


In This Lecture 2

 Part 1. Model of the Equipment Behavior in

Normal Condition

« 1A) Auto Associative Kernel Regression (AAKR)
« 1B) Principal Component Analysis (PCA)

e Part 2: Statistical Test

« 2A) Thresholds-Based
« 2B) Q-Statistics
« 2C) Sequential Probability Ratio Test (SPRT)
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Overview




Context: Prognostics and Health Management (PHM)

Equipment (System, Structure or Component)
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Context: Maintenance Interventions & PHM

repair of failed units

Replacement or
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Repair following a
predefined
schedule

Monitor the health
of the system and
then decide on
repair actions
based on the
degradation level
assessed

Maintenance
Intervention
N \4
Unplanned Planned
\ WV \
Corrective \Z Condition- Predictive
Replacement or Scheduled based _
Predict the

Remaining Useful
Life (RUL) of the
system and then
decide on repair
actions based on
the predicted RUL




In This Lecture: Fault Detection

Equipment (System, Structure or Component)

Measure
signals

Predict
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Fault Detection: What is?

Normal condition

. -

Danger|

Measured
signals
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Fault Detection: What is?

*— Normal condition
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Danger|

.
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Measured
signals
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Fault Detection: What Is not?

*— Normal condition

.

N

Measured
signals

N\
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Fault Detection: Methods

 Limit-based
« Model-based
 Data-driven
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Limit-based fault detection: data & information

* Normal operation ranges of key signals

Example:

Pressurizer of a nuclear reactor

Water level

Upper —m
Head

10.2 m

Normal
operation
range

3.8 m

| ;
M gm L d | A
Standard 2—LOOP gli r g“ eaters time
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Limit-based fault detection: the method

* Normal operation ranges of key signals
—~———

e Limit Value-Based Fault Detection

Example:

Pressurizer of a nuclear reactor

Water level

Upper —m

10.2 m
Normal

operation
range

time

3.8 m

“ “[
I
ML Lo |
Standard 2-Loop | i o |i
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Limit-based fault detection: Limitations

* Normal operation ranges of key signals
e Limitations:

.. . * No early detection
* Limit Value-Based Fault Detection *Not applicable to fault detection during

operational transients
*Control systems operations may hide small

Example' anomalies (the signal remains in the normal
Pressurizer of a PWR nuclear reactor range although there is a process anomaly)
*Considering signal individually can delay
detecti
Water level - oo
10.2 m
Normal
operation
38m range

i
), | E
Standard 2L \’Li"iw bt |~ i
andard 2-Loop | ki 1oF] SAtTE time
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Fault Detection: Approaches

 Limit-based
« Model-based
 Data-driven
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Model-based & Data-driven fault detection: basic idea

Signal Real
reconstructions measurements

~L

MODEL OF THE
EQUIPMENT BEHAVIOR
IN NORMAL CONDITION

A

=7
Statistical
Test

LU
"
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Fault Detection: Approaches

 Limit-based
« Model-based
 Data-driven
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Model-based fault detection: data & information

* Physics-based model of the process (used to reproduce the
expected behavior of the signals in normal condition)

Example:
Signal
reconstructions

Pressurizer model

v

L
"

v
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Model-based fault detection: limitations

* Physics-based model of the process (used to reproduce the
expected behavior of the signals in normal condition)

Example:
Signal Real

reconstructions measurements

Pressurizer model

v

LK

v
A

» Typically not available =

for complex systems Abnormal Condition
»Long computational

time
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Fault Detection: Approaches

 Limit-Based
« Model Based
 Data-driven
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Data-driven fault detection: data & information

 Historical sighal measurements in normal operation

Example:
Liquid | Steam Surge
|Pressureftemperatitemperat Sffors\y line H?)?/;ers Level Pressure
ure ure flow P
150.2{ 321 [ 362 [ 539 [ 244 | 0 | 7.2 1
150.4| 322 [ 363 [ 681 [ 304 | 0 | 75 g .
e, :'°°°:°;°:..
150.3| 323 | 364 | 690 | 335 | 1244 | 7.7 o oo e lITtet
Water level
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Example of Application 1*

COMPONENT TO Reactor Coolant Pump of PWR
BE MONITORED Nuclear Power Plant

Measured signals 48 (Temperatures, pressures, flows,...)

Historical signal measurements in normal plant
condition [1 year, frequency=1/30 Hz]

Available data

* Work developed with EDF-R&D
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Example of Application 2

1 x Acceleration sensor

A1

2 ¥ Acceleration sensors
{Ganarator)

Measured signals 6 vibration signals measured by accelerometers

Historical signal measurements in normal plant
condition [3 years, frequency=5 kHz]

Available data
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Data-driven fault detection: possible methods

 Statistical Approaches:
» AutoAssociative Kernel Regression (AAKR)
» Principal Component Analysis (PCA)-based

« Artificial Intelligence (Al)-based

» Feedforward Neural Networks (FNNSs)
AutoAssociative Neural Networks (AANNS)
AutoEncoders (AES)
Self Organizing Maps
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In This Lecture

* Part 1: Model of the Equipment Behavior

INn Normal Condition

« 1A) Auto Associative Kernel Regression (AAKR)
« 1B) Principal Component Analysis (PCA)

e Part 2: Statistical Test

« 2A) Thresholds-Based
« 2B) Q-Statistics
« 2C) Sequential Probability Ratio Test (SPRT)
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In This Lecture

Signal Real
construction measurements
Part 2

Ly

A

=7

Statistical
Test

Lk
sil"

Standard 2-Looy
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PART 1. Model of the Equipment
Behaviour in Normal Condition

« Auto Associative Kernel Regression (AAKR)
* Principal Component Analysis (PCA)




What do we need?

