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Buffon

Gosset (Student)

Fermi, von Neumann, Ulam

Neutron transport

System Transport (RAMS)

Kelvin

1707-88

1908

1824-1907

1950’s

1930-40’s

1990’s

The History of Monte Carlo Simulation
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SAMPLING RANDOM NUMBERS
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Example: Exponential Distribution

Probability density function:

Expected value and variance: 
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Sampling Random Numbers from FX(x)

( ) x
X exF l--=1  

( )RFX X
1-=

( ) x
X exFR l--== 1

( ) ( )RRFX X --== - 1ln11
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Example: Exponential distribution

Sample R from UR(r) and find  X:
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sample an 

Graphically: 
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Sampling from discrete distributions
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n 1- Calculate the analytic solution for the failure 
probability of the network, i.e., the probability of no 
connection between nodes S and T

n 2- Repeat the calculation with Monte Carlo simulation

Arc number i Failure probability Pi
1 0.050
2 0.025
3 0.050
4 0.020
5 0.075

Failure probability estimation: example
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SIMULATION OF SYSTEM 
TRANSPORT
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PLANT = system of Nc suitably connected components.

COMPONENT = a subsystem of the plant (pump, valve,...) which may stay in 
different exclusive (multi)states (nominal, failed, stand-by,... ). Stochastic 
transitions from state-to-state occur at stochastic times.

STATE of the PLANT at t = the set of the states in which the Nc components 
stay at t. The states of the plant are labeled by a scalar which enumerates all 
the possible combinations of all the component states.

PLANT TRANSITION = when any one of the plant components performs a state 
transition we say that the plant has performed a transition. The time at which 
the plant performs the n-th transition is called tn and the plant state thereby 
entered is called kn.

PLANT LIFE = stochastic process.

Monte Carlo simulation for system reliability
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§ T(tôt’; k’)dt = conditional probability of a transition at tÎdt, given that
the preceding transition occurred at t’ and that the state thereby
entered was k’.

§ C(k ô k’; t) = conditional probability that the plant enters state k,
given that a transition occurred at time t when the system was in
state k’. Both these probabilities form the ”trasport kernel”:

K(t; k ô t’; k’)dt = T(t ô t’; k’)dt C(k ô k’; t)

§ y(t; k) = ingoing transition density or probability density function (pdf)
of a system transition at t, resulting in the entrance in state k

Stochastic Transitions: Governing Probabilities
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Random walk = realization of the system life generated by the underlying 
state-transition stochastic process.

Plant life: random walk
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Phase Space
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Example: System Reliability Estimation
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Example: System Reliability Estimation

Events at components level, 
which do not entail system 

failure
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SIMULATION OF COMPONENT
STOCHASTIC STATE 

TRANSITION PROCESS FOR 
AVAILABILITY / RELIABILITY 

ESTIMATION
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1 2

l
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State 2
State 1

State X=1 à ON

State X=2 à OFF

One component with exponential distribution of 
the failure time
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1 2

l

µ

One component with exponential distribution of 
the failure time

values
l 3· 10-3  h-1

µ 25· 10-3 h-1
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SIMULATION OF SYSTEM 
STOCHASTIC STATE 

TRANSITION PROCESS FOR 
AVAILABILITY / RELIABILITY 

ESTIMATION
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Phase Space
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Example: System Reliability Estimation
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Components’ times of transition between states are exponentially distributed

( = rate of transition of component i going from its state ji to the state mi)
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Indirect Monte Carlo: Example (1)
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§ The components are initially (t=0) in their nominal states (1,1,1)

§ One minimal cut set of order 1 (C in state 4:(*,*,4)) and one minimal cut set
of order 2 (A and B in 3: (3,3,*)).

Arrival

1 2 3 4
In
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1 -

2 -

3 -

4 -

lC 21® lC 31® lC 41®

lC 12® lC 32® lC 42®

lC 13® lC 23® lC 43®

lC 14® lC 24® lC 34®

Indirect Monte Carlo: Example (2)
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SAMPLING THE TIME OF TRANSITION
The rate of transition of component A(B) out of its nominal state 1 is:

• The rate of transition of component C out of its nominal state 1 is:

• The rate of transition of the system out of its current configuration (1, 1, 1)
is:

• We are now in the position of sampling the first system transition time t1, by
applying the inverse transform method:

where Rt ~ U[0,1)
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Analog Monte Carlo Trial
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• Assuming that t1 < TM (otherwise we would proceed to the successive
trial), we now need to determine which transition has occurred, i.e.
which component has undergone the transition and to which arrival
state.

