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The History of Monte Carlo Simulation

Buffon 1707-88

Kell\'fin 18241907
Gosset (&udent) 1908

Fermi, von N#mann, Ulam 1930-40%
Neutron%ansport 1950
System Transg;rt (RAMS) ™
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SAMPLING RANDOM NUMBERS




Example: Exponential Distribution

Probability density function:

fr(t)=2e" t>0
=0 t<0

»

Sr(t)4

Expected value and variance:

E[T]= % /

Var[T] = -

12
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Sampling Random Numbers from Fx(x)_

Sample R from Ug(r) and find X:
X =F;'(R)

CRC

Example: Exponential distribution

X

R=F,(x)=1-e™*

FX(x)zl—e_ﬂx

F;(R):—%ln(l—R)
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Sampling from discrete distributions

Q:{xo,xl,...,xk,...}

A Fy A
F =P, X<x (=) P|X=x,
=P ¥ Zo: [ | Frofiifith o f_
________ )_---------
samplean R~ U[0,1) Froithy 5
Fyh ‘*’
Xo X1 X /x

Graphically:

r
X2

0 Fi o Fifitho Fifrtfitfy

~
~

1
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Failure probability estimation: example

Arc number i | Failure probability P;
1 0.050
2 0.025
3 0.050
4 0.020
5 0.075

B 1- Calculate the analytic solution for the failure
probability of the network, i.e., the probability of no
connection between nodes Sand T

B 2- Repeat the calculation with Monte Carlo simulation
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SIMULATION OF SYSTEM
TRANSPORT




I

Monte Carlo simulation for system reliability

PLANT = system of Nc suitably connected components.

COMPONENT = a subsystem of the plant (pump, valve,...) which may stay in
different exclusive (multi)states (nominal, failed, stand-by,... ). Stochastic
transitions from state-to-state occur at stochastic times.

STATE of the PLANT at t = the set of the states in which the Nc components
stay at t. The states of the plant are labeled by a scalar which enumerates all
the possible combinations of all the component states.

PLANT TRANSITION = when any one of the plant components performs a state
transition we say that the plant has performed a transition. The time at which
the plant performs the n-th transition is called t, and the plant state thereby
entered is called k...

PLANT LIFE = stochastic process.
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Stochastic Transitions: Governing Probabilities

— -

ik' k'ik
| |

[
&
t

~ § -
v

= Tt /t: k’)dt = conditional probability of a transition at tedt, given that
the preceding transition occurred at " and that the state thereby

entered was k’.

= C(k / k’; t) = conditional probability that the plant enters state k,
given that a transition occurred at time t when the system was in
state k’. Both these probabilities form the "trasport kernel”:

Kit: k [t:k)dt=Tt [t; k)dt Ck [k’ t)

. B

= y(t; k) = ingoing transition density or probability density function (pdf)
of a system transition at ¢, resulting in the entrance in state k
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Plant life: random walk

CRC

Random walk = realization of the system life generated by the underlying
state-transition stochastic process.
4 System’s
| states
8__
7__
6-- Pn' |
S4+-—-——-————==-=- - -
4-- Pn-l I n
~ 1
J
o I
Pll I I
1-— l n-| | I
| | | >
t-'n. tn tn' | t
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Phase Space

o)

k*+11-

k* [ — — — —

k*_l__

A\ 4
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Example: System Reliability Estimation

1 Pt T CT0O=Ct0 e[0T, ]
0

2 Imll llllllTM C')=C*(O)+1 te|r.T,]
0

3 m%.l 111 11 11 11 T, CYft)=C*(t)+1 te[r,TM]

T T T T T O I I m C*()=C"(r) t€[0,T,,]

ﬁT(t) = CR(t)
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Example

: System Reliability Estimation

C*(n=C"(t) te[0,T,]

C*(t)=C*(@)+1 te[r,TM]

C*"(t)=C"(t)+1 te[r,TM]

C*()=C"(r) t€[0,T,,]

ﬁT(t) = CR(t)

Events at components level,
which do not entail system

failure

CRC
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SIMULATION OF COMPONENT
STOCHASTIC STATE
TRANSITION PROCESS FOR
AVAILABILITY / RELIABILITY
ESTIMATION




One component with exponential distribution of

the failure time

State X=1 = ON
State X=2 =2 OFF

State 2 T

State 1

CRC
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One component with exponential distribution of

the failure time

State X=1 = ON
State X=2 =2 OFF

State 2 T —

State 1 e
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One component with exponential distribution of

the failure time

State X=1 = ON
State X=2 =2 OFF

State 2 T

State 1
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Prof. Enrico Zio I POLITECNICO DI MILANO



One component with exponential distribution of

the failure time

A

3- 103 h
25- 103 h
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CRC

SIMULATION OF SYSTEM
STOCHASTIC STATE
TRANSITION PROCESS FOR
AVAILABILITY / RELIABILITY
ESTIMATION




Phase Space

o)

k*+11-

k* [ — — — —

k*_l__

A\ 4
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Example: System Reliability Estimation