Data in normal
conditions

Signal

Observation
X obs —nc

obs-nc = observation in normal condition
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Training set, input and output

« Training patterns: Signal
Historical signal measurements [ obs-ne y o
. . 11 1j |- 1n
in normal condition _ . lobservation
X P S Xi1 Xy Xin
Xﬁbls—nc . XNj i Xﬁ?]s—nc
: _ob b b
« Testinput: X =(X" 0, X0 0)
Signals measured at current time
X obs—nc
« Test Output: X™ =(X°,...,X’°)
Signal reconstructions obs ~ne
: X X
(expected values of the signals 1_) 1 s
in normal condition) bs | Modelof the ="

X, equipment X,
behaviour in
x°bs normal Qne

——>3| conditions |_5
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Requirement |

* Equipment is in normal condition

; Signal _ Real
: Reconstructions ' Measurements
X bes
MODEL OF THE /\\ : :
EQUIPMENT :
BEHAVIOR t ¢
IN NORMAL : : :

CONDITION RIS - x5
L) t : L)

=reconstruction
nc= normal condition

Ibrahim Ahmed POLITECNICO MILANO 1863



Requirement Il

* Equipment is in abnormal condition

Signal Real
. Reconstructlons ' Measurements
f{lc xi)bs
MODEL OF THE /k\ : : A
EQUIPMENT
BEHAVIOR ¢ t

IN NORMAL

CONDITION %, - xolg
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PART 1: Model of the Equipment
Behaviour in Normal Condition

 1A) Auto Associative Kernel Regression (AAKR)
* 1B) Principal Component Analysis (PCA)




AAKR: Training set, input and output = Slide 26

« Training patterns: Signal
Historical signal measurements [ obs-ne y o
. . 11 1j - 1n
in normal condition _ . lobservation
X obs—nc . Xk1 ij an
Xﬁbls—nc XNj i X&?}s—nc
: ob b b
« Testinput: X =(X" 0, X0 0)
Signals measured at current time
X obs—nc
« Test Output: X™ =(X°,...,X’°)
Signal reconstructions obs ~ne
: X X
(expected values of the signals 1 1 s
in normal condition)  Obs E qne
—_l 2
AAKR >
obs o ne
X, X
—_ —_—
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AAKR: the algorithm (1)

- Training patterns: R G
X obs—nc — Xk1 ) ij an
Xﬁbls_nc XNj Xﬁ?]s_nc
. . . . “gobs __ s.,0bs obs
« Testinput @ : measured signals at current time X°7 =(X",..., X, )

« Test output *: weighted sum of the training patterns " = (R, X0)

X2

On all the
training pattern

\ @W(k) . Xlgjbs_nc

X" \_ N
> w(k)
k=1

R =
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AAKR: the algorithm (2)

. Output K™ =(X™,...,.8™) = weighted sum of the training patterns:

N
ﬂﬁw(k) . Xli)jbs—nc
On all the gne _\k=1

training pattern i T\ N
2 (k)
k=1
o obs—nc

- weights w(k) = similarity measures between X**and X;
(the test and the k-th training pattern):

4 low weight

M) bz
w(k) = e 20 ) high weight
A 27h 335 :Z\
Lt ot K
%% % ool

[
»

h = bandwidth parameter (it controls the decay speed)
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AAKR: parameter h setting

d=0 -> w=0.40/h
d=h -> w=0.24/h
d=2h - w=0.05/h
d=3h - w=0.004/h

w(d=0)  0.40
=—— =100
w(d = 3h)  0.004
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AAKR: the algorithm (2)

. Output K™ =(X™,...,.8™) = weighted sum of the training patterns:

N
Z W(k) . Xlgjbs—nc
— k=1

N
D w(k)
k=1
S obs—nc

- weights w(k) = similarity measures between X**and X;
(the test and the k-th training pattern):

4 low weight
2 .'.o..oo . )
W(k) = e 2h ;‘_;':,;:::' high weight
A/ 272' h St j
°
f (%) .:....
SEpasRe

[
»

o with 947 =2 0" =x3"™)*  Eyclidean distance between X°*and X
=1 k
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AAKR: Exercise 1

obs
X

-Signal values at currenttime: X = (x>*,...,x>”) @
Historical signal measurements in normal plant condition: -