• The probabilities of components A, B, C undergoing a transition out of
their initial nominal states 1, given that a transition occurs at time t1,
are:

• Thus, we can apply the inverse transform method to the discrete
distribution
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Sampling the Kind of Transition (1)
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• Given that at t1 component B undergoes a transition, its arrival state can be
sampled by applying the inverse transform method to the set of discrete
probabilities

of the mutually exclusive and exhaustive arrival states

þ
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• As a result of this first transition, at t1 the system is operating in configuration
(1,3,1).

• The simulation now proceeds to sampling the next transition time t2 with the
updated transition rate

( ) llll CBA
131

1,3,1 ++=

Sampling the Kind of Transition (2)

RS~U[0,1)
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• The next transition, then, occurs at

where Rt ~ U[0,1).

• Assuming again that t2 < TM, the component undergoing the transition and its
final state are sampled as before by application of the inverse trasform method to
the appropriate discrete probabilities.

• The trial simulation then proceeds through the various transitions from one
system configuration to another up to the mission time TM.

( ) )1ln(1
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l

Sampling the Next Transition
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• When the system enters a failed configuration (*,*,4) or
(3,3,*), where the * denotes any state of the component, tallies
are appropriately collected for the unreliability and instantaneous
unavailability estimates (at discrete times tjÎ [0, TM]);

• After performing a large number of trials M, we can obtain
estimates of the system unreliability and instantaneous
unavailability by simply dividing by M, the accumulated
contents of CR(tj) and CA(tj), tjÎ[0,TM]

Unreliability and Unavailability Estimation
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For any arbitrary trial, starting at t=0 with the system in nominal configuration
(1,1,1) we would sample all the transition times:

where

These transition times would then be ordered in ascending order from tmin to
tmax£TM . Let us assume that tmin corresponds to the transition of component A to
state 3 of failure. The current time is moved to t1= tmin in correspondence of
which the system configuration changes, due to the occurring transition, to (3,1,1)
still operational.
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Direct Monte Carlo: Example (1)
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These transition times would then be ordered in ascending
order from tmin to tmax£TM . 

Let us assume that tmin corresponds to the transition of
component A to state 3 of failure. The current time is moved

to t1= tmin in correspondence of which the system 
configuration changes, due to the occurring transition, to

(3,1,1) still operational.
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Direct Monte Carlo: Example (2)



Prof. Enrico Zio

Example (1)
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The new transition times of component A are then sampled 

and placed at the proper position in the timeline of the succession of occurring
transitions

• The simulation then proceeds to the successive times in the list, in
correspondence of which a system transition occurs.

• After each transition, the timeline is updated with the times of the transitions
that the component which has undergone the last transition can do from its new
state.

• During the trial, each time the system enters a failed configuration, tallies are
collected and in the end, after M trials, the unreliability and unavailability
estimates are computed.
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PRODUCTION AVAILABILITY EVALUATION OF AN 
OFFSHORE INSTALLATION
A real example of Indirect Simulation

53
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System description: basic scheme

TC

TEG

50%

50%

Wells Separation

Gas Export
3.0 mSm3/d, 60b

Oil export

TC

Flare

Oil Trt°

Water Inj.Sea

Wat. Trt°
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System description: gas-lift

First loop

Gas-lift pressure Production of the Well
100 100%
60 80%
0 60%
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System description:
fuel gas generation and distribution

Second loop
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System description:
electricity power production and distribution
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The offshore production plant

 