1 Pt T CT0O=Ct0 e[0T, ]
0

2 Imll llllllTM C')=C*(O)+1 te|r.T,]
0

3 m%.l 111 11 11 11 T, CYft)=C*(t)+1 te[r,TM]

T T T T T O I I m C*()=C"(r) t€[0,T,,]

ﬁT(t) = CR(t)
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Indirect Monte Carlo: Example (1)

Components’ times of transition between states are exponentially distributed

( A, = rate of transition of component i going from its state j; to the state ;)

Arrival

CRC Prof. Enrico Zio POLITECNICO DI MILANO



Indirect Monte Carlo: Example (2)

Arrival
1 2 3 4

1 - Mora M3 Mosa
| 2 A - 253 2354
=
= c c c

3 A3 A3 50 - A3554

4 2551 A4 A4 -

* The components are initially (#=0) in their nominal states (1,1,1)

* One minimal cut set of order 1 (C in state 4:(*,*,4)) and one minimal cut set
of order 2 (A and B in 3: (3,3,%)).
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Analog Monte Carlo Trial

CRC

SAMPLING THE TIME OF TRANSITION

The rate of transition of component A(B) out of its nominal state 1 is:

A(B A(B A(B
/11():/1()4_1()

1-2 1-3

 The rate of transition of component C out of its nominal state 1 is:

C_ AC C c
M =Aisr T AT Aiss

* The rate of transition of the system out of its current configuration (1, 1, 1)
is:

AN = 2+ a8+ af

* We are now in the position of samtplirég the first system transition time t,, by
applying the inverse transform method:

1
h=to— Wln(l - R))

where R,~ U[0,1)
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Sampling the Kind of Transition (1)

« Assuming that t, < Ty, (otherwise we would proceed to the successive
trial), we now need to determine which transition has occurred, i.e.

which component has undergone the transition and to which arrival
state.

* The probabilities of components A, B, C undergoing a transition out of
their initial nominal states 1, given that a transition occurs at time t,,

are:
At A A
/1(1,1,1) ’ 1(1,1,1) ’ 1(1,1,1)

 Thus, we can apply the inverse transform method to the discrete
distribution

, a1 Re o0 a0
i 1(1,1,1) E 2(1,1,1) > i<_/1(1,1,1) _’:r
!O Y | ;
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Sampling the Kind of Transition (2)

CRC

* Given that at #, component B undergoes a transition, its arrival state can be
sampled by applying the inverse transform method to the set of discrete

probabilities
{ﬁf—ﬂ ifg—ﬂ}
AbAr

of the mutually exclusive and exhaustive arrival states

B R®
A2 18 :
<+ 5 P =23 — . Rs~U[0,1)
| 1 | /11 . |
| | Y

0

* As aresult of this first transition, at t, the system 1s operating in configuration
(1,3,1).

* The simulation now proceeds to sampling the next transition time t, with the
updated transition rate

L3,1) A B C
AU = ady 2B )




Sampling the Next Transition

* The next transition, then, occurs at

1
Ir=t— Wln(l -R)

where R, ~ U[0,1).
» Assuming again that t, < T,,, the component undergoing the transition and its

final state are sampled as before by application of the inverse trasform method to
the appropriate discrete probabilities.

e The trial simulation then proceeds through the various transitions from one
system configuration to another up to the mission time T,,.
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Unreliability and Unavailability Estimation

i _

CRC

« When the system enters a failed configuration (*,*,4) or
(3,3,*), where the * denotes any state of the component, tallies
are appropriately collected for the unreliability and instantaneous
unavailability estimates (at discrete times ¢, € [0, Ty]);

« After performing a large number of trials M, we can obtain
estimates of the system unrehability and instantaneous
unavailability by simply dividing by M, the accumulated
contents of CR(z)) and C4(%)), £;,€[0,Ty]
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Direct Monte Carlo: Example (1)
A

B

For any arbitrary trial, starting at /=0 with the system in nominal configuration
(1,1,1) we would sample all the transition times:

1 . - )
In(l-R.,,,)  =458C

; m, =23 for i=A,B
m =234 for 1=C

l _ —
lism, = Lo ;
1->m

Vo

where R;,1—>m,- ~UI0,1)

These transition times would then be ordered in ascending order from ¢, to
t .<Tn - Let us assume that t_. corresponds to the transition of component A to
state 3 of failure. The current time i1s moved to t,= t_, in correspondence of
which the system configuration changes, due to the occurring transition, to (3,1,1)

still operational.
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Direct Monte Carlo: Example (2)
A

These transition times would then be ordered in ascending
order fromt ; tot,  <T)s.