X2
Question 1) Where do you_expect to be the
; . 5 NC 5 NC G NC
Signal reconstruction * X" =X, X)) ?
S0e3s Question 2) Is the plant in normal or abnormal
$esse conditions?
FX3
ee®®
eoe .%.%%.....°.o
-”.“:;.":2.?:-:3.'.-’-’
X1
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Exercise 1: Solution

-Signal values at current time: ~ X** = (x™,...,x>®)

. . S NC 5 NC 5 NC .
Signal reconstructions: X = (X",--sX, ) * based on the available
historical signal measurements in normal plant condition -

X2 A

%0 o obs ~ )fznc

:.: .o.. WA X

@':’i:’?:!}:‘:f}:-‘ ‘

normal condition

v

Ibrahim Ahmed POLITECNICO MILANO 1863



AAKR: Exercise 2

obs
X

-Signal values at currenttime: X = (x>*,...,x>”) @
Historical signal measurements in normal plant condition: -

X2 4
o Question 1) Where do you_expect to be the
; . 5 NC 5 NC & NC
signal reconstruction * X = (X" X)) ?
X Question 2) Is the plant in normal or abnormal
Seosse conditions?
2ae
oe®®
P
RO I
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Exercise 2: Solution

-Signal values at current time: ~ X** = (x™,...,x>®)

. . S NC 5 NC 5 NC .
Signal reconstructions: X = (X",--sX, ) * based on the available
historical signal measurements in normal plant condition -

X2 A
PO 570bs _, gne

abnormal condition

v

«available historical signal measurements in normal plant condition
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AAKR remarks: Computational Time

« Computational time:
* No training of the model

* Test:
computational time depends on
a) the number of training patterns N,

b) the number of signals n. n
d 2 (k) — Z (th)bs . Xl?jbs_nc)z
j=1
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AAKR remarks: Accuracy

* Accuracy:
« depends on the training set:
TN - 1 Accuracy

X2 A
.o Few patterns and not well
Soo%en distributed in the training space
$3o5Se ——
°9% %0 .
seee Inaccurate reconstruction

v
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AAKR remarks

Pros:
* No need of hypothesis on data distribution (e.g.
linearity)
Cons

 Performance related to number of training
observations

Ibrahim Ahmed POLITECNICO MILANO 1863
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PART 1: Model of the Equipment
Behaviour in Normal Condition

 1A) Auto Associative Kernel Regression (AAKR)
« 1B) Principal Component Analysis (PCA)




PCA: What Is it?

PCA:
« Space transformation
« From an n-dimensional space to a [-dimensional space (Il < n)
* Retaining most of the information (loosing the least information)

original data space

component space

*

ARAYE
E

P%],

i
u]
Ei
i
i

PC1
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IDEA OF PCA

« Two signals are highly correlated or dependent

= One is enough! XA |

« Key underlying phenomena
=>» Areas of variance in data

= Focus on directions along which X2
the observations have largest variance -

X, X =

a4k

Ibrahim Ahmed

POLITECNICO MILANO 1863



PCA: Training set, input and output = Slide 26 and Slide 27

« Training patterns: Signal
Historical signal measurements [ obs-ne y o
. . 11 1j - 1n
in normal condition _ . lobservation
X oPene X1 Xy Xin
Xﬁbls—nc XNj i X&?}s—nc
: ob b b
« Testinput: X =(X" 0, X0 0)
Signals measured at current time
X obs—nc
« Test Output: X™ =(X°,...,X’°)
Signal reconstructions obs ~ne
: X X
(expected values of the signals 1 1 s
in normal condition)  Obs E qne
—_l 2
PCA >
obs o ne
X, X
—_ —_—
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PCA for fault detection: operational steps (1)

Step 1. find Principal Components
(PCs) in the training set X ™"

1) PCl=—>
IS the direction of maximum
variance

2) PC2 ==
Is orthogonal to PC1 and
describes the maximum residual

variance

3) PC3—2
Is orthogonal to PC1 and PC2 and
describes the maximum residual
variance
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Step 1: Mathematical details (1A)

Obijective: find principal components

Procedure:
+ Compute V = covariance matrix of X °bs—n¢

- (Xobs—nc _ yobs-nc )T (Xobs—nc B Xvobs—nc)

X2 Empirical
C T T U U [ U U U mean
8- .2 ] matrix
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Step 1: Mathematical Details (1B)

Objective: find principal components

Procedure:
+ Compute V = covariance matrix of X °bs—n¢

 Find the n eigenvectors p4,p,, ..., p, Of V and the corresponding
eigenvalues 1, >4, =213 = - > 4,

X

| VP = p
o : ——
o 1,=9.50 largest p,=[0.28 0.96]
2,=0.04 smallest p,=[-0.96 0.28]
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Step 1: Properties of the PCs (I)

096 0.28

P=[r>1,r>2]={

0.28 —0.96}

> P s an orthonormal basis:
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Step 1: Properties of the PCs (lI)

> P Is an orthonormal basis:

» Data can be transformed from the original to the transformed
bases and viceversa without any loss of information
(multiplication for P and PT)