2.2 MSm3/d 

2.2 MSm3/d 

4.4 MSm3/d 

Production 
Gas : 5 MSm3/d 
Oil : 26500 Sm3/ d 
Water : 8000 Sm3/d 

4.4 MSm3/d 
23300 Sm3/d 

7000 Sm3/d 

TC 
TEG 

Fuel  Gas  25 b 

50% 

50% 

Gas  Lift 100b 

Wells Separation 

50% 
50% 

Gas  Lift 60b 

Gas  Export 
3.0 MSm3/d, 60b 

Oil  export 

TC 

Flare 

EC 

Oil Trt ° 

TG 

TG 

Water Inj . Sea 
Wat .  Trt ° 

13 MW

13 MW

7 MW

7 MW

6 MW

6 MW

0.1 MSm3

0.1 MSm3

0.1 MSm3

0.1 MSm3

1 MSm3/d

back
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Component failures and repairs: TCs and TGs

59

State 0 = as good as new
State 1 = degraded  (no function lost, greater failure rate value)
State 2 = critical (function is lost)

2

l12

l02

µ20

0 1

l01

µ10

TC TG
l01 0.89 · 10-3  h-1 0.67 · 10-3 h-1

l02 0.77 · 10-3 h-1 0.74 · 10-3 h-1

l12 1.86 · 10-3 h-1 2.12 · 10-3 h-1

µ10 0.033 h-1 0.032 h-1

µ20 0.048 h-1 0.038 h-1
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Component failures and repairs: EC and TEG

0 2

l

µ µ

State 0 = as good as new

State 2 = critical (function is lost)

EC TEG
l 0.17 · 10-3  h-1 5.7 · 10-5 h-1

µ 0.032 h-1 0.333 h-1



Prof. Enrico Zio

Production priority

When a failure occurs, the system is reconfigured to
minimise (in order):

n the impact on the export oil production

n the impact on export gas production

Ø The impact on water injection does not matter

61
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Production priority: example

 

2.2 MSm3/d 

2.2 MSm3/d 

4.4 MSm3/d 

Production 
Gas : 5 MSm3/d 
Oil : 26500 Sm3/ d 
Water : 8000 Sm3/d 

4.4 MSm3/d 
23300 Sm3/d 

7000 Sm3/d 

TC 
TEG 

Fuel  Gas  25 b 

50% 

50% 

Gas  Lift 100b 

Wells Separation 

50% 
50% 

Gas  Lift 60b 

Gas  Export 
3.0 MSm3/d, 60b 

Oil  export 

TC 

Flare 

EC 

Oil Trt ° 

TG 

TG 

Water Inj . Sea 
Wat .  Trt ° 

13 MW

13 MW

7 MW

6 MW

0.1 MSm3

0.1 MSm3

0.1 MSm3

0.1 MSm3

1 MSm3/d
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Only 1 repair team

Priority levels of failures:
1. Failures leading to total loss of export oil (both TG’s or both TC’s or 

TEG)
2. Failures leading to partial loss of export oil (single TG or EC)
3. Failures leading to no loss of export oil (single TC failure)

Maintenance policy: reparation
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Maintenance policy: preventive maintenance

Ø Only 1 preventive maintenance team

Ø The preventive maintenance takes place only if 
the system is in perfect state of operation

 Type of maintenance Frequency [hours] Duration [hours] 

Type 1 2160 (90 days) 4 

Type 2 8760 (1 year) 120 (5 days) 
Turbo-Generator and 

Turbo-Compressors 
Type 3 43800 (5 years) 672 (4 weeks) 

Electro Compressor Type 4 2666  113  
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MARKOV APPROACH

65

Number of components = 6
Number of states for component  = 2 or 3 22·34 = 324 plant states

+
1 repair team 129 new plant states

1 maintenance team Non homogeneous Markov 
chain

+

MONTE CARLO APPROACH

Markov approach too complex



Prof. Enrico Zio

MONTE CARLO APPROACH

66

Associate a production level to 
each of the 453 plant states too long, error prone

Production levels

…

oil gas waterPlant state

?
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A systematic procedure

6 different
system faults

6 fault trees

6 families 
of mcs

7 different 
production

levels

Production 
Level

Gas 
[kSm3/d]

Oil        
[k m3/d]

Water 
[m3/d] mcs MCS

0=(100%) 3000 23.3 7000

1 900 23.3 7000 X5, X6 X5,X6

2 2700 21.2 0 X3, X4 X2X3,X2X4

3 1000 21.2 0

X3X5, 
X3X6,    
X4X5, 
X4X6

X2X3X5, 
X2X3X6,    
X2X4X5, 
X2X4X6

4 2600 21.2 6400 X2 X2

5 900 21.2 6400 X2X5, 
X2X6

X2X5,
X2X6

6 0 0 0
X1, 

X3X4, 
X5X6

X1X2X3X4X
5X6
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Case A: corrective maintenance and no preventive
maintenance (Tmiss= 1· 103 hours, trials=106)
CPU time » 15 min