Let us assume that t_. corresponds to the transition of
component A to state 3 of failure. The current time is moved
tot,=t,. in correspondence of which the system
configuration changes, due to the occurring transition, to

(3,1,1) still operational.
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Example (1)

A
t1—>3
O
< ]
A : ;A
i B
! [1-3
O
B : EtIB
1 1—)2
0 i T,
1 ('v
: l1-4
= O
C R C D(,
0 : T, 153 too
System (A,B,C) I 1 I
Sys
0 [(1.1D)>3.1) T,
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Example (2)

The new transition times of component A are then sampled

| k=12
y y )
(35m, —h— ln(l_Rz,s—mA)
- ﬂ;?-)mA Rf?a—)mA ~ U[Oal)

and placed at the proper position in the timeline of the succession of occurring
transitions

 The simulation then proceeds to the successive times in the list, in
correspondence of which a system transition occurs.

» After each transition, the timeline is updated with the times of the transitions
that the component which has undergone the last transition can do from its new
state.

* During the trial, each time the system enters a failed configuration, tallies are
collected and in the end, after M trials, the unreliability and unavailability
estimates are computed.
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PRODUCTION AVAILABILITY EVALUATION OF AN
OFFSHORE INSTALLATION
A real example of Indirect Simulation

= Iad

CENTRALE  Supélec

P R |
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System description: basic scheme

. . Gas Export
> TIEG | 3.0 mSm3/d, 60>

—{olloxport>
- 3o K o

Wat. Trt°

ea :ﬁ_
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System description: gas-lift

CRC

Gas Lift 60b

N _| GasExport >
TEG | 3.0 MSm®/d, 60b
Gas Lift 100b
ad Separation

—-@

&

First loop
Gas-lift pressure Production of the Well
100 100%
60 80%
0 60%
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System description:
fuel gas generation and distribution

Second loop e L Ga s |\

3
l o 0.4 MSm°/d
b

—.

i

.| GasExport
3.0 MSm°’/d, 60b

0.1 MSm’d T

3
TG
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System description:
electricity power production and distribution

1

TC

L 4 N Gas Export

2 b ’ E’_’ 3.0 MSm°/d, 60b
6 MW

+{1€] J

6 MW »| Oil export

O I = —e
17 Mw
13 MW
»O

Wat. Trt° mn MW

N4

i

Sea 7 MW

I
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The offshore production plant

0.1 MSm? Fuel Gas 25 b
l O«
2.2 MSm3/d >
—p TC -
50 A’ 4.4 MSm°/d
o o— » TEG | GasExport
lo IMSm®> 4§ 3.0 MSm°/d, 60b
' toMw —
50% 1 MSm>/d
> : — l Gas Lift 60b
2.2 MSm’/d
Gas Lift 100b
4_
4.4 MSm’/d -
_ 6 MW » Oil export>
23300 Sm°/d . A
Separation » Oil Trt°
7MW
Production , 0.1 MSm3l
gals 2 : "33’;#/ d 7000 Sm°/d B 13 MW
il : 265 m’ / ")
Water : 8000 Sm’/d 50 A’ o
y 0.1 MSm3|
Wat. Trt° 50%
13 MW
Sea Water i) >
7MW

CRC
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Component failures and repairs: TCs and TGs

TC TG
Aot 0.89 - 103 h'! 0.67 - 10 h-!

7\02 077 : 10_3 h_1 074 : 10_3 h_1

7\12 186 : 10_3 h_1 212 : 10_3 h_1

Wo |0.033h! 0.032 h-!

H20 Wy | 0.048 bl 0.038 h-!

State 0 = as good as new
State 1 = degraded (no function lost, greater failure rate value)
State 2 = critical (function 1s lost)
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Component failures and repairs: EC and TEG

CRC

A

EC TEG
A 0.17 - 103 h'! 5.7 - 10 h'!
o 0.032 h-! 0.333 h'!

State 0 = as good as new

State 2 = critical (function is lost)
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Production priority

When a failure occurs, the system is reconfigured to
minimise (in order):

B the impact on the export oil production

B the impact on export gas production

> The impact on water injection does not matter

CRC Prof. Enrico Zio I POLITECNICO DI MILANO



Production priority: example

0.1 MSm? Fuel Gas 25 b
l O«
2.2 MSm3/d R
»@ [
50% 4.4 MSm’ld
e o— » TEG _,| GasExport
IMsm® ¢ 3.0 MSm°/d, 60b
' MW =
500/ 1 MSm°/d
0
»@ l Gas Lift 60b
2.2 MSm*/d
\/
Gath 100b
4_
4.4 MSm®/d / \ .
» Oil export
. 23300 Sm*/d - y
Separation
Production ]
Gas : 5 MSm®/d 7000 Sm*/d
Oil : 26500 Sm*/ d
Water : 8000 Sm’/d
A 4
Wat. Trt°

CRC POLITECNICO DI MILANO
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Maintenance policy: reparation

CRC

Only 1 repair team

Priority levels of failures: :