« 1 =the projection of X on the new basis is given by: 4 = x - P

PC, -

. L L L 1 1 L 1 1 L
-10 : . ‘ ; ! : p . : -0 -8 % -4 2 0 2 4 6 8 10

PC,
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Step 1: Properties of the PCs (lI)

> P Is an orthonormal basis:

» Data can be transformed from the original to the transformed
bases and viceversa without any loss of information
(multiplication for P and PT)

« 1 =the projection of X on the new basis is given by: 4 = x - P
« X can be obtained from u by: ¥ = 1 - PT

Xy

8

PC,
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Step 1: Properties of the PCs (lI)

> P s an orthonormal basis:

» Data can be transformed from the original to the transformed
bases and viceversa without any loss of information
(multlpllcatlon for P and PT)

. = the projection of x¥ on the new basis is given by: 4 = X - P
. f can be obtained from u by: ¥ = 1 - PT
» The percentage of variance retained by the i-th principal
component is:

%Var (PC, ) = 4

Zz

_11 1
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PCA for fault detection: operational steps (2)

Step 2 [PCA approximation]: ignore the PCs of lower

significance.
E“'  Lost small information
1:_ * Reduce the number of
. dimensions from n=10to =4

Pl PG2Z PCE OPC4 PCE PCE PCT O PCE PSS PCID
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PCA for fault detection: operational steps (2)

« Step 2 [PCA approximation]: ignore the PCs of lower significance.
—~——

map the observation ¥°?S in a subspace R! c R" identified by the
first I< n eigenvectors pq, ..., b;:

%°Psp, with P, = [By, ..., B]

Example of application to the normal condition data: X°Ps—n¢

X obs—nc yobs—ncp
X2 PC2 -

o
ke

& ‘ obs—nc
: X P,

. of ol DRI Gt [ [
f; PC1

We consider only the
Xl PC1 directions that are most
meaningful in  normal
condition (directions of
maximum variance)
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PCA for fault detection: operational steps (3)

- Step 2 [PCAEBPIOXIMaL0ON]: ignore the PCs of lower significance.

v

map the observation X¥°?S in a subspace R! c R" identified by the first 1 <
n eigenvectors py, ..., b;:

fObSPl W|th Pl = [ﬁl! ...,ﬁl]

« Step 3: _]: signal reconstructions x"¢ = x°bsp, pT

Example of application to the normal condition data: X°bs—"¢
obs—nc P, =I[8 > We loose the
X X 2 = [Py Pl X, | | noise in the
2 . Xobs—nCp/1 | space of the
f i | measured
: e | signals
] : PC1 |
¢ 1
X
1
X
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PCA for fault detection: Summary

Xflbs—nc le . anbs—nc
 Historical data x**™=| x, ..x; .. X _
’ " Find P, from X °PS—NC
_Xﬁbls—nc XNj . Xﬁlt;s—nc_
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PCA for fault detection: Summary

 Historical data x°®™=| x e Xep e Xy, _
“ ! ‘ Find P, from X °PS—NC
Xﬁbls—nc XNj . Xﬁzs—nc

»  Measured signals at present time:  X** = (x>,..., x>>)

I’'m looking at the measurements

. >0bs considering only the directions that
* Transform and pI’OjeCt xR are most meaningful in normal

condition (directions of maximum variance)
v
. 3 _ 2 b T
«  AntitrnansformX”"© = X°”° PP,

—~—————

gnec ~ gobs = normal condition

Signal reconstructions

| loose only the irrelevant noise

The process is changed

X" = X°°S 3 gbnormal condition
T—— POLITECNICO MILANO 1863




Exercise 1

-Measured signals at present time:  X°*° = (x, x3*) o
«Signal reconstructions?
*Normal or abnormal condition?

X

«available historical signal measurements in normal plant condition
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Exercise 1: Solution

Measured signals at present time: ~ X°” = (x**,x3”) e
Step 1: find principal components: [_jl : rjz

X2

«available historical signal measurements in normal plant condition
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Exercise 1: Solution

Measured signals at present time: ~ X°* = (X, x2*) o
-Step 1: find principal components [J, P,

.. ° V o -
. :
.
8 6 4 2 0 2 4 6 8 n 10 8 6 4 2 0 2 4 6 10
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Exercise 1: Solution

Measured signals at present time: ~ X°* = (X, x2*) o
*Step 1: find principal components [0, , P, e
-Step 2 (PCA approximation): keep only 1 PC of * ji.e. X -],

X 10 T T T T T LB — T T X2 10
2 o ]

P PC1
-0 8 6 4 2 0 2 4 6 10
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Exercise 1: Solution

-Measured signals at present time:  X°* = (x>, x3*)

«Step 1: find principal components
Step 2 (PCA approximfi\tion): keep only 1 PC of °,i.e. X - P,
*Step 3 (antitransform)x™® = X°**PP| @

L0 T

8 @ measuraments '.c
reconstruction e’

i ¥

i
4 . J
2 |-
0 |-
2
4
_6 = .8

‘f
..
8k o®
_10 r r r r r r r r r

-10 -8 -6 -4 -2 0 2 4 6 8 10

X
~ 1 - -
X% = g » normal condition
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Exercise 2

obs ObS) o

‘Measured signals at present time:  X° = (X, X,
Signal reconstructions?
Normal or abnormal condition?