Case B: perfect system (no failures) and preventive
maintenance (Tmiss= 104 hours, trials=105)
CPU time » 12 min

Case C: corrective and preventive maintenance
(Tmiss=5·105 hours, trials=105)
CPU time » 20 h

Numerical results
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Production 
level

Average 
availability

0 9.23E-1
1 3.13E-2
2 3.67E-2
3 2.47E-3
4 4.88E-3
5 3.50E-4
6 1.79E-3

Case A: no preventive maintenances
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Case A: no preventive maintenances

Asymptotic 
values

Oil      
[k m3/d]

23.24

Gas
[k Sm3/d]

2918

Water
[k m3/d]

6.703
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Case B: perfect system and preventive 
maintenances

Production 
level

Average 
availability

0 9.12E-1

1 2.73E-2

2 2.72E-2

3 0.00

4 3.40E-2

5 0.00

6 0.00

71
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Case B: perfect system and preventive 
maintenances

72

Mean Std

Oil    
[k m3/d]

23.230 0.263

Gas
[k Sm3/d]

2929 194.0

Water
[k m3/d]

6.811 0.883

P.Maintenance 
Type 1 (TC,TG)

P.Maintenance 
Type 2 (EC)

P.Maintenance 
Type 3 (TC,TG)
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Case C: real system with preventive 
maintenances

Production 
level

Average 
availability

0 8.13E-1

1 5.68E-2

2 6.58E-2

3 1.19E-2

4 3.55E-2

5 2.34E-3

6 1.50E-2

73
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Case C: real system with preventive 
maintenances

Mean Std

Oil    
[k m3/d]

22.60 0.42

Gas
[k Sm3/d]

2687 194.3

Water
[k m3/d]

6.04 0.76
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Conclusions

n Complex multi-state system with maintenance 
and operational loops

MC simulation

n Systematic procedure to assign a production 
level to each configuration

n Investigation of effects maintenance on 
production

75

oil gas water
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CONTENTS

n Sampling
n Evaluation of definite integrals
n Simulation of system transport
n Simulation for reliability/availability 

analysis
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SAMPLING
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Buffon’s needle

n Buffon considered a set of parallel straight lines a distance D apart 
onto a plane and computed the probability P that a needle of length L
< D randomly positioned on the plane would intersect one of these 
lines.

{ }sinP P Y L= £ Æ

1( )      [0, ]

1( )      [0, ]

/
/ 2

Y

A

f y y D
D

f

dy d L DP
D

j j p
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j
p p

Æ

= Î

= Î
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( ) { } rrRPrUR =£=       :cdf

( ) ( ) 1       :pdf ==
dr
rdUru R

R

0

Sampling (pseudo) Random Numbers Uniform 
Distribution



Prof. Enrico Zio

where

Example: a = 5, c = 1, m = 16

~ [0,1)R U

( )1  mod i ix ax c m-= +

, [0, 1]
 » 1
a c m
m

Î -

0 0

1 1

15 15

16

22
16

11(5 2 1) mod 16 11
16

...
1313
16

2

x r

x r

x r

x

= Þ =

= × + = Þ =

= Þ =

=

i
i
xr
m

=

Sampling (pseudo) Random Numbers Uniform 
Distribution
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Question: which distribution does X obey?