1. Failures leading to total loss of export oil (both TG’s or both TC'’s or
TEG)

2. Failures leading to partial loss of export oil (single TG or EC)
3. Failures leading to no loss of export oil (single TC failure)
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L 1
Maintenance policy: preventive maintenance

» Only 1 preventive maintenance team

» The preventive maintenance takes place only if
the system is in perfect state of operation

Type of maintenance Frequency [hours] Duration [hours]
Type 1 2160 (90 days 4
Turbo-Generator and .l ( ¥
Type 2 8760 (1 year) 120 (5 days)
Turbo-Compressors
Type 3 43800 (5 years) 672 (4 weeks)
Electro Compressor Type 4 2666 113

CRC
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MARKOV APPROACH

CRC

{

Number of components = 6

2.34 —
Number of states for component =2 or 3 ——> 2%:3%=324 plant states

+ A
ODOOOOO®
1 repair team ——> 129 newplantstates (O O O ® i
OOOOOO®
_|_
Non homogeneous Markov

1 maintenance team —— > :
chain

Markov approach too complex

: |

MONTE CARLO APPROACH

POLITECNICO DI MILANO
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MONTE CARLO APPROACH

Plant state

‘)

OOOOOO® o

T

Associate a production level to
cach of the 453 plant states

Production levels

oil gas water

1B
1k

:> too long, error prone
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A systematic procedure

CRC

7 different
production
levels

g

6 different
system faults

1

6 fault trees

1

6 families
of mcs

Production Gas Oil Water mes MCS
Level [kSm3/d] | [k m3/d] [m3/d]
0=(100%) 3000 233 7000
1 900 233 7000 X35, X6 X5,X6
2 2700 21.2 0 X3, X4 | X2X3,X2X4
X3X35, X2X3X5,
X3X6, X2X3Xe6,
3 1000 21.2 0 X4X35, X2X4X5,
X4X6 X2X4X6
4 2600 21.2 6400 X2 X2
X2X5 X2X5,
21.2 4 ’
> 200 6400 X2X6 X2X6
X1,
6 0 0 0 X3X4, X1X§§2X4X
X5X6
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Numerical results

Case A: corrective maintenance and no preventive
maintenance (T = 1- 103 hours, trials=10°)

CPU time = 15 min

Case B: perfect system (no failures) and preventive
maintenance (T = 104 hours, trials=10°)

CPU time = 12 min

Case C: corrective and preventive maintenance
(This=5-10° hours, trials=10°)
CPU time ~ 20 h

CRC Prof. Enrico Zio I POLITECNICO DI MILANO



Case A: no preventive maintenances

Production | Average
level availability
0 9.23E-1
1 3.13E-2
2 3.67E-2 >
3 247E3 |
4 4.88E-3 | &
5 3.50E-4 | °
6 1.79E-3
CRC

0 1 2 3 4 5 6

Production level
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Case A: no preventive maintenances

Asymptotic
values

Oil

23.24

[k m3/d]

Gas 2918
[k Sm3/d]
Water 6.703
[k m3/d]

3id]

E{exported oil)
[kSm

E{exported gas)
[kSm>/d]

E(injected water)
[k mfd]

23.30

No preventive maintenance, trails=10%

2328

2326

23.24

23.22
0

3000

400 500 600 700 800 900 1000

| : ‘ i ' : ‘ : ‘ ‘
L e R Erh CEEEEEEEE Lt EEEEEEEEEE Rt EEEEEEEEE R EEEEEEt EEEEEEES —

2950 |- -\

29258 -

2300
0

400 500 600 700 800 900 1000

6.6
0

CRC
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400 500 600 700 800 900 1000

time [hours]
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Case B: perfect system and preventive

mis s=104 hours - Perfect system with preventive maintenance team

T T T T T T T

Production level

maintenances
Nyiais=10° T
10°
Production Average
level availability
0 9.12E-1
1 2.73E-2 >
2 2.72E2 | %
3 000 |&
I
4 3.40E-2
5 0.00
6 0.00
CRC
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Case B: perfect system and preventive

maintenances

P.Maintenance N =105 T
Type 1 (1c,16) 235 | . , 7 AN
23 é ; ..... é .................. é ................. é ............... 3H”m..m_€ ..................
P.Maintenance 275 A ................ ..... I ................ .................
TSq?e 2 (EC) 22 é % nué .................. é ................ é ................ S ................ ; ................. |
215 .................. ............... I Ll .................. BEERArE
P.Maintenance 21, | | | |

=10* hours - Perfect system with preventive maintenance

Type 3 (rc,16)

3500 | : : | :

3000 e o
ﬁ} S [ ______ L

Mean Std 2500 b _________________ )
2000 __________________

Oil 123230 | 0.263 | 1500/

[k m3/d] 0 1000 2000 3000 4000 5000 6000 7000

Gas 8000 ]
o | 2929 1940 | o

4000
Water | ¢ 911 | 0.883

[k m¥d] 2000

i | i i i i i
3000  4000Y 50007 6000 7000 8000 Y9005 10000

time [hours]

