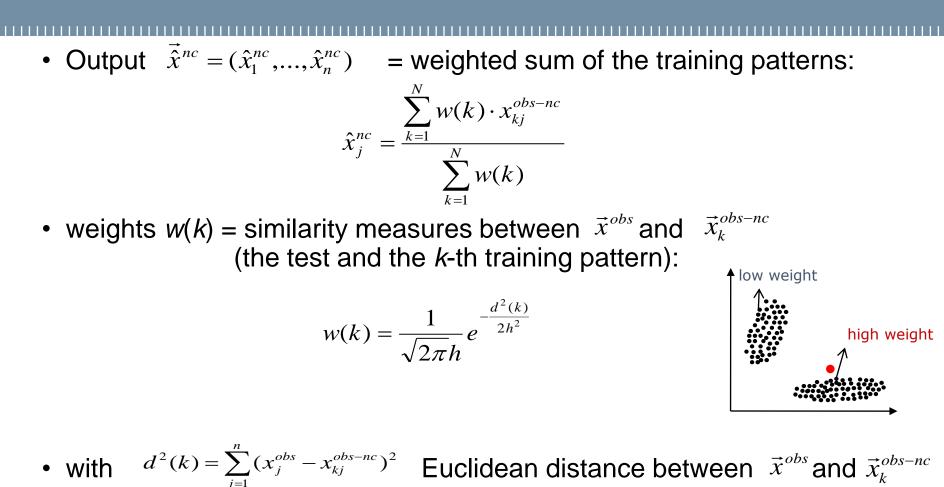
Ibrahim Ahmed

AAKR: parameter h setting





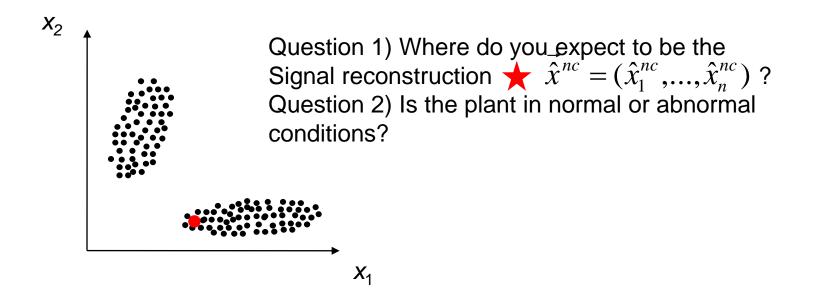
AAKR: the algorithm (2)



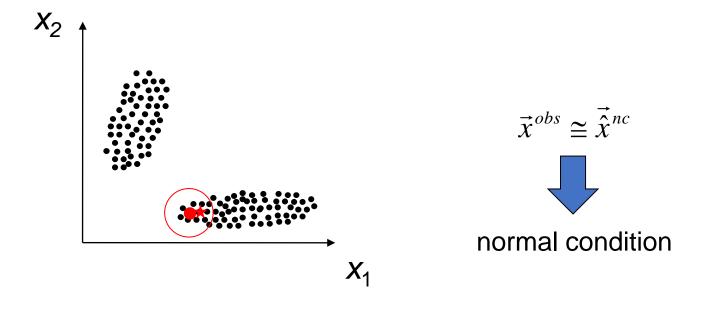
AAKR: Exercise 1

•Signal values at current time: $\vec{x}^{obs} = (x_1^{obs}, ..., x_n^{obs})$

•Historical signal measurements in normal plant condition: •



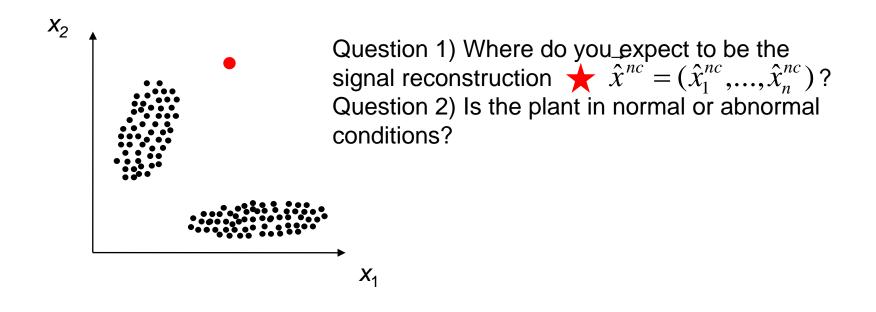
•Signal values at current time: $\vec{x}^{obs} = (x_1^{obs}, ..., x_n^{obs})$ • •Signal reconstructions: $\vec{x}^{nc} = (\hat{x}_1^{nc}, ..., \hat{x}_n^{nc})$ * based on the available historical signal measurements in normal plant condition •



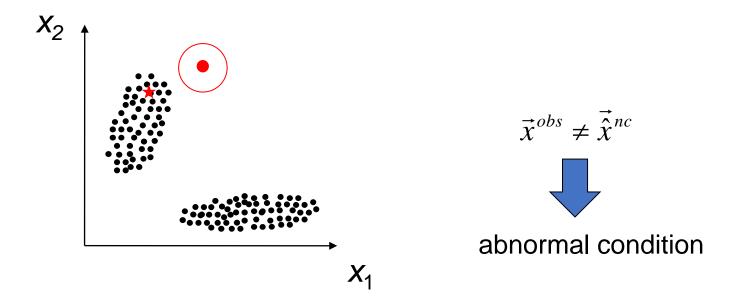
AAKR: Exercise 2

•Signal values at current time: $\vec{x}^{obs} = (x_1^{obs}, ..., x_n^{obs})$

•Historical signal measurements in normal plant condition: •



•Signal values at current time: $\vec{x}^{obs} = (x_1^{obs}, ..., x_n^{obs})$ • •Signal reconstructions: $\vec{x}^{nc} = (\hat{x}_1^{nc}, ..., \hat{x}_n^{nc})$ * based on the available historical signal measurements in normal plant condition •



•available historical signal measurements in normal plant condition

- Computational time:
 - No training of the model
 - Test:

computational time depends on

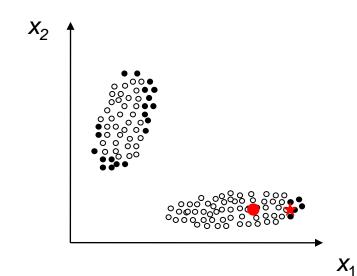
a) the number of training patterns N;

b) the number of signals n.

$$d^{2}(k) = \sum_{j=1}^{n} (x_{j}^{obs} - x_{kj}^{obs-nc})^{2}$$

AAKR remarks: Accuracy

- Accuracy:
 - depends on the training set:
 - $\uparrow N \rightarrow \uparrow$ Accuracy



Few patterns and not well distributed in the training space

Inaccurate reconstruction

Pros:

No need of hypothesis on data distribution (e.g. linearity)

Cons

 Performance related to number of training observations

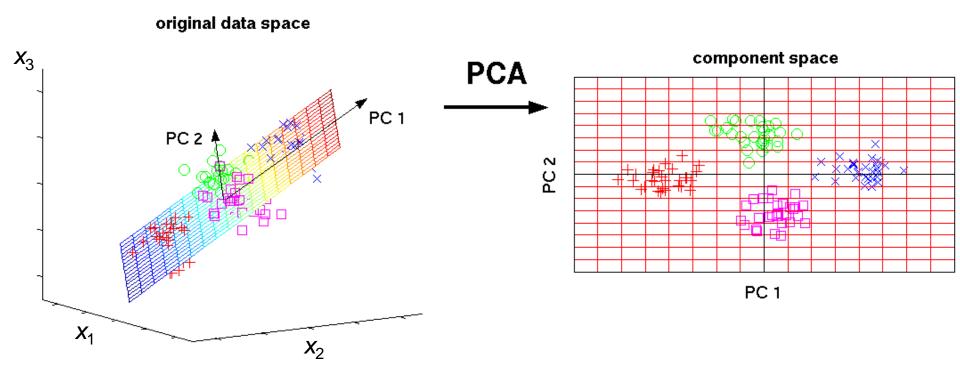
PART 1: Model of the Equipment Behaviour in Normal Condition

- 1A) Auto Associative Kernel Regression (AAKR)
- 1B) Principal Component Analysis (PCA)

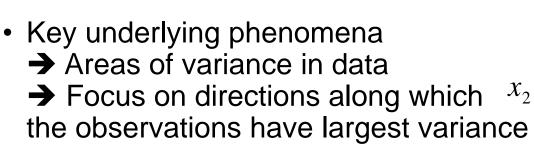
PCA: What is it?

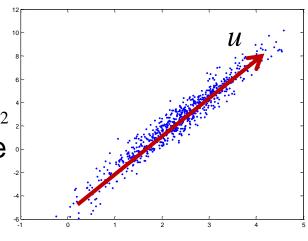
PCA:

- Space transformation
- From an *n*-dimensional space to a *l*-dimensional space (l < n)
- Retaining most of the information (loosing the least information)



• Two signals are highly correlated or dependent \rightarrow One is enough! $x_2 \uparrow u$



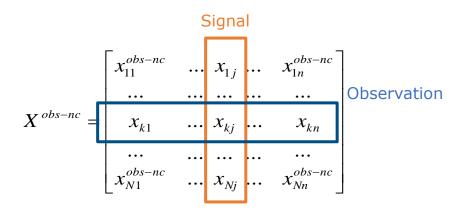


 X_1

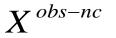
 $\overset{\bullet}{}_{x_1} X = \begin{bmatrix} 1 & 1 \\ 0 & 0 \\ -1 - 1 \end{bmatrix}$

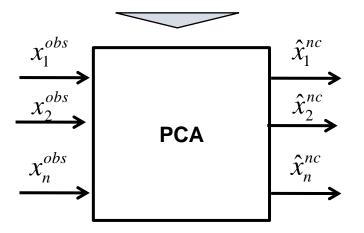
PCA: Training set, input and output = Slide 26 and Slide 27

 Training patterns: Historical signal measurements in normal condition



- Test input: $\vec{x}^{obs} = (x_1^{obs}, ..., x_n^{obs})$ Signals measured at current time
- Test Output: $\vec{\hat{x}}^{nc} = (\hat{x}_1^{nc}, ..., \hat{x}_n^{nc})$ Signal reconstructions (expected values of the signals in normal condition)





PCA for fault detection: operational steps (1)

Step 1: find Principal Components (PCs) in the training set X^{obs-nc} .