Application of the operator Fx to the argument of P above yields

Summary:
From an R ~ UR(r) we obtain an X ~ FX(x)

Sample R from UR(r) and find  X:

( )RFX X
1-=

{ } ( ){ }xRFPxXP X £=£ -1

{ } ( ){ } ( )xFxFRPxXP XX =£=£

{ } ( )rUrR R=£Pr

Sampling (pseudo) Random Numbers Generic 
Distribution
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• Markovian system with two states (good, failed)

• hazard rate, l = constant

• cdf

•pdf

•Sampling a failure time T

( ) { } t
T etTPtF l--=£= 1  

( ) { } dtedttTtPdttf t
T ×=+<£=× -ll

( ) ( ) t
TR etFrFR l--==º 1

( ) ( )RRFT T --== - 1ln11

l

Example: Exponential Distribution
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•hazard rate, l = constant

• cdf

pdf

•Sampling a failure time T

Example: Weibull Distribution

( ) { } 1 t
TF t P T t e

ab-= £ = -  

( ) { } 1 t
Tf t dt P t T t dt t e dt

aa bab - -× = £ < + = ×

( ) ( ) 1 t
R TR F r F t e

al-º = = -

( ) ( )
1

1 1 ln 1TT F R R
a

b
- æ ö

= = - -ç ÷
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sample an 

•

•

Graphically: 
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Sampling by the Inverse Transform Method: 
Discrete Distributions
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• Given a pdf fX(x) limited in (a,b), let

so that

• The operative procedure to sample
a realization of X from fX(x):

• sample X’~U(a,b), the tentative value for X,
and calculate h(X’)

• sample R ~U[0,1). If R<=h(X’) the value X’
is accepted; else start again.

( )( ) X

M

f xh x
f

=

0 ( ) 1, ( , )h x x a b£ £ " Î

Sampling by the Rejection Method: von Neumann Algorithm
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• More generally:

•

• We show that the accepted value is actually a realization of X sampled from
fX(x)

1.

'~ ( ) ( ) ( )
: max ( )

( )( ) ,  0 ( ) 1

X X

H x

H

X f x g x H x
B H x

H xh x h x
B

= ×

= £ £

The operative procedure:
• sample X’~gX’(x), and calculate h(X’)
• sample R ~U[0,1). If R<=h(X’) the value X’
is accepted; else start again.

[ ]
[ ]

[ ]
[ ]

' accepted ' R h(X')
'  accepted

P accepted P accepted
P X x P X x

P X x
£ Ç £ Ç £

é ù£ = =ë û

Sampling by the Rejection Method: von Neumann Algorithm
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[ ] [ ] [ ]
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H H H
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2.

3.

4.

Sampling by the Rejection Method: von Neumann Algorithm
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•

• The efficiency of the method is given by the probability of accepted:
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• Sample from the pdf:

2 1( )    0 1
(1 )Xf x x

x xp
= × £ £

+

Sampling by the Rejection Method: von Neumann Algorithm
Example
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MC Evaluation of Definite Integrals (1D)
Analog Case

MC analog dart game: sample x from f(x)

• the probability that a shot hits x Î dx is f(x)dx

• the award is g(x)

Consider N  trials with result {x1, x2, …,xn}: the average award is

( )å
=

=
N

i
iN xg

N
G

1

1

( ) ( )

( ) ( ) ( ) 1    ;    0         pdf =³®º

=

ò
ò

dxxfxfxf

dxxfxgG
b

a



Prof. Enrico Zio

( ) ( )

[ ]

[ ] ( ) [ ]{ }
[ ]

1

0

1
2 2

0

22

2

2cos 0.6366198
2

By setting:  1,     g cos
2

   ( )

1   ( ) cos
2 2

1 1       ( ) ( )

1 1 2 1       9
2

N

N

G x dx

f x x x

G E g x

E g x x dx

Var G Var g x E g x E g x
N N

Var G
N N

p
p

p

p

p

æ ö= = =ç ÷
è ø

æ ö= = ç ÷
è ø

Þ =

æ öé ùÞ = =ç ÷ë û è ø

é ùé ù= = -ë û ë û

é ùæ ö= - = ×ê úç ÷
è øê úë û

ò

ò

( )

2

4

2 6

.47 10

for 10  histories,  ~ [0,1) cos
2

0.6342,  9.6 10
N

i i i

N G

N x U g x x

G s

p

-

-

×

æ ö= Þ = ç ÷
è ø

Þ = = ×

MC Evaluation of Definite Integrals (1D)
Example



119

Consider the Weibull Distribution:

With 

1. Sample N = 1000 values from
2. Verify that the 1000 sample are distributed according to
3. Provide an estimate      of 
4. Estimate the variance of
5. Draw your conclusion considering that: 
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MC Evaluation of Definite Integrals (1D)
Example
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MC biased dart game: sample x