CRC Prof. Enrico Zio | POLITECNICO DI MILANO
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Case C: real system with preventive

=5. 10° hours - Real system with periodic preventive maintenance

Production level

maintenances
. Niia™10° Trrss
Production Average
level availability

0 8.13E-1
| 5.68E-2 >
2 6.58E-2 %
3 1.19E-2 °’
:

4 3.55E-2

5 2.34E-3

6 1.50E-2

CRC
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Case C: real system with preventive

maintenances

Ntri a|=105 Tmiss=5 . 10% hours - Real system with periodic preventive maintenance

23 i .................. .................. .................. s .................. .................. ................ _
22 } (i1l ................ ................. ................. ................ ................................. ................. .............. _
21 AT ' ' ' : : |

E(oil) [km°/d]

Mean Std 20kl | ................... , .................. | .................. || .................. , .................. | .................. , .................. | ................. -

Gas | 9687 | 194.3

Oil 3000
porgy | 2200 | 042 mkmm " ’W\ /*me (W‘/\/L rvm 'vka i "“1 rvm Y fmq‘ /fmf\ v
[k Sm*/d]

2500 ‘ ________________ ____________ / _____ = / ______ _______ | __l _________ L \ .............. \., ............. H ______________ | ___________ \_/_

2000 L) S D I

E(gas) [kS m/d]

Water 6.04 | 076 1900, o.is 1I 15 2 2.i5 3 25 4 45 5

k 3
[k md] 8000 ———r T

6000 [ifit
4000 it

E(water) [m>/d]

time [hours]

CRC Prof. Enrico Zio | POLITECNICO DI MILANO




Conclusions

B Complex multi-state system with maintenance
and operational loops

a

MC simulation

B Systematic procedure to assign a production

level to each configuration gas water

POOOOD] ) E i i

B Investigation of effects maintenance on
production

CRC Prof. Enrico Zio I POLITECNICO DI MILANO
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B Sampling
B Evaluation of definite integrals
B Simulation of system transport

B Simulation for reliability/availability
analysis
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SAMPLING
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Buffon’s needle

Buffon considered a set of parallel straight lines a distance D apart
onto a plane and computed the probability P that a needle of length L
< D randomly positioned on the plane would intersect one of these

lines.

D e p:P{YgLsin@}

A
JSy(¥) = vy €[0,D]

@ [0, 7]

Lsin0 | (@) =
m o ([ d(p L/D
> “ 7w/ 2

CRC Prof. Enrico Zio I POLITECNICO DI MILANO
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Sampling (pseudo) Random Numbers Uniform
Distribution

CRC Prof. Enrico Zio B POLITECNICO DI MILANO



Sampling (pseudo) Random Numbers Uniform

Distribution
R ~UI[0,1)

x, =(ax,_, +c) mod m

1

where @,c€[0,m—1]

m» 1
X.
_ l
’/;.__
m

Example:a=5.c=1.m=16

2
x0=2:>r0=E

x,=(5-2+1) mod 16:11:>r1:E

13

U (1)

7~

1

0

xs=13=ns=—

16

X =2

CRC

11

V:U
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Sampling (pseudo) Random Numbers Generic
Distribution

Prirsri=usl) |
U
Rl S Sample R from Ug(r) and find X:
: X =F;'(R)
<P‘ 1I Ili lX J:

Question: which distribution does X obey?

P{x <x}=P{F;'(R)< x|
Application of the operator F, to the argument of P above yields
P{X <x}=P{R<F,(x)}=F,(x)

Summary:

From an R ~ Ux(r) we obtain an X ~ Fy(x)
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Example: Exponential Distribution

CRC

» Markovian system with two states (good, failed)
 hazard rate, A = constant
F.(t)=P{T <t}=1-¢&*
redt fit)-dt=P{t<T <t+dt}=Ae ™ -dt
opdf
R=F,(r)=F.(t)=1-¢*

*Sampling a failure time T ﬂ
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Example: Weibull Distribution

*hazard rate, A = constant

o cdf

a

F.(t)=P{T<t}=1-¢"
pdf fr(t)-dt=Pl{t<T <t+dt}=aft* e’ -dt

*Sampling a failure time T’

R=F,(r)=F,(t)=1-¢""
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Sampling by the Inverse Transform Method:

Discrete Distributions

Graphically: r
\g .\'2

Q:{XO,XI,... Xk,...} Fip
Fyifthth
F,=P{X <x.} ZP X =x] s B f_
sample an R ~ U[0,1) Foo ‘*’
P[Fk—l<RSFk]:FR(Fk)_FR(Fk—1) Yoo *
R~U[0,1) and F,(r)=r
= P|F,_ <R<F|=F -F_=f=P|X=x]