 PC1 → is the direction of maximum variance X^{obs-nc}

 PC2 -> is orthogonal to PC1 and describes the maximum residual variance

PC3 is orthogonal to PC1 and PC2 and describes the maximum residual variance

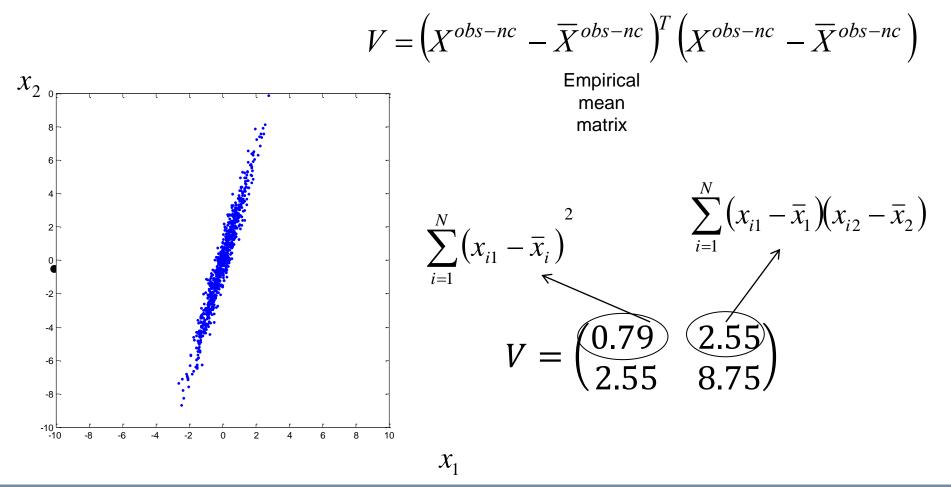
Step 1: Mathematical details (1A)

Objective: find principal components

Procedure:

Ibrahim Ahmed

• Compute $V = \text{covariance matrix of } X^{obs-nc}$

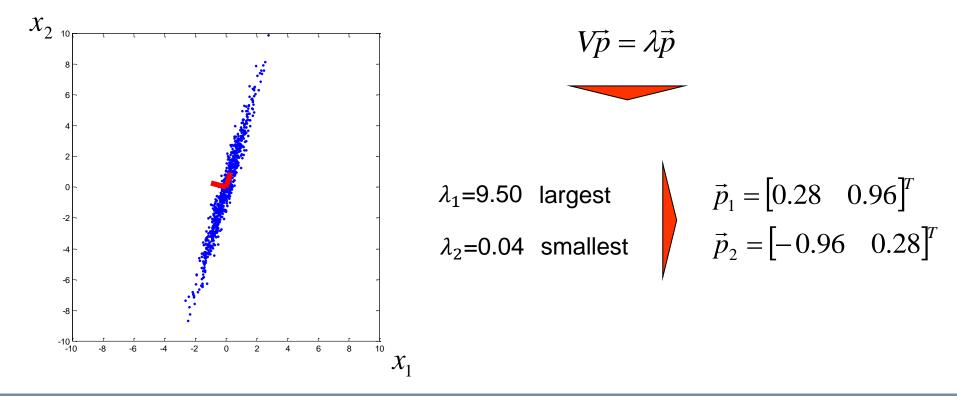


Step 1: Mathematical Details (1B)

Objective: find principal components

Procedure:

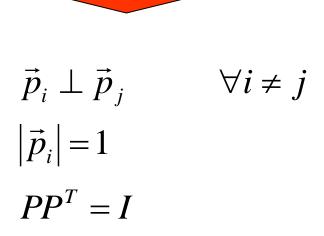
- Compute $V = \text{covariance matrix of } X^{obs-nc}$
- Find the *n* eigenvectors $\vec{p}_1, \vec{p}_2, ..., \vec{p}_n$ of *V* and the corresponding eigenvalues $\lambda_1 \ge \lambda_2 \ge \lambda_3 \ge \cdots \ge \lambda_n$



Step 1: Properties of the PCs (I)

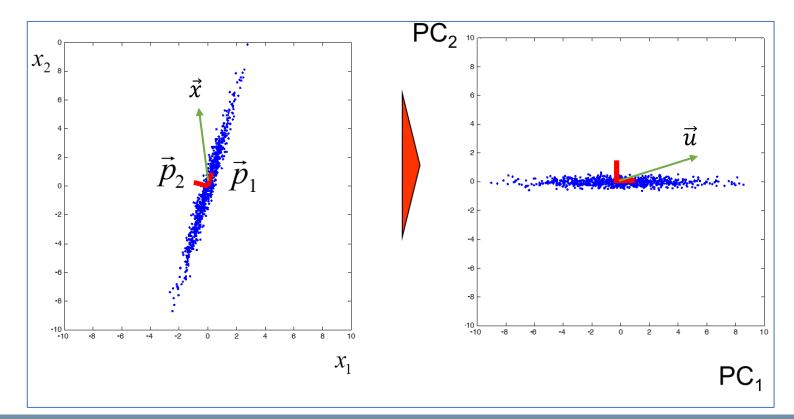
$$P = \begin{bmatrix} \vec{p}_1, \vec{p}_2 \end{bmatrix} = \begin{bmatrix} 0.28 & -0.96 \\ 0.96 & 0.28 \end{bmatrix}$$

> *P* is an orthonormal basis:



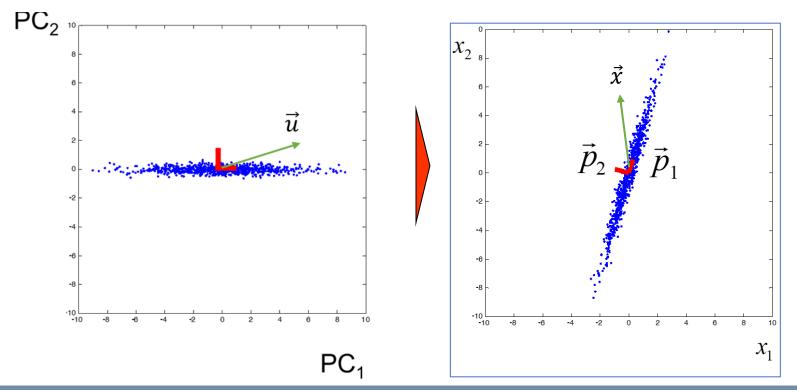
Step 1: Properties of the PCs (II)

- \sim Dia an anthenance basis:
 - P is an orthonormal basis:
 - Data can be transformed from the original to the transformed bases and viceversa without any loss of information (multiplication for P and P^T)
 - \vec{u} = the projection of \vec{x} on the new basis is given by: $\vec{u} = \vec{x} \cdot P$



Step 1: Properties of the PCs (III)

- - P is an orthonormal basis:
 - Data can be transformed from the original to the transformed bases and viceversa without any loss of information (multiplication for P and P^T)
 - \vec{u} = the projection of \vec{x} on the new basis is given by: $\vec{u} = \vec{x} \cdot P$
 - \vec{x} can be obtained from \vec{u} by: $\vec{x} = \vec{u} \cdot P^T$



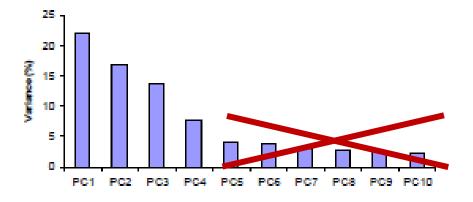
Step 1: Properties of the PCs (III)

- - P is an orthonormal basis:
 - Data can be transformed from the original to the transformed bases and viceversa without any loss of information (multiplication for P and P^T)
 - \vec{u} = the projection of \vec{x} on the new basis is given by: $\vec{u} = \vec{x} \cdot P$
 - \vec{x} can be obtained from \vec{u} by: $\vec{x} = \vec{u} \cdot P^T$
 - The percentage of variance retained by the *i*-th principal component is:

$$%Var(PC_i) = \frac{\lambda_i}{\sum_{i=1,\dots,n} \lambda_i}$$

PCA for fault detection: operational steps (2)

Step 2 [PCA approximation]: ignore the PCs of lower significance.



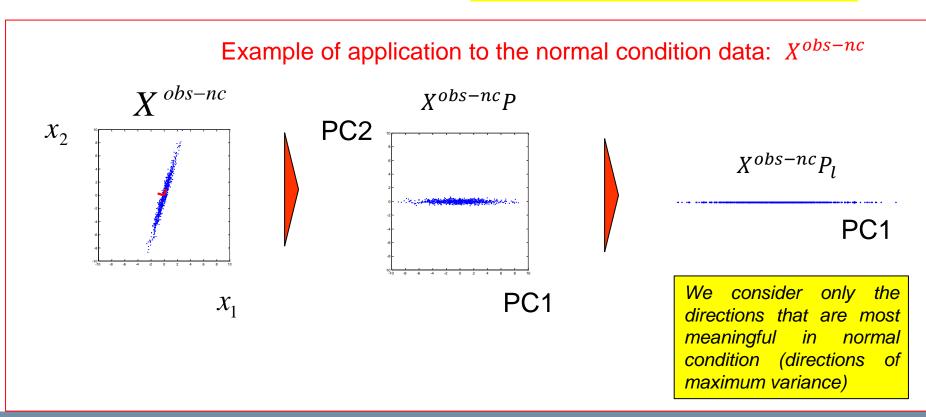
- Lost small information
- Reduce the number of dimensions from *n*=10 to = 4

PCA for fault detection: operational steps (2)

- - Step 2 [PCA approximation]: ignore the PCs of lower significance.