10

.{'
6 ?’

«available historical signal measurements in normal plant condition
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Exercise 2: Solution

-Measured signals at present time:  X** = (x2*, x3™)

Step 1: find principal components ], P,
Step 2 (PCA approximation): keep only 1 PC of ° i.e. X P,

X 10 X 10
2 . o
&
.
6 ¥ 6
° Y
4 ¥ 4
2 2
0 [ ] 0 oo
2+ 2
[
4 4t
.
-6 by - 6
\8
o . of 1 L
o -4 3 2 1 o 1 2 3 4 5
-8 : - 8k . -
. .

-10 -8 -6 -4 -2 0 2 4 6 8 10 -10 -8 -6 -4 -2 o] 2 4 6 10
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Exercise 2: Solution

-Measured signals at present time:  X** = (x2*, x3™)

Step 1: find principal components ], P,
Step 2 (PCA approximation): keep only 1 PC of ° i.e. X P,

X 10 X 10
2 . o
&
.
6 ¥ 6
° Y
4 ¥ 4
2 2
0 ° 0 PN -
2+ 2
4 4t
.
-6 by - 6
\8
o . of 1 L
o -4 3 2 1 o 1 2 3 4 5
-8 : - 8k . -
. .
-10 -8 -6 -4 -2 0 2 4 6 8 10 -10 -8 -6 -4 -2 o] 2 4 6 10
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Exercise 2: Solution

-Measured signals at present time:  X°* = (x>, x3*)

«Step 1: find principal components
Step 2 (PCA approximfi\tion): keep only 1 PC of °,i.e. X - P,
*Step 3 (antitransform)x™® = X°**PP| @

X,

®  measuraments
‘ reconstruction

A

X7 #X Abnormal condition

Ibrahim Ahmed POLITECNICO MILANO 1863



PCA remarks: computational time

Computational time:

 Training time = computational time necessary to find the
Principal Components is proportional to the number of
measured signals n

« Execution time: very short (only 2 matrix multiplications)
- OK for online applications
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PCA remarks: complex structure

Performance:

Unsatisfactory for dataset characterized by highly non-
linear relationships
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Part 2: Statistical Test

Signal

=7

Test

Lk
sil"

Statistical

Real

COnStrUCtion measurements
Part 2

Standard 2-Loop
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In This Lecture

 Part 1. Model of the Equipment Behavior in

Normal Condition

« 1A) Auto Associative Kernel Regression (AAKR)
« 1B) Principal Component Analysis (PCA)

e Part 2: Statistical Test

« 2A) Thresholds-Based
« 2B) Q-Statistics
« 2C) Sequential Probability Ratio Test (SPRT)
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PART 2: Statistical Test

 Thresholds-based
« (Q Statistics

« Sequential Probability Ratio Test (SPRT)




Abnormal condition detection: decision

« Basics of the decision: residual analysis

e 2 I ~0 — Normal condition
I #0— Abnormal condition

 Methods

» Thresholds-based approach
« Stochastic approaches:

« Q Statistics
« Sequential Probability Ratio Test (SPRT)
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PART 2 A: Statistical Test

e Thresholds-based
o (Q Statistics

« Sequential Probabllity Ratio Test (SPRT)




Thresholds-based

Abnormal condition
r 4 detection

Ibrahim Ahmed POLITECNICO MILANO 1863



Thresholds-Based: Remarks

« Easy to apply
« Thresholds setting is difficult and error-prone

Too small thresholds - high false alarm rates (a)

A Normal conditions
r
o \ >

Too large thresholds = high missing alarm rates (j3)
A

r .
Abnormal conditions
>

t

Ibrahim Ahmed POLITECNICO MILANO 1863
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PART 2 B: Statistical Test

 Thresholds-based
o Q-Statistics
« Sequential Probabllity Ratio Test (SPRT)




Stochastic approaches

* Residual (r)=random variable described by a probability

law
» The probability law is different in case of normal/abnormal
condition
Normal condition Abnormal condition

0.5 r r r r r r r 0.5
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Q statistics

« Assuming the signal reconstructions at time t are:
X)) = (& (), %2 (B), ..., Xn (1)),
then the Q-stat at time t Is:

0 =77 7O = (#05(0) ~ # ) (2050 - ) =
= ) ") — W)
i=1

The Q-statistics (squared prediction error) is a metric that
accounts for the amount of variance that is not captured by the
chosen [ - dimensional PCA model, which represents the
“normal behaviour” of the signals.
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Q Statistics