Fy=h F1th

~
”~

Fifrtfitfy 1
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Sampling by the Rejection Method: von Neumann Algorithm

CRC

» Given a pdf fy(x) limited in (a,b), let

h(x)= Sy (X)

sothat 0</4 (x)<1,Vxe(a,b)

» The operative procedure to sample
a realization of X from fy(x):

« sample X’~U(a,b), the tentative value for X,
and calculate h(X)

« sample R ~UJ[0,1). If R<=h(X’) the value X’
is accepted; else start again.
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Sampling by the Rejection Method: von Neumann Algorithm

CRC

[N

More generally:

X~ fx(X) = gy (x)- H(x)

B, :max H(x)
_H(x)
h(x) = 2

H

The operative procedure:

« sample X’~gx(x), and calculate h(X)
« sample R ~UJ[0,1). If R<=h(X’) the value X’
is accepted; else start again.

We show that the accepted value is actually a realization of X sampled from

Fi(X)

P[X' < x‘ accepted} =

L 0<h(x)<1

P|X'<xnaccepted] P[X'<xNR<h(X)]
P [accepted] - P [accepted]
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Sampling by the Rejection Method: von Neumann Algorithm

, P[ZSX'SZerZﬁaccepted]:P[ZSX'SZerZ]P[R Sh(z)]:
| =gy (

z)dz - h(z)
; P[X'<SxNR<h(X")]= igX.(z)dz.h(z)
P ted| = w(2)dz-h(z) =
,  Flaccepted] [Og (2)dz-h(z)
1 7 1 7 |
=—— | gn(@)dz H2)=—— [ fi(x)dx=——

CRC Prof. Enrico Zio l POLITECNICO DI MILANO



Sampling by the Rejection Method: von Neumann Algorithm

CRC

P[X'<xNR<h(x ')

j g, (2)dz - h(2)

P[X '<x \accepted} - Placcepted]

L
BH

= jigX,(z)dz-H(Z) = ij(Z)dZ =Fy (x)

The efficiency of the method is given by the probability of accepted:

& = Placcepted] = _j g (2)h(z)dz = Z

1

H
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Sampling by the Rejection Method: von Neumann Algorithm
Example

« Sample from the pdf:
2 1
T ﬂ+xwg

0<x<l1

fr(x)=
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EVALUATION OF
DEFINITE INTEGRALS




MC Evaluation of Definite Integrals (1D)
Analog Case

G = [ glx)f(x)dx
f)=pdf - f(x)20 ; [f(x)dr=1

MC analog dart game: sample x from f(x)
e the probability that a shot hits x € dx 1s f(x)dx
e the award 1is g(x)

Consider N trials with result {x,, x,, ...,x, }: the average award 1s

1 N
Gy :N;g(xi)
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MC Evaluation of Definite Integrals (1D)
Example

1
szcos Zx dx
2

0
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MC Evaluation of Definite Integrals (1D)
Example

Consider the Weibull Distribution:
F.(t)y=1-e", fr()=apt* e
With o =1.5,8=1

Sample N = 1000 values from f..(¢)

Verify that the 1000 sample are distributed according to /7 (?)
Provide an estimate G, of [~ ¢- f, (t)dt

Estimate the variance of G,

Draw your conclusion considering that:

a s wbh -~

[t f()dt =T'(5/3) = 0.90275
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MC Evaluation of Definite Integrals (1D)
Biased Case

06

x

The expression for G may be written

= f(x) = x)fx )dx
G- j{ ! (x)g<x>}ﬁ(x>dx-jl)gl< )i (e

MC biased dart game: sample x from f;(x)

* the probability that a shot hits x € dx 1s f;(x)dx

» the award 1s
fx) 1Y
gl(x)_ fl(X)g(x) — Gy = le_llgl(xi)
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MC Evaluation of Definite Integrals (1D)
Example

1
Gz_[cos Zx dx
2

0

The pdf f,*(x) is: f; (x) =a—bx’ a===1.

N | W
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SIMULATION OF SYSTEM
TRANSPORT




I

Monte Carlo simulation for system reliability

PLANT = system of Nc suitably connected components.

COMPONENT = a subsystem of the plant (pump, valve,...) which may stay in
different exclusive (multi)states (nominal, failed, stand-by,... ). Stochastic
transitions from state-to-state occur at stochastic times.

STATE of the PLANT at t = the set of the states in which the Nc components
stay at t. The states of the plant are labeled by a scalar which enumerates all
the possible combinations of all the component states.

PLANT TRANSITION = when any one of the plant components performs a state
transition we say that the plant has performed a transition. The time at which
the plant performs the n-th transition is called t, and the plant state thereby
entered is called k...

PLANT LIFE = stochastic process.

CRC Prof. Enrico Zio I POLITECNICO DI MILANO



Stochastic Transitions: Governing Probabilities

a
Lt

Ek' k'ik
| |

—l >

I
& »
t

.
t t

T(t /t’; k’)dt = conditional probability of a transition at t € dt, given that the
preceding transition occurred at t” and that the state thereby entered was k’.