map the observation \vec{x}^{obs} in a subspace $\Re^l \subset \Re^n$ identified by the first | < n eigenvectors $\vec{p}_1, ..., \vec{p}_l$:

 $\vec{x}^{obs}P_l$ with $P_l = [\vec{p}_1, \dots, \vec{p}_l]$



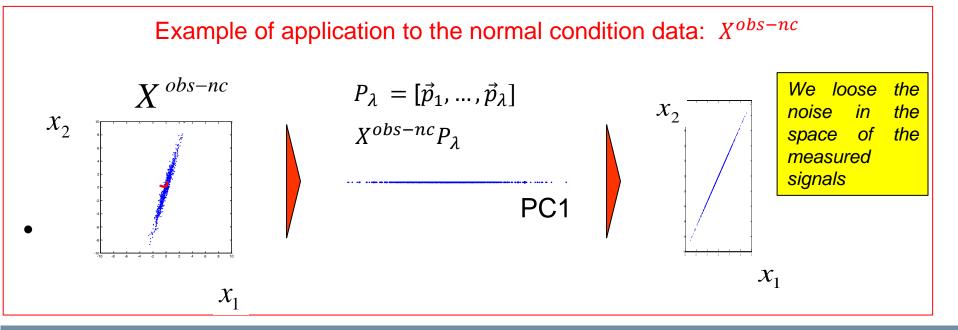
POLITECNICO MILANO 1863

PCA for fault detection: operational steps (3)

- Step 2 [PCA approximation]: ignore the PCs of lower significance.

map the observation \vec{x}^{obs} in a subspace $\Re^l \subset \Re^n$ identified by the first l < n eigenvectors $\vec{p}_1, \dots, \vec{p}_l$:

 $\vec{x}^{obs}P_l$ with $P_l = [\vec{p}_1, ..., \vec{p}_l]$ • Step 3: [Antitransformation]: signal reconstructions $\vec{\hat{x}}^{nc} = \vec{x}^{obs}P_l P_l^T$



POLITECNICO MILANO 1863

PCA for fault detection: Summary

• Historical data $X^{obs-nc} =$

$$\begin{bmatrix} x_{11}^{obs-nc} & \dots & x_{1j} & \dots & x_{1n}^{obs-nc} \\ \dots & \dots & \dots & \dots \\ x_{k1} & \dots & x_{kj} & \dots & x_{kn} \\ \dots & \dots & \dots & \dots \\ x_{N1}^{obs-nc} & \dots & x_{Nj} & \dots & x_{Nn}^{obs-nc} \end{bmatrix}$$

Find P_l from $X^{\mathit{obs-nc}}$

PCA for fault detection: Summary

- Historical data $X^{obs-nc} = \begin{bmatrix} x_{11}^{obs-nc} & \dots & x_{1j} & \dots & x_{1n}^{obs-nc} \\ \dots & \dots & \dots & \dots \\ x_{k1} & \dots & x_{kj} & \dots & x_{kn} \\ \dots & \dots & \dots & \dots & \dots \\ x_{N1}^{obs-nc} & \dots & x_{Nj} & \dots & x_{Nn}^{obs-nc} \end{bmatrix}$ Find P_l from X^{obs-nc}
- Measured signals at present time: $\vec{x}^{obs} = (x_1^{obs}, ..., x_n^{obs})$
 - Transform and project $\vec{x}^{obs}P_l$

I'm looking at the measurements considering only the directions that are most meaningful in normal condition (directions of maximum variance)

• Antitrnansform
$$\hat{\vec{x}}^{nc} = \vec{x}^{obs} P_l P_l^T$$

Signal reconstructions

 $\vec{x}^{nc} \cong \vec{x}^{obs} \rightarrow$ normal condition

I loose only the irrelevant noise

POLITECNICO MILANO 1863

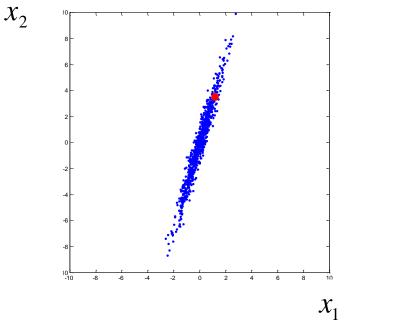
 $\hat{\vec{x}}^{nc} \neq \vec{x}^{obs} \rightarrow$ abnormal condition The process is changed

Exercise 1

•Measured signals at present time: $\vec{x}^{obs} = (x_1^{obs}, x_2^{obs})$ •

•Signal reconstructions?

•Normal or abnormal condition?

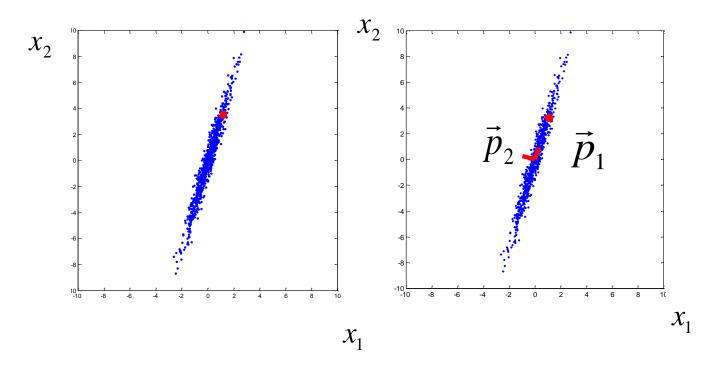


•available historical signal measurements in normal plant condition

POLITECNICO MILANO 1863

Exercise 1: Solution

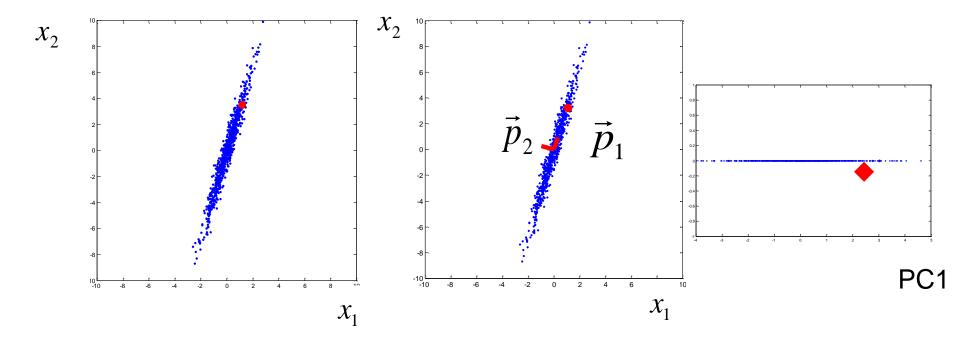
•Measured signals at present time: $\vec{x}^{obs} = (x_1^{obs}, x_2^{obs})$ •Step 1: find principal components: \vec{p}_1 , \vec{p}_2



•available historical signal measurements in normal plant condition

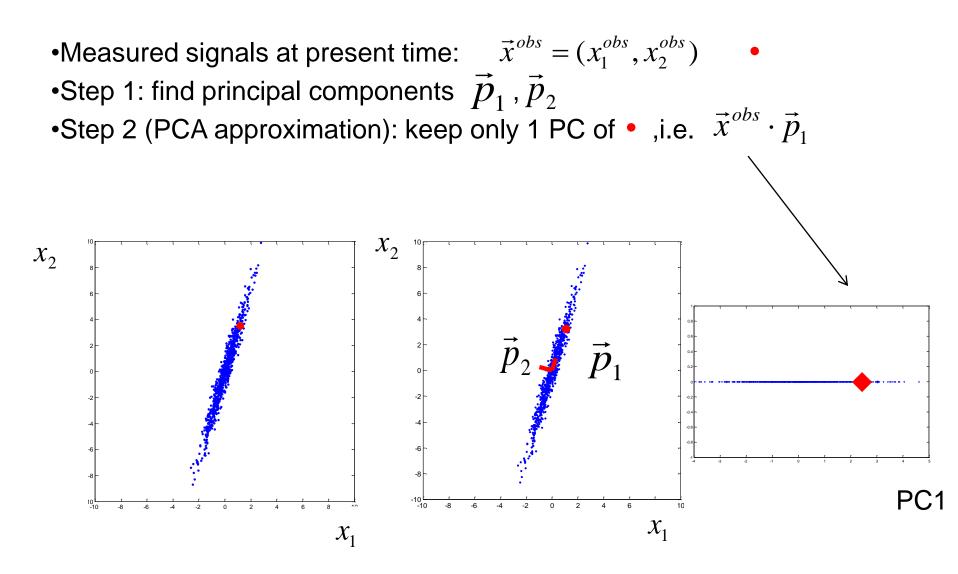
Exercise 1: Solution

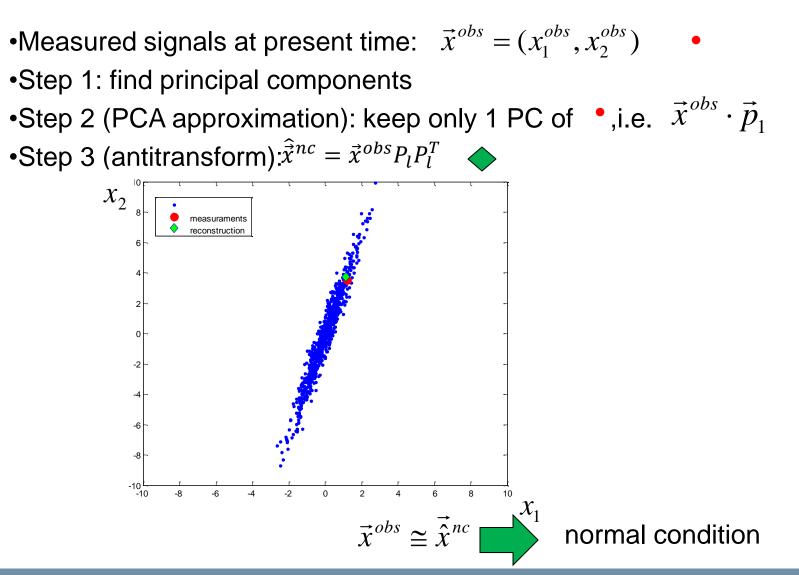
•Measured signals at present time: $\vec{x}^{obs} = (x_1^{obs}, x_2^{obs})$ •Step 1: find principal components \vec{p}_1, \vec{p}_2