;. 20,0
e Let 19,: — 7];1=l+1}{l , L = 1,2,3, ho =1- 3;23
2
g Th ,see Appendix 1, J.E. Jack d
G.g?ﬁlr;:jhsoﬁlfar,pﬁtaecnhr:)c()metrics, gci(g)cfrzf;m)’
0 ho 0, ho(ho—1) 341-349
O1l\;) 1wz | |
= IS approximately N(0,1)
/zezhg
Je(e) y fo(©
1 ¢ 1.
A - -3¢
R == e
e’ from tables

/
..—'!/ gjc

Z90

Equipment in normal condition = P(c < z97)=0.9
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Q Statistics

g
1/hg
0, = 9, (hoz";l“ 202 +1+ hOHZ(;lg _ 1)> =2 P(Q < Q99)=0.9
1

Abnormal condition
Q detection

P(abnormal condition|normal condition)=0.1

FALSE POSITIVE
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PART 2 C: Statistical Test

e General Idea

e (Q Statistics
« Sequential Probability Ratio Test (SPRT)




SPRT

« R = {r®M, ..., r(M} sequence of residuals at time
t = 1,..T, where r® = xPs(¢) — £"¢(¢)

 Binary hypothesis test:
* Null hypothesis (H,) = Normal condition

rO~n(0,0), vVt

| f,(r)=N(0,0)

« Alternative hypothesis (H,) = Abnormal condition
rO~N(uy,0),Vt
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SPRT: the decision

_ P{RelHiistrue} _ A(rM) - A @) . A(rT)
br = P{Rr|Hois true} fo W) - fo(r@) - fo(r(D)

In(Lr)

Not enough
information

Ibrahim Ahmed POLITECNICO MILANO 1863



SPRT Theorem

False alarm

1-8
B=In—= } @\H |strue <a

(\H@bﬁﬂ

Mlssmg alarm
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SPRT for the positive mean test

« Null hypothesis (H,) = Normal condition r(©~N (0, o)
- Alternative hypothesis (H,) = Abnormal condition r®~N (u,, o)

L PO r T LS i (n-2r®) | ST (r0-)
T per®, . r™M|Hy)

\/
T T—-1
H1 H1 H1 H1 H1 H1
=53 (10 -8) 550 -1) )
nllr) =5 — 0% Lo ' 2) T2\" T2 Sequential
[ Uy - Formula!
=In(Lr_y) + 22 (rm - £2)
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SPRT. Example

LO =1- ln(Lo) =0
In(L,) = In(Ly) + % (r(l) —

251
2

In(L,) = In(Ly) + 2 (r(z) —

Ibrahim Ahmed

7)
2

7)
2
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SPRT: parameters to be set

* the residual variance in normal condition (o?)

* the expected offset amplitude (u,)

« the maximum acceptable false alarm rate (a)

« the maximum acceptable missing alarm rate ()
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Time interval

Simulated
Offset

[0-200]

No

[201-400]

Yes
(amplitude =
0.11)

[401-600]

Yes
(amplitude =
0.23)

[601-800]

Yes
(amplitude =
0.34)

[801-1000]

Yes
(amplitude =
0.46)

Ibrahim Ahmed

Signal value

53¢

52

51

N

50

49

; observed T

48
x

® *  Reconstruction

a7

46" -
0 100

200

300

400

500 600 700 800 900 1000
Time
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Example: residuals

Ibrahim Ahmed

Residuals

0.8

0.6

0.4

0.2

0

-0.2

-0.4

-0.6

-0.8

[
‘%7}‘
;

—_ —
E_;

WM“ |
0 100 200 300 400 500 600 700 800 900 1000
fime Maximum
Ximu
No offset
offset
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Example: SPRT

Parameter | Value |B = |nﬁ SL_J—-J-__L...ﬁ-—- - o=
a 0.01 o 4 . ° °
B 0.01 == === Upper Threshold | & .« 0
Uy 0 3H Lower Threshold . o,
My 0.46 * SPRTvalue PRRD
2 . o o
0’ 0.12 . cew® o
w 1 e t}i: ° rT'r‘:
() (] °
° %, o™ ,°° ® ° . °
£ 0 L o % o..o d o’
L0=1_>1n(L0)=0 E LY - * .- ‘....o : °
Hy Ui @ 1 T e ety 'y %
In(L,) = In(Ly) + F(ﬂﬂ - 7) X . s HNE
H1 H1
In(L,) = In(L +—(<2>——) .
n(Ly) = In(Ly) + 5 (r® -5

800 900 1000

>

Il

=
T
g

0 100 200 300 600
Time Maxi

No offset aximum

offset
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SPRT: performance

Average Sample Number (ASN) needed to deliver a decision

\

Time interval Offset Estimated | Number of times in Number of times in
ASN which a normal which an abnormal
condition has been condition has been
detected detected
[0-200] No 1.2 150 2
[201-400] |amplitude =0.11 1.9 70 5
[401-600] |amplitude = 0.23 2.4 15 17
[601-800] |amplitude =0.34 2.1 0 94
[801-1000] |amplitude = 0.46 1.2 2 142
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Data-Driven Fault Detection

Challenges?
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Fault Detection - Challenges