C(k /k’,' t) = conditional probability that the plant enters state k, given that a
transition occurred at time t when the system was in state k’.

Both these probabilities form the "trasport kernel” :
Kit: k [t k)dt=T(t [t;k)dt Clk [k t)

. B

Y(t; k) = ingoing transition density or probability density function (pdf) of a
system transition at t, resulting in the entrance in state k
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Plant life: random walk

state-transition stochastic process.

Random walk = realization of the system life generated by the underlying

CRC

4 System’s
) states
8__
7__
6-- Pn* I
o - -
4-_ Pn-l l n
3_- -
2_ ———————— 17 l n+l
P
1-_ l n-1 " : :
! | | >
t t, t,., t

Prof. Enrico Zio I POLITECNICO DI MILANO



The von Neumann’s Approach and
the Transport Equation

The transition density y(t; k) is expanded in series of the partial
transition densities:

Y(t; k) = pdf that the system performs the n—th transition at t,
entering the state k.

Then,  y(t,k)=Y " (t.k) =
n=0

=y Lk + Y [diy(t kYK (k| 1K)
kg,

Transport equation for the plant states
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Monte Carlo Solution to the Transport Equation (1)

Von Neumann approach:
* Initial Conditions: ty=t*, ky=k™, P;=P*

* The subsequent transition densities in the random walk:

Wl(tnkl) =K (1, k ‘thko)

v (k) = [ v (6, k) K (K,

oooooo k]

k)

l//n (tn > kn ) = Z L: Wn_l (tn—l > kn—l )dtn—lK(tn > kn tn—l > kn—l)
k-1

* Changing notation:
I —>1 k_, —k'

Ltk >k
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Monte Carlo Solution to the Transport Equation (2)

CRC

v (k) =Y [ p k) deK (L k
2

S k) =Y p (k) =y (1. h) +

> Sy (e ke K (k
k' n—1=0 y

t'k")

( ARG ',k'>]

n—1=0

4G

t',k')
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Monte Carlo Solution to the Transport Equation (3)

Initial Conditions: (t*, k*)
Formally rewrite the partial transition densities:

w6,k = D [ iy (g, kg K (1, ot o) = K (6, e 6%, %)
ko

v (k) = D [ Ldny! (6, k)K (8, Kty ) =
kl
= ZL:fdth(tl,kl\t*,k*)K(tz,kz t k)
ky
W' (t,k) = "ar, [ dt, ..
kdode !

t, k) - K(t,k

- “dt K (8, k[0, k) K (8, k, k)
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MC Evaluation of Definite Integrals

G =| g(x)f(x)a
f)=pdf > f(x)20 ; [f(x)dx=1

*MC analog dart game: sample x = (¢/, ki, t2, k2; ...) from
f(X): K(tlﬂkl t*ak*)K(tzakz t19k1)"'K(taktn_1,kn_1)
* the probability that a shot hits x € dx 1s f(x)dx

e the award 1s g(x)=1

Consider N trials with result {x,, x,, ...,x, }: the average award is

1 N
Gy =—> g(x)
N i
N3
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SIMULATION FOR SYSTEM
RELIABILITY ANALYSIS




Monte Carlo Simulation in RAMS

CRC

G(t) = Z I; w(7,k)R, (7,t)dT Expected value

kel

o ['=subset of all system failure states

* R(tt) =1 = G(t) = unreliability

* R,(t5,t) = prob. system not exiting before t from the
state k entered at 1<t

= G(t) = unavailability

Monte Carlo solution of a definite integral.:
expected value = sample mean

Prof. Enrico Zio I POLITECNICO DI MILANO




k*+11-

k* ——m——— — |- —
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|
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|
|

A\ 4
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1 KM 1 C0=C0 1e[0T]
0

MM L - cto-ction e
0

1 1 1 1 1 1 1 1 1 1
3 m%. T, C')=C'®+ te[rT,,]
0
M IOI 1+ .mTM C,(=C"(t) te|0.T,,|
ﬁ’T(t):C;;t)
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Monte Carlo Simulation Approaches

CRC

« Each trial of a Monte Carlo simulation consists 1n
generating a random walk which guides the system from one
configuration to another, at different times.

* During a trial, starting from a given system configuration
k’> at t’, we need to determine when the next transition occurs
and which 1s the new configuration reached by the system as
a consequence of the transition.

e This can be done in two ways which give rise to the so
called “indirect” and “direct” Monte Carlo approach.
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Indirect Monte Carlo

The indirect approach consists in:

1. Sampling first the time t of a system trans T(t\t',k')Om the
corresponding conditional probability density of the
system performing one of its possible transitions out of k’
entered at time t’.