Ibrahim Ahmed

Exercise 1: Solution

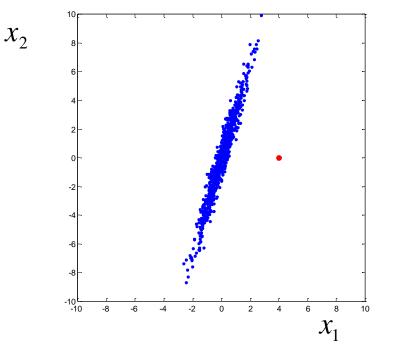




Ibrahim Ahmed

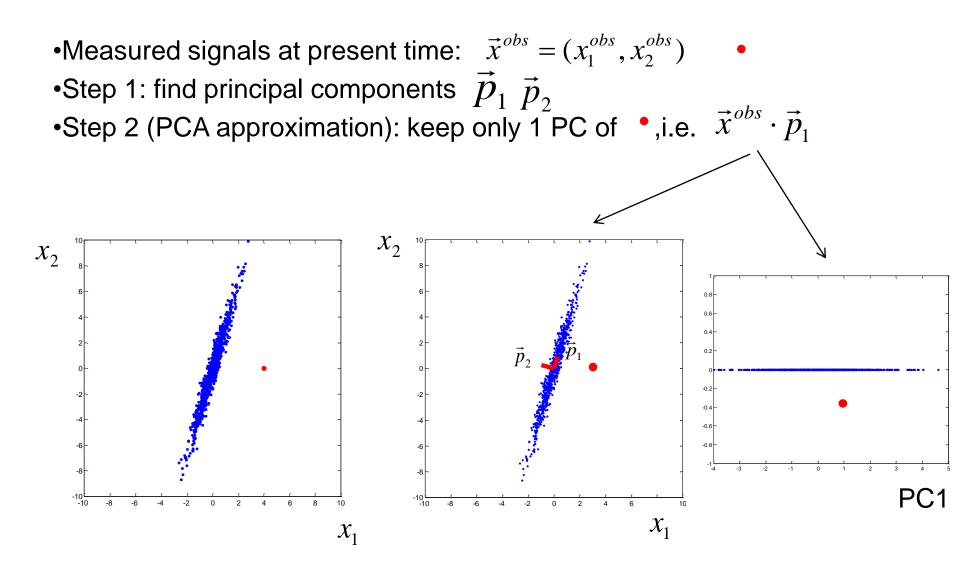
Exercise 2

- •Measured signals at present time:
- •Signal reconstructions?
- •Normal or abnormal condition?

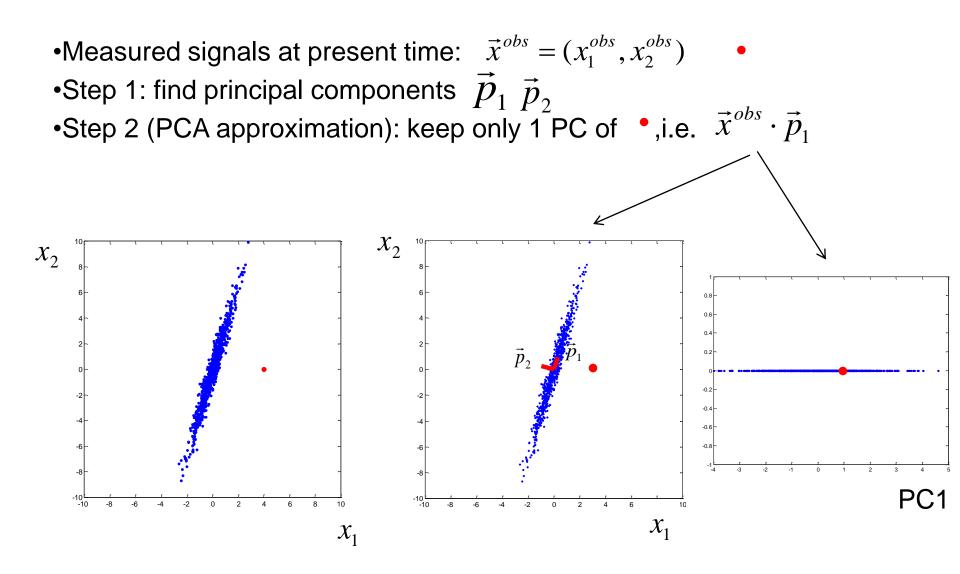


•available historical signal measurements in normal plant condition

$$\vec{x}^{obs} = (x_1^{obs}, x_2^{obs})$$
 •

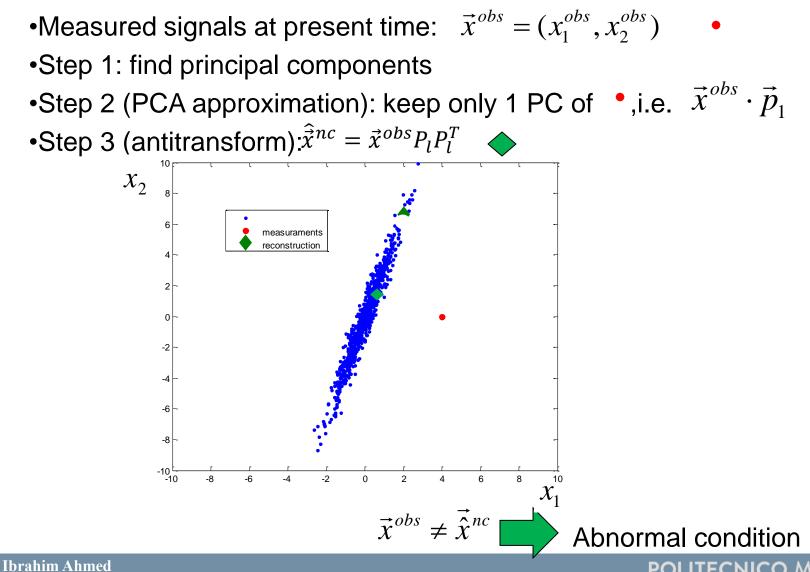


Exercise 2: Solution



POLITECNICO MILANO 1863

Ibrahim Ahmed



POLITECNICO MILANO 1863

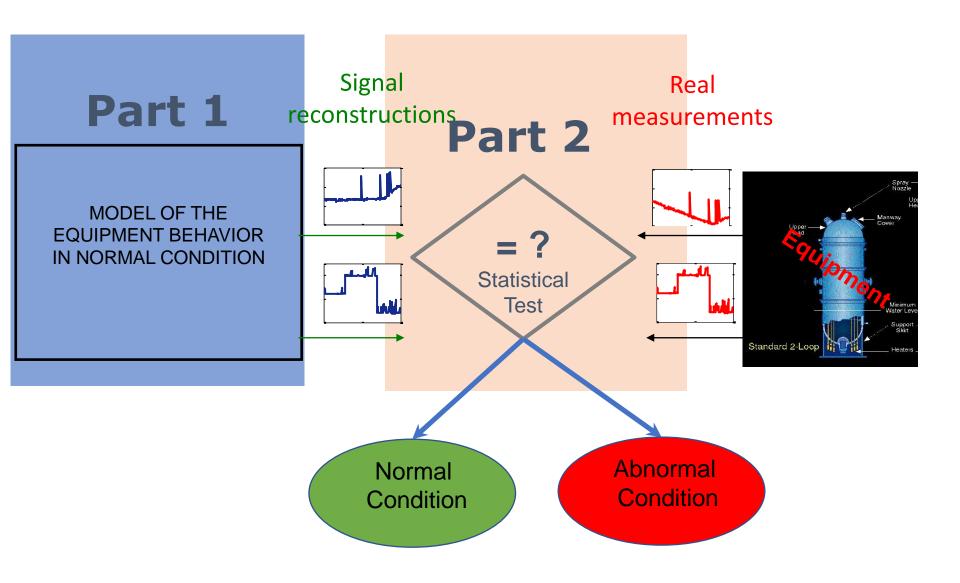
Computational time:

- Training time = computational time necessary to find the Principal Components is proportional to the number of measured signals n
- Execution time: very short (only 2 matrix multiplications)
 → OK for online applications

Performance:

Unsatisfactory for dataset characterized by highly nonlinear relationships

Part 2: Statistical Test



POLITECNICO MILANO 1863

Ibrahim Ahmed

- Part 1: Model of the Equipment Behavior in Normal Condition
 - 1A) Auto Associative Kernel Regression (AAKR)
 - 1B) Principal Component Analysis (PCA)

Part 2: Statistical Test

- 2A) Thresholds-Based
- 2B) Q-Statistics
- 2C) Sequential Probability Ratio Test (SPRT)

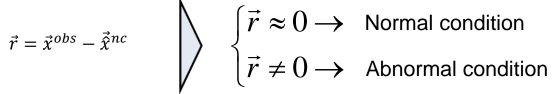
72

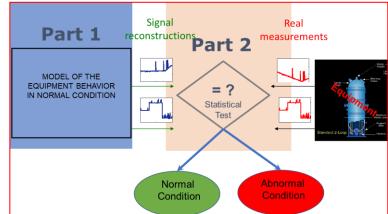
PART 2: Statistical Test

- Thresholds-based
- Q Statistics
- Sequential Probability Ratio Test (SPRT)

Abnormal condition detection: decision

Basics of the decision: residual analysis



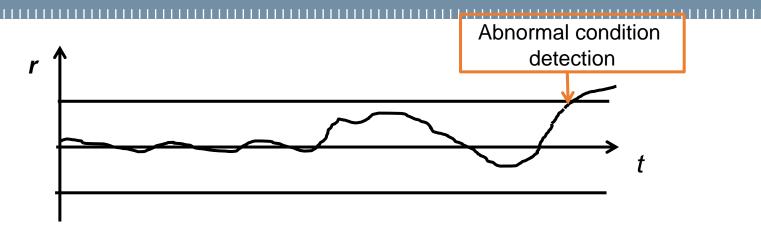


- Methods
 - Thresholds-based approach
 - Stochastic approaches:
 - Q Statistics
 - Sequential Probability Ratio Test (SPRT)

PART 2 A: Statistical Test

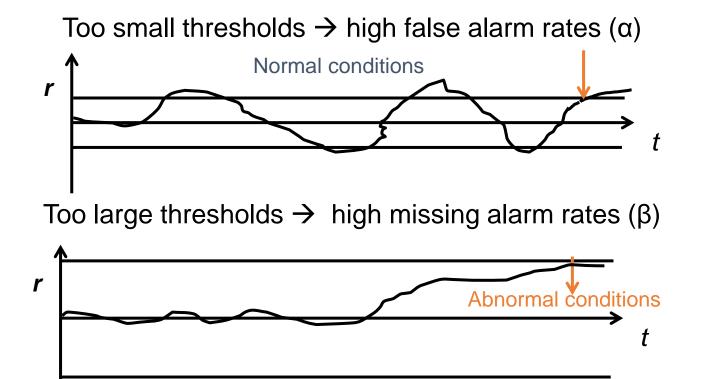
- Thresholds-based
- Q Statistics
- Sequential Probability Ratio Test (SPRT)

Thresholds-based



Thresholds-Based: Remarks

- Easy to apply
- Thresholds setting is difficult and error-prone

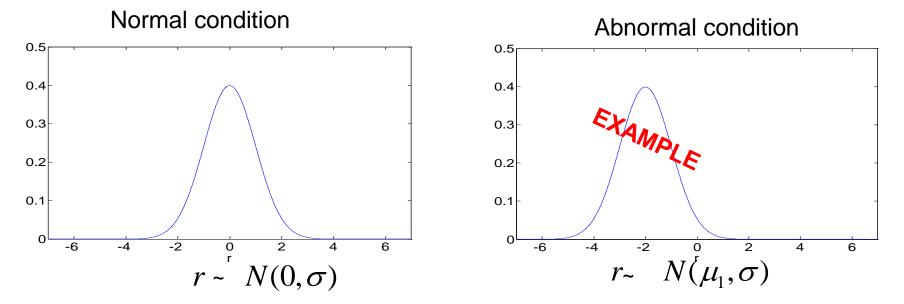


PART 2 B: Statistical Test

- Thresholds-based
 - Q-Statistics
 - Sequential Probability Ratio Test (SPRT)

Stochastic approaches

- Residual (r)= random variable described by a probability law
- The probability law is different in case of normal/abnormal condition



Q statistics

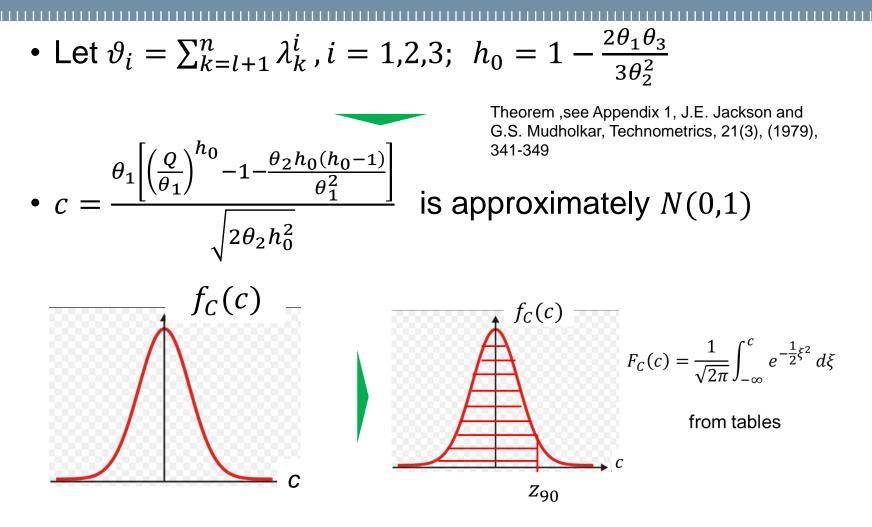
• Assuming the signal reconstructions at time *t* are: $\vec{x}^{nc}(t) = (\hat{x}_1(t), \hat{x}_2(t), \dots, \hat{x}_n(t)),$

then the Q-stat at time t is:

$$Q(t) = \vec{r}(t)^{T} \cdot \vec{r}(t) = \left(\vec{x}^{obs}(t) - \vec{x}^{nc}(t)\right) \left(\vec{x}^{obs}(t) - \vec{x}^{nc}(t)\right)^{T} = \sum_{i=1}^{n} (x_{i}^{obs}(t) - \hat{x}_{i}^{nc}(t))^{2}$$

The Q-statistics (squared prediction error) is a metric that accounts for the amount of variance that is not captured by the **chosen** *l* - dimensional PCA model, which represents the "normal behaviour" of the signals.

Q Statistics

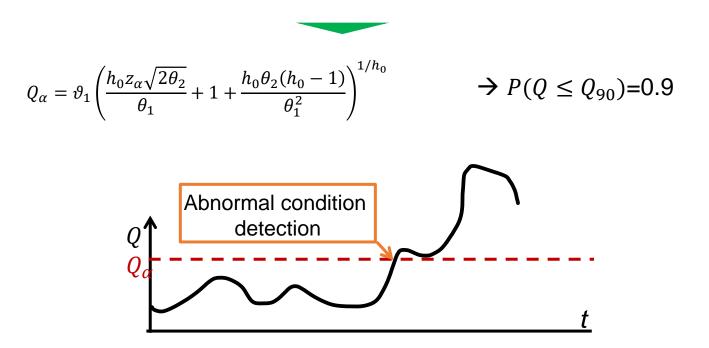


Equipment in normal condition $\rightarrow P(c \leq z_{90})=0.9$

81

Ibrahim Ahmed

Q Statistics



P(abnormal condition|normal condition)=0.1

FALSE POSITIVE

PART 2 C: Statistical Test

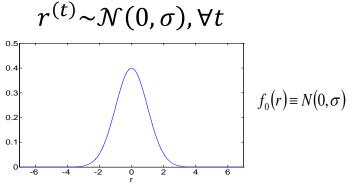
General Idea

Q Statistics

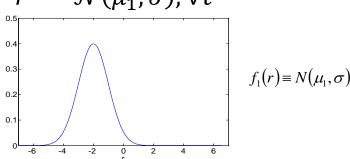
Sequential Probability Ratio Test (SPRT)

• $R_T = \{r^{(1)}, \dots, r^{(T)}\}$ sequence of residuals at time $t = 1, \dots, T$, where $r^{(t)} = x^{obs}(t) - \hat{x}^{nc}(t)$

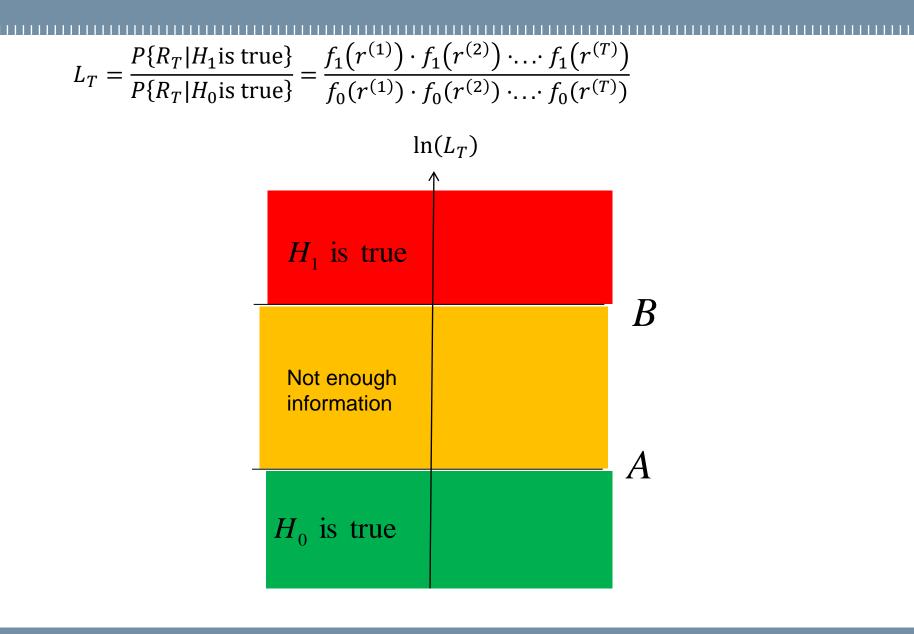
- Binary hypothesis test:
 - Null hypothesis $(H_0) \equiv$ Normal condition



• Alternative hypothesis $(H_1) \equiv$ Abnormal condition $r^{(t)} \sim \mathcal{N}(\mu_1, \sigma), \forall t$

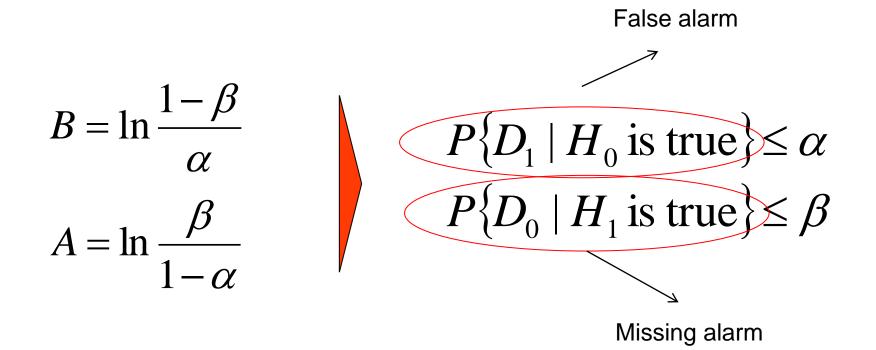


SPRT: the decision



Ibrahim Ahmed

SPRT Theorem



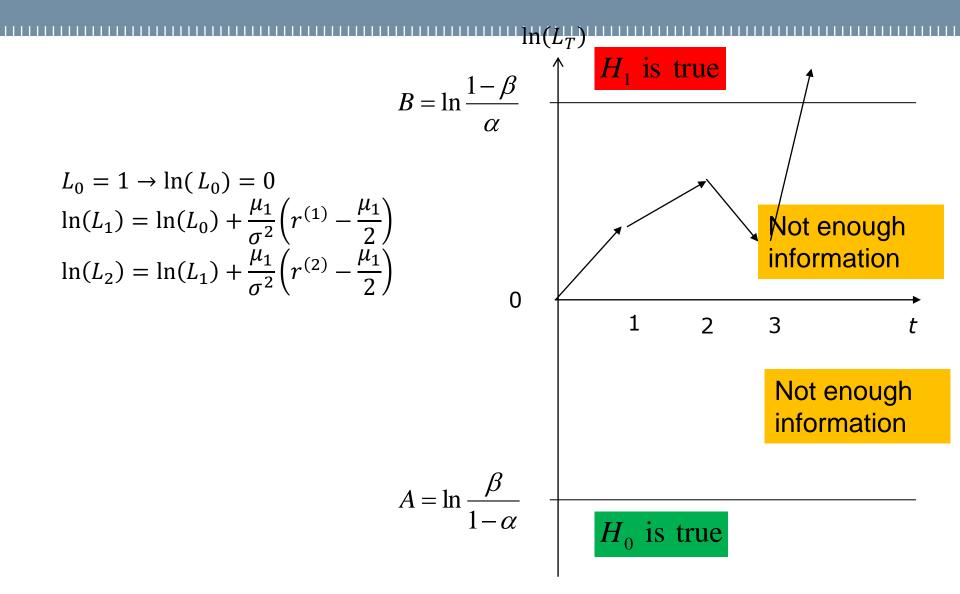
SPRT for the positive mean test

- Null hypothesis $(H_0) \equiv$ Normal condition $r^{(t)} \sim \mathcal{N}(0, \sigma)$
- Alternative hypothesis $(H_1) \equiv$ Abnormal condition $r^{(t)} \sim \mathcal{N}(\mu_1, \sigma)$

$$L_T = \frac{P(r^{(1)}, \dots, r^{(T)} | H_1)}{P(r^{(1)}, \dots, r^{(T)} | H_0)} = e^{-\frac{1}{2\sigma^2} \sum_{t=1}^T \mu_1(\mu_1 - 2r^{(t)})} = e^{\frac{\mu_1}{\sigma^2} \sum_{t=1}^T \left(r^{(t)} - \frac{\mu_1}{2}\right)}$$

$$\ln(L_T) = \frac{\mu_1}{\sigma^2} \sum_{t=1}^T \left(r^{(t)} - \frac{\mu_1}{2} \right) = \frac{\mu_1}{\sigma^2} \sum_{t=1}^{T-1} \left(r^{(k)} - \frac{\mu_1}{2} \right) + \frac{\mu_1}{\sigma^2} \left(r^T - \frac{\mu_1}{2} \right)$$
Sequential
$$= \ln(L_{T-1}) + \frac{\mu_1}{\sigma^2} \left(r^{(T)} - \frac{\mu_1}{2} \right)$$
Formula!

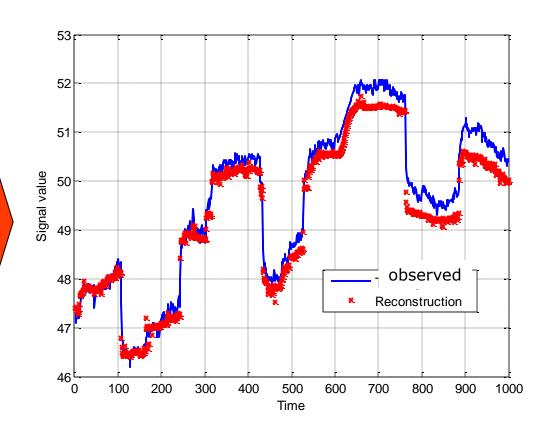
SPRT: Example



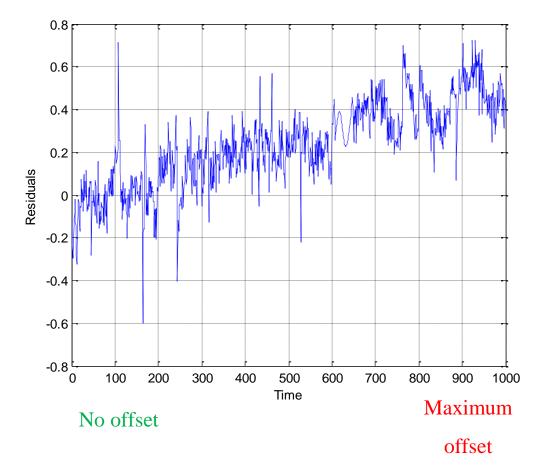
- the residual variance in normal condition (σ^2)
- the expected offset amplitude (μ_1)
- the maximum acceptable false alarm rate (α)
- the maximum acceptable missing alarm rate (β)

Example

Time interval	Simulated
	Offset
[0-200]	No
[201-400]	Yes
	(amplitude =
	0.11)
[401-600]	Yes
	(amplitude =
	0.23)
[601-800]	Yes
	(amplitude =
	0.34)
[801-1000]	Yes
	(amplitude =
	0.46)

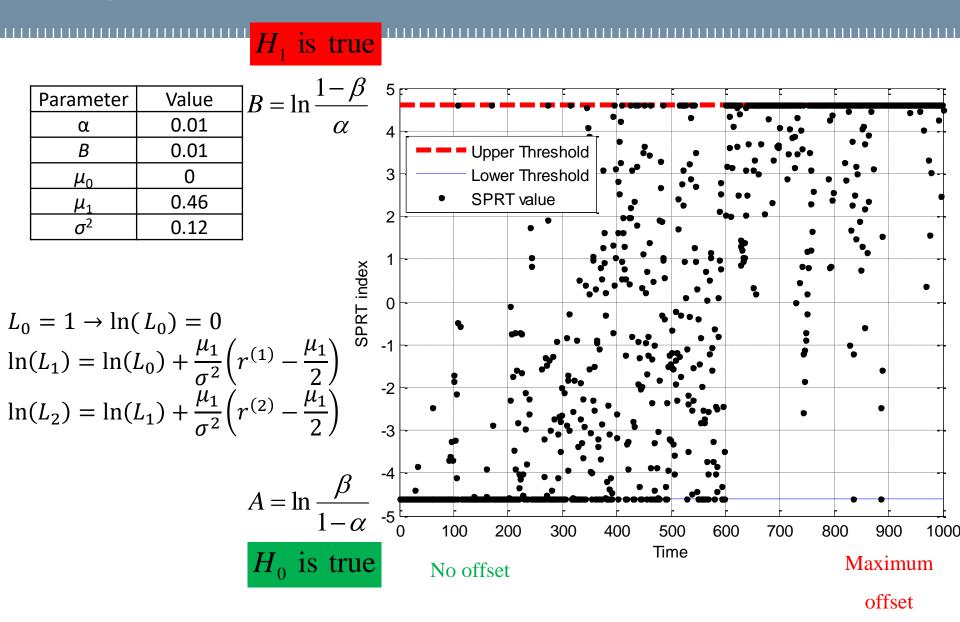


Example: residuals



Ibrahim Ahmed

Example: SPRT



SPRT: performance

Average Sample Number (ASN) needed to deliver a decision

Time interval	Offset	Estimated Number of times in		Number of times in
		ASN	which a normal	which an abnormal
			condition has been	condition has been
			detected	detected
[0-200]	No	1.2	150	2
[201-400]	amplitude = 0.11	1.9	70	5
[401-600]	amplitude = 0.23	2.4	15	17
[601-800]	amplitude $= 0.34$	2.1	0	94
[801-1000]	amplitude = 0.46	1.2	2	142

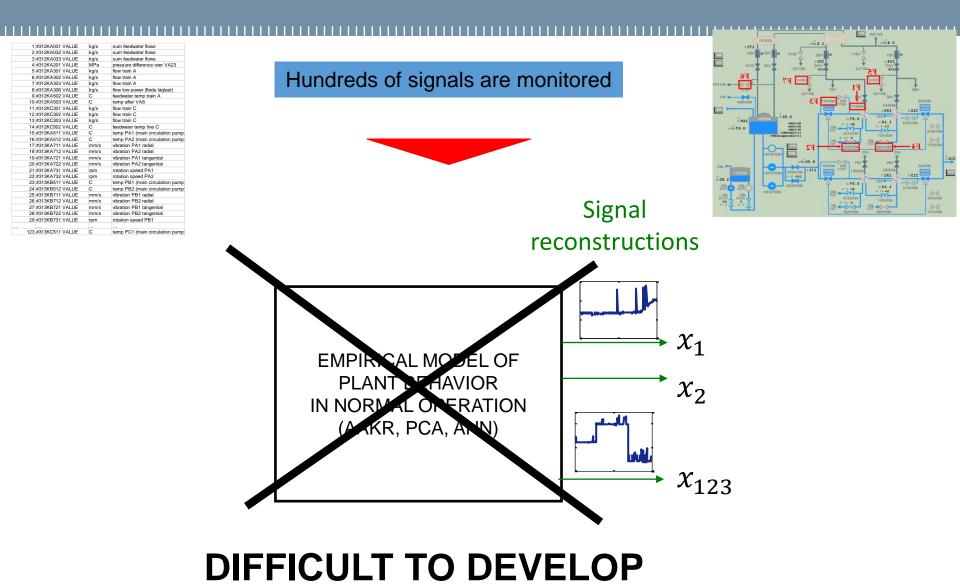
Ibrahim Ahmed

Challenges?

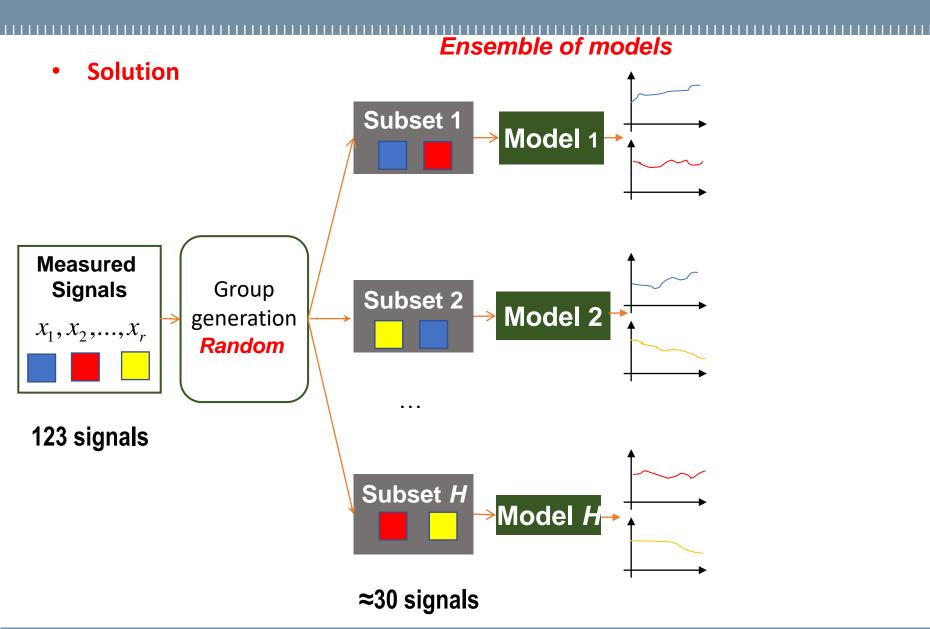
Fault Detection - Challenges

- Hundreds of Signals are Monitored
- Evolving Environment
- Robustness

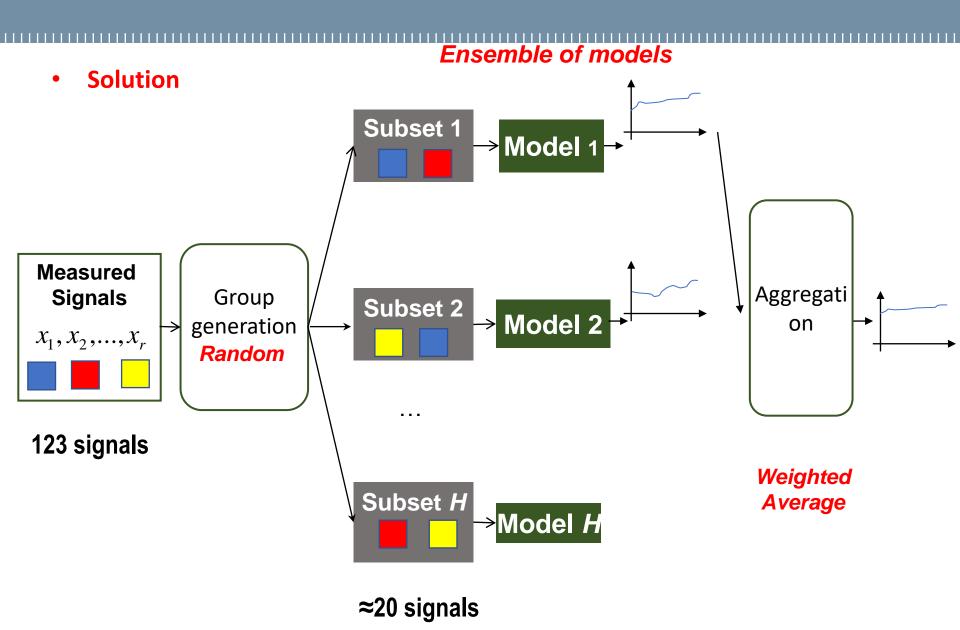
Data-Driven Fault Detection: Challenge I



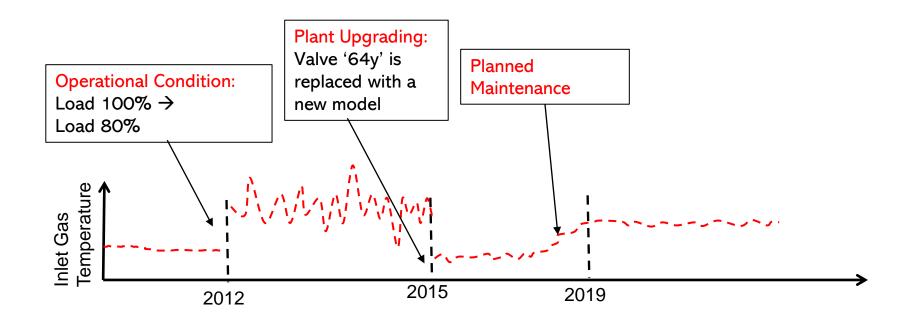
Ibrahim Ahmed



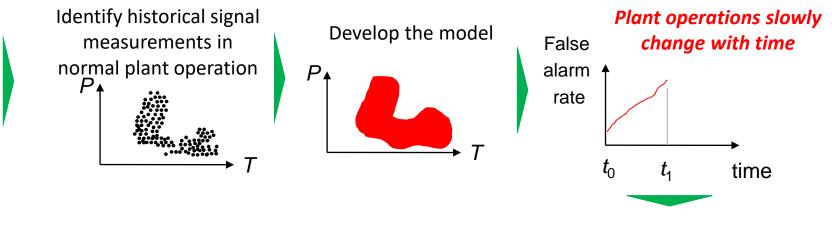
Ibrahim Ahmed



Evolving Environment



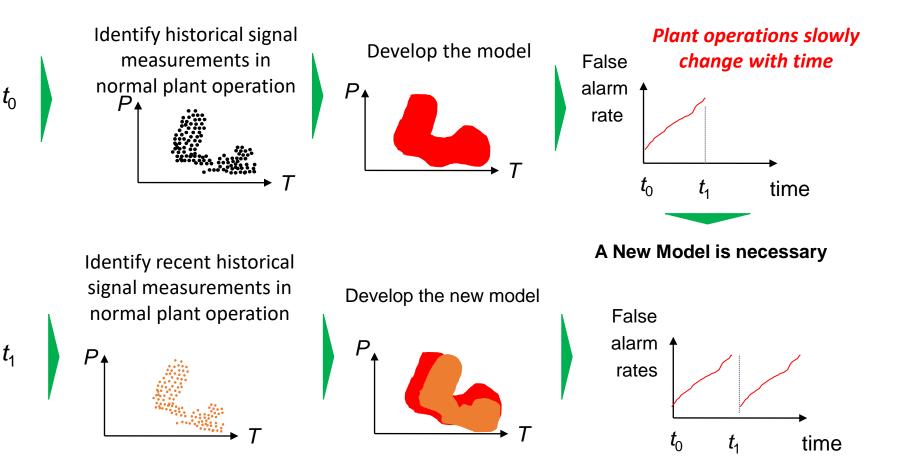
Example: monitoring the turbine of an electric power plant



A New Model is necessary

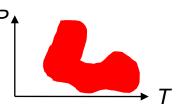
 t_0

Example: monitoring the turbine of an electric power plant

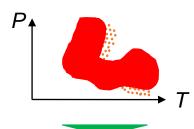


Periodic Human Interventions for developing new models! \rightarrow high costs!

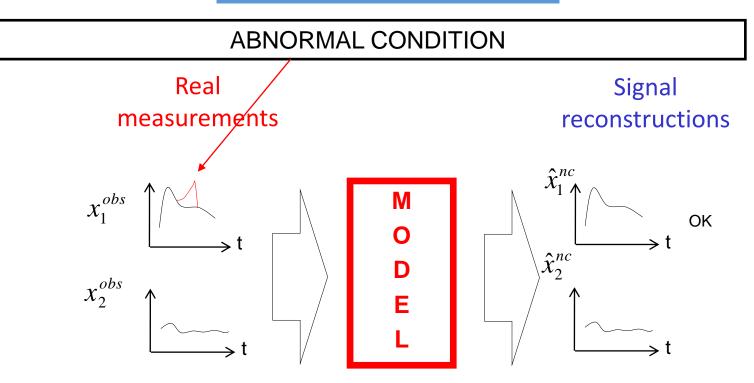
- The detection model should be able to follow the process changes:
- Incremental learning of the new data that gradually becomes available
- No necessity of human intervention for:
 - selecting recent normal operation data
 - building the new model



New data are coming



Automatic updating of the model

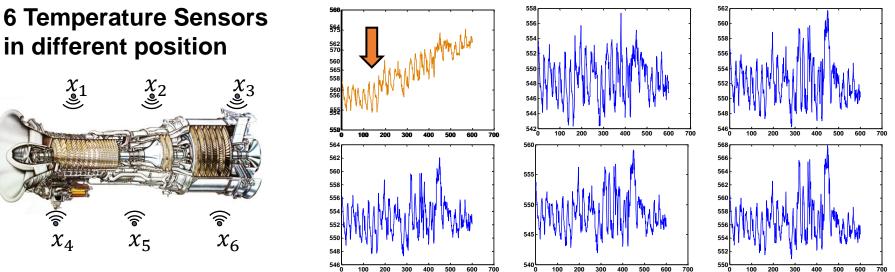


$$\vec{\hat{x}}^{nc} \cong \vec{x}^{obs-nc}$$

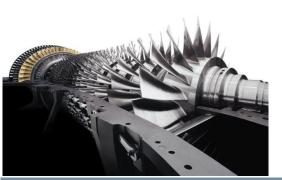
POLITECNICO MILANO 1863

Ibrahim Ahmed

Example1: **Monitoring a Turbine for Energy Production**



Abnormal condition of the first signal



ি x₅

 $\overset{\chi_1}{\underline{\bullet}}$

ন x₄

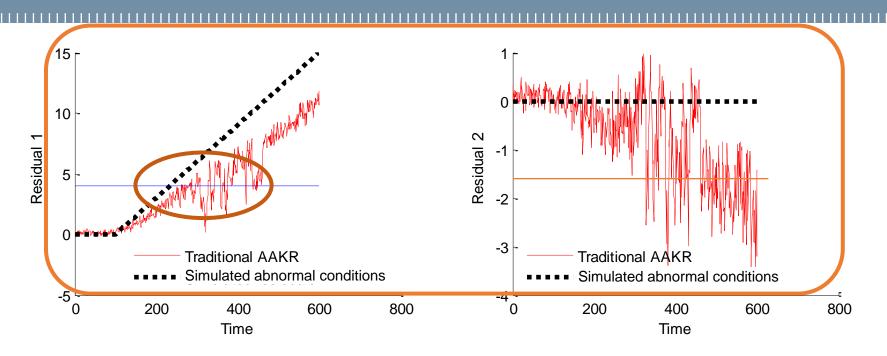
Highly Correlated Signals

	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅	<i>x</i> ₆
<i>x</i> ₁	1	0.97	0.98	0.98	0.99	0.98
<i>x</i> ₂	0.97	1	0.95	0.99	0.98	0.96
<i>x</i> ₃	0.98	0.95	1	0.96	0.99	0.99
<i>x</i> ₄	0.98	0.99	0.96	1	0.98	0.97
<i>x</i> ₅	0.99	0.98	0.99	0.98	1	0.99
<i>x</i> ₆	0.98	0.96	0.99	0.97	0.99	1