« Hundreds of Signals are Monitored
« Evolving Environment
* Robustness
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Data-Driven Fault Detection: Challenge |

1 #312KA031 VALUE
2 #312KA032 VALUE
3 #312KA033 VALUE
4 #312KA201 VALUE
5 #312KA301 VALUE
6 #312KA302 VALUE
7 #312KA303 VALUE
8 #312KA306 VALUE
9 #312KA502 VALUE

10 #312KA503 VALUE

11 #312KC301 VALUE

12 #312KC302 VALUE

13 #312KC303 VALUE

14 #312KC502 VALUE

15 #313KA511 VALUE

16 #313KAS512 VALUE

17 #313KA711 VALUE

18 #313KA712 VALUE

19 #313KAT721 VALUE

20 #313KAT722 VALUE

21 #313KA731 VALUE

22 #313KA732 VALUE

23 #313KB511 VALUE

24 #313KB512 VALUE

25 #313KB711 VALUE

26 #313KB712 VALUE

27 #313KB721 VALUE

28 #313KB722 VALUE

29 #313KB731 VALUE

123 #313KC511 VALUE

kgls
ka/s

kgis
ka/s
kgls
kgls

kgis
kg/s
kgls
c

mm/s

mm/s
mm/s
mm/s
mm/s
pm

sum feedwater flows
sum feedwater flows
sum feedwater flows
pressure difference over VA23
flow train A

flow train A

flow train A

flow low power (flede I4glast)
feedwater temp train A

temp after VA8

flow train C

flow train C

flow train C

feedwater temp line C

temp PA1 (main circulation pump;
temp PA2 (main circulation pump;
vibration PAL radial

vibration PA2 radial

vibration PA1 tangential

vibration PA2 tangential

rotation speed PAL

rotation speed PA2

temp PB1 (main circulation pump;
temp PB2 (main circulation pump]
vibration PB1 radial

vibration PB2 radial

vibration PB1 tangential

vibration PB2 tangential

rotation speed PB1

temp PC1 (main circulation pump;

Ibrahim Ahmed

Signal

v
=
[

v

DIFFICULT TO DEVELOP
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Fault Detection: Challenge |

Ensemble of models

e Solution
-
I
4 N\
Measured
Signals Group Subset 2
X, X,,...,x [°| 8eneration QMI
.1 2. ' Random l
N\ J
123 signals

=30 signals
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Fault Detection: Challenge |

Ensemble of models

e Solution
Subset 1 J:>

Model 1

)
4 )

Measured .
Signals Group Aggregati
X, Xy oo X, [ generation on _"

. . Random
- / \ ,
123 signals
Weighted
Average

=20 signals
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Fault Detection: Challenge Il

Plant Upgrading:
Valve ‘64y’ is Planned

Operational Condition: replaced with a Maintenance
Load 100% > new model
Load 80% ‘

_-h——-_—

Inlet Gas
Temperature
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Fault Detection: Challenge Il

Example: monitoring the turbine of an electric power plant

Identify historical signal Plant operations slowly
measurements in Develop the model False change with time
ty normal plant operation } alarm
rate
£
> t t, time

A New Model is necessary
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Fault Detection: Challenge Il

Example: monitoring the turbine of an electric power plant

Identify historical signal Devel h del Plant operations slowly
measurements in evelop the mode False change with time

t normal plant operation p alarm
0 .

5 rate

gis “

(O T

'&ﬁi‘.":‘-':;’#g‘.i R > T : =_

> T t time

Identify recent historical A New Model is necessary

signal measurements in

_ Develop the new model
normal plant operation

False
alarm
. rates
o 00y .,...*-..;. :. > T T

t0 tl time

Periodic Human Interventions for developing new models! - high costs!
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Fault Detection: Challenge Il

* The detection model should be able to follow the process
changes:

* Incremental learning of the new data that gradually becomes
available

* No necessity of human intervention for:

* selecting recent normal operation data
* building the new model } New data are coming

Automatic updating of the model

[ Qs

> T
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Fault Detection: Challenge Il

ABNORMAL CONDITION
Real Signal
measuremegnts reconstructions
)’ZnC
N 1 AN
obs M
X1 M W\ OK
%t O Anc > t
D X,
ngs = A
ROBUSTNESS:
anc  <obs—nc
X =X
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Examplel:

Monitoring a Turbine for Energy Production

6 Temperature Sensors
in different position

Ibrahim Ahmed

562
556, 560,
594
554, 558
562
570) 552 556,
560)
565} 550 554
558
548 552
560)
556 546 550
553 544 548
ol 42 54
0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700
564, 560 5
562 566,
560, o5 564,
558 562
556, 560,
550
554, 558,
552 556,
550 545 554
548 552
54 540 550
0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700

Highly Correlated Signals

0.97
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Example:

Traditional AAKR

15~ "‘- 1r
‘0
¢ U AT g ‘]\
0 J v , l u ‘ ‘r
i
— N
T ® -1-
> >
=) S
(7] (%]
()] [O]
x x -2-
Traditional AAKR 3 Traditional AAKR
...... Simulated abnormal conditions == s Simulated abnormal conditions /
-5 S ¢
0 200 400 600 800 0 200 400 600 800
Time Time