2. Sampling the transition to the new configuration k from the
conditional probability C(k t,k') that the system enters the new
state k given that a transition has occurred at t starting from
the system 1n state k’.

3. Repeating the procedure from k’ at time t to the next

C*C —Fransition.




Direct Monte Carlo (1)

The direct approach differs from the previous one in that the system transitions are
not sampled by considering the distributions for the whole system but rather by
sampling directly the times of all possible transitions of all individual components
of the system and then arranging the transitions along a timeline, in accordance to
their times of occurrence. Obviously, this timeline 1s updated after each transition
occurs, to include the new possible transitions that the transient component can
perform from its new state. In other words, during a trial starting from a given
system configuration k’ at t’:

1. We sample the times of transition ti‘é%ml- , m; =12,... N,  of each component i,
1=1, 2,..., N, leaving its current state j’; and arriving to the state m; from the

corresponding transition time probability distributions f ’TJ T

2. The time instants ¢ ;}—>m,- thereby obtained are arranged in ascending order
along a timeline from t_. = to t,,,<Ty
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Direct Monte Carlo (2)

CRC

3. The clock time of the trial is moved to the first occurring transition time t_. =
t* in correspondence of which the system configuration is changed, i.e. the
component 1* undergoing the transition is moved to its new state m;*.

I =1,2,..., N, of component i*

VAR I

4. At this point, the new times of transition # .

out of its current state m;* are sampled from the corresponding transition time
j*,m? —>l;k
T

probability distributions, , and placed in the proper position of

the timeline.

5. The clock time and the system are then moved to the next first occurring
transition time and corresponding new configuration, respectively.

6. The procedure repeats until the next first occurring transition time falls
beyond the mission time, 1.€. t_. > T,,.

Compared to the previous indirect method, the direct approach is more suitable
for systems whose components’ failure and repair behaviours are represented by
different stochastic distribution laws.
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| Exercise
||

« Consider the following system

 Transition rates:

Failure: A, = 0.001; A, =0.002; A; = 0.005;
Repair: y,=0.1; y ,=0.15; y 5= 0.05;

« Estimate the reliability and availability of the system over a mission
time T, = 500

Piero Baraldi and Francesco Cadini - I POLITECNICO DI MILANO




@ Springer springer.com

= — JUREY, E. Zio, Ecole Centrale Paris, Chatenay-Malabry, France
T The Monte Carlo Simulation Method for System Reliability and
" Risk Analysis

Series: Springer Series in Reliability Engineering

lllustrates the Monte Carlo simulation method and its application
to reliability and system engineering to give the readers the sound
fundamentals of Monte Carlo sampling and simulation
» Explains the merits of pursuing the application of Monte Carlo
sampling and simulation methods when realistic modeling is
required so that readers may exploit these in their own applications
» Includes a range of simple academic examples in support to the
explanation of the theoretical foundations as well as case studies
‘ Printed book provide the practical value of the most advanced technigues so that
the techniques are accessible

213, W13, XV, 198 p. 69 illus,, 24 in color.

Hardeover

» 120,956 £117.00] $179.00

» *130,05 € (D} | 142,94 € (A) | CHF 173.00 Monts Carlo simulation is ona of the best toals for performing realistic analysis of
complex systems as it albows maost of the limiting assumptions on system behavior to

SR

ﬂ eBook be relaxed. The Maonte Carlo Simulation Method for System Reliability and Risk Analysis
comprehensively illustrates the Monte Cado simulation method and its application to

For individual purchases buy ata refiability and system engineering. Readers are given a sound understanding of the

lower price on springer.com. fundamentals of Monte Carlo sampling and simulation and its application for realistic

A free preview Is avallable. system modeling.

Also available from libraries

offering Springer’s eBook Whilst many of the topics rely on a high-level understanding of calculus, probability and

Collection. statistics, simple academic examples will be provided in support to the explanation of the

» springer.com/ebooks theoratical foundations to facilitate comprehension of the subject matter. Case studies
will be introduced to provide the practical value of the most advanced technigues.

MF mycopy This detailed approach makes The Monte Carlo Simelation Method for System Reliability

Printed eBook exclusively and Risk Analysis a key reference for senior undergraduate and graduate students as

available to patrons whose well as researchers and practitioners, It provides a powerful tool for all those involved in

library offers Springer’s eBook systemn analysis for reliability, maintenance and risk evaluations.

Collection."**

» €|§24.95

» springer.com/mycopy

Oredur il e ot spritgee com & of For the Amsicas call medl Bes) 1-E00-SPRINGER = of smail us o ordeni-
mydupringeroom. » Feroutsidethe Amvaric call 440 100 61213454381 » or amall s av orders-Sd-individuabudepringer.com.

ke [and § picears v puices, - Pricm “inciade VAT Iz et Tu
[ — ey, Bl Rk, Al pien
sha s
napr
= Eagioral restricdzes apply.

Prof. Enrico Zio POLITECNICO DI MIL