POLITECNICO MILANO 1863

Ibrahim Ahmed

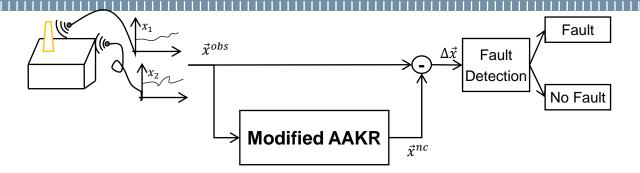
Example: Traditional AAKR

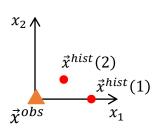


DELAY IN THE DETECTION

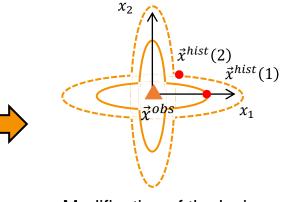
► IMPOSSIBILITY TO IDENTIFY THE SIGNALS TRIGGERING THE ABNORMAL BEHAVIOR

Our Contribution: A modified AAKR method



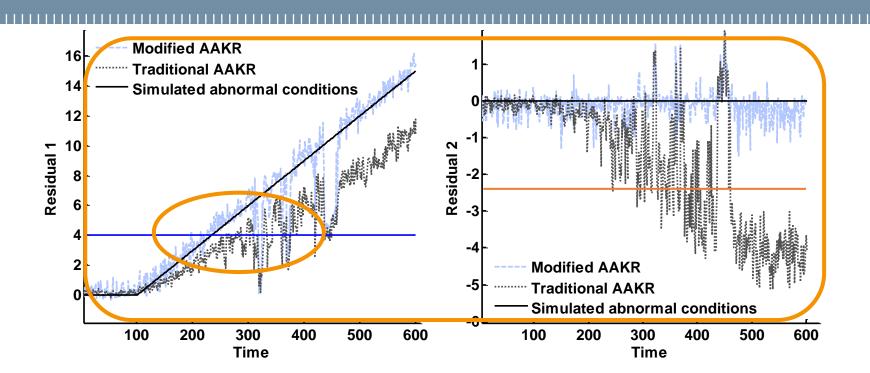


Malfunctions causing variations of a small number of signals are more frequent than those causing variations of a large number of signals

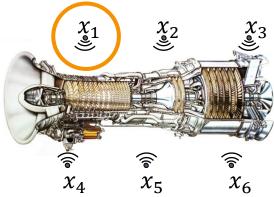


Modification of the loci of equisimilarity points

Results



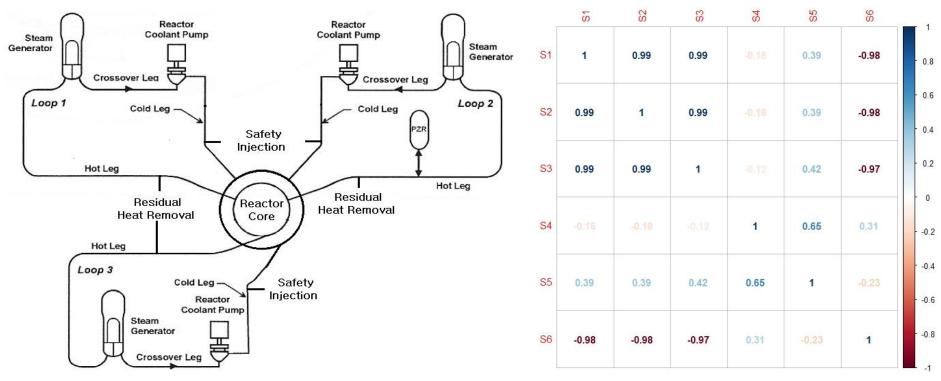
- Early Detection
- Correct Diagnosis of the signal that triggers the alarms
- More Accurate



	Traditional AAKR	Modify AAKR
Loci of equisimilarity points	x_{2} $x^{hist}(2)$ $x^{hist}(1)$ x_{1}	x_{2} $\vec{x}^{hist}(2)$ $\vec{x}^{hist}(1)$ \vec{x}^{obs} x_{1}
Accuracy	OK!	OK!
Robustness	NO! Especially with correlated signals	 Robust reconstruction of the values expected in normal conditions Correct identification of signals affected by abnormal condition Good performance with correlated signals

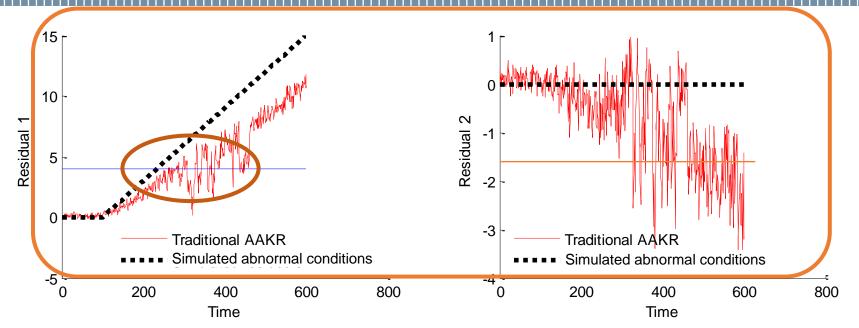
6 Sensors of reactor coolant system (RCS) measured during startup transient

S1 (Cold leg temperature)S2 (Core exit temperature)S3 (Hot leg temperature)S4 (Safety injection flow)S5 (Residual heat removal flow)S6 (Sub-cooling margin temperature)



Correlations

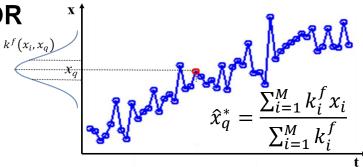
Example2: Traditional AAKR



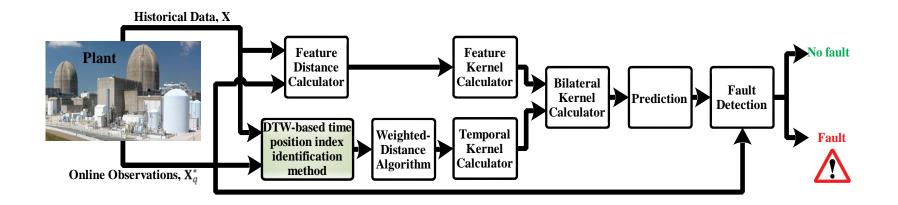
DELAY IN THE DETECTION

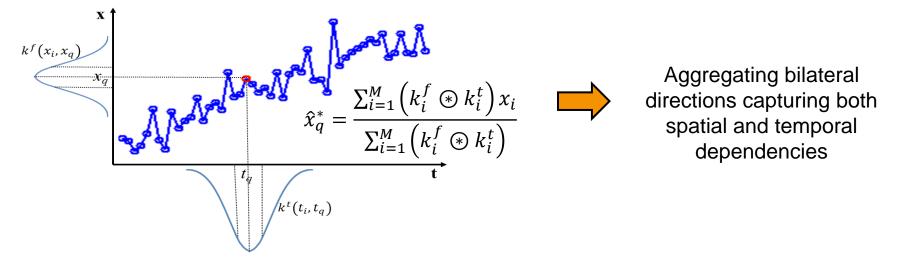
IMPOSSIBILITY TO IDENTIFY THE SIGNALS TRIGGERING THE ABNORMAL BEHAVIOR

LACKS TEMPORAL INFORMATION



Our Contribution: AABKR method – Aggregating Bilateral Directions

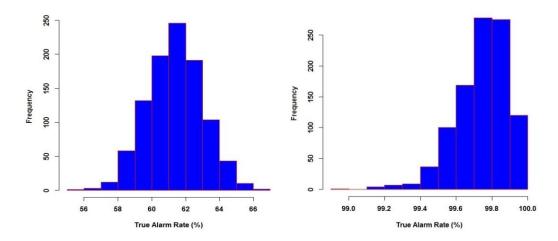




Results

100 **MAABKR** m-AABKR 90 80 Alarm rates (%) 70 60 50 40 30 20 10 0 MAR M&FAR **T&FAR** TAR FDR **Perfomance Metric**

Means of the alarm rates in start-up process operating condition



(a) AAKR (b) AABKR Distributions of the TARs for a thousand-run Monte Carlo in start-up

	Traditional AAKR	Modify AAKR (AABKR)
Information captured	x k ^f (x _i , x _q) x _q Abbe back back back back back back back back	$k^{r}(x_{t}, x_{q})$
Accuracy	OK!	OK!
Robustness	NO! Especially with correlated signals and normal transient data	 Robust reconstruction of the values expected in normal conditions Correct identification of signals affected by abnormal condition Good performance with normal transient monitoring