} DELAY IN THE DETECTION

IMPOSSIBILITY TO IDENTIFY THE SIGNALS
TRIGGERING THE ABNORMAL BEHAVIOR
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Our Contribution:

A modified AAKR method

¢ x1 Fault

( =ob. -
( X0 o AX| Fault
X2 - Detection

Modified AAKR

L

No Fault

Malfunctions causing variations
of a small number of signals are
more frequent than those
causing variations of a large
number of signals

Modification of the loci
of equisimilarity points
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145
12/
10-

Residual 1

]
Modified AAKR |
16 |
""""" Traditional AAKR 1r i s

— Simulated abnormal conditions

tLLLUTELLAS S
LI

T »

it
o e
- e

Residual 2

o N b~ OO ©

Ibrahim Ahmed

]
. FEERIARRALALARRRLL R RR L)
Presstt i

.:;rﬁiiiga.__

Modified AAKR - WERT
o] Traditional AAKR tE
— Simulated abnormal conditions

100 200 300 400 500 600 100 200 300 400 500 600
Time Time

Early Detection

Correct Diagnosis of the
signal that triggers the alarms

More Accurate
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Modified AAKR

Loci of

equisimilarity
points
Accuracy OK!
Robustness NO! Especially 1. Robust reconstruction of the values
with correlated expected in normal conditions
signals 2. Correct identification of signals

affected by abnormal condition
3. Good performance with correlated
signals
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Example2:

Monitoring Reactor coolant System of a Nuclear Power Plant

6 Sensors of reactor coolant system (RCS) measured during startup transient
S1 (Cold leg temperature) S2 (Core exit temperature) S3 (Hot leg temperature)
S4 (Safety injection flow) S5 (Residual heat removal flow) S6 (Sub-cooling margin temperature)

Correlations

5 % B 3 8 8
Reactor Reactor 1
Steam Coolant Pump Coolant Pump
G tor Steam
ehera Ganasaior O 1 0.99 0.99 0.39 -0.98 -
06
S2 0.99 1 0.99 0.39 -0.98
Safety s
Injection
S3 099 0.99 1 0.42 097 [ %2
|
Residual Residual F o
Heat Removal Heat Removal
sS4 1 0.65 P
Hot Leg
Loop 3 04
Cold Leg \ Safety S5 0.39 0.39 0.42 0.65 1
Reactor Injection 06
Coolant Pump
Steam

Generator 08

- S6 -0.98 -0.98 -0.97 1 :

Crossover Leg \_/
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Example2:

Traditional AAKR

15~ "‘v 1r
" |
¢ LN T g . ]\
O kf‘
— N
[ ® -1-
> >
S S
(7] (%]
()] [O]
x x -2-
Traditional AAKR 3 Traditional AAKR
...... Simulated abnormal conditions == s Simulated abnormal conditions /
-5 S ¢
0 200 400 600 800 0 200 400 600 800
Time Time

’ DELAY IN THE DETECTION

IMPOSSIBILITY TO IDENTIFY THE SIGNALS
TRIGGERING THE ABNORMAL BEHAVIOR  *

kS (x;, x4

} LACKS TEMPORAL INFORMATION

M .f

a f
Yiz1 ki

t
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Our Contribution:

AABKR method — Aggregating Bilateral Directions

Historical Data, X

Feature Feature o fault
Distance _) Kernel
Calculator Calculator Bilateral
. Fault
Kernel -) Prediction ') -
Calculator Detection
DTW-based time|

stiaiti Weighted- Temporal
position index * Distance * Kernel

identification !
method Algorithm Calculator

Fault

A

Online Observations, X;

Aggregating bilateral
directions capturing both
spatial and temporal
dependencies
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100 - BAAKR #AABKR =m-AABKR

=
(=]
1

=4
(=]
1

e

e e
el el e Dl el

00)

Y
N
=

=
(=]
1

Alarm rates (
WO AW
s & S

. L

[
=]
1

e e e e e e e e e e e e e

h

[
poeieeie

=]
1

MAR M&FAR T&FAR TAR FDR

Perfomance Metric

Means of the alarm rates in start-up process operating condition

2 - >
> =
: #1
3
E 2
w -
2 § _
3 1 3
o o
T T T T 1
56 58 60 62 64 66 99.0 99.2 994 99.6 99.8 100.0
True Alarm Rate (%) True Alarm Rate (%)

(a) AAKR (b) AABKR
Distributions of the TARs for a thousand-run Monte Carlo in start-up
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Modified AAKR (AABKR)

- Traditional AAKR Modify AAKR (AABKR)

Information
captured Ve P 1 3
Accuracy OK! OK!

Robustness NO! Especially 1. Robust reconstruction of the values
with correlated expected in normal conditions
signals and 2. Correct identification of signals
normal transient affected by abnormal condition
data 3. Good performance with normal

transient monitoring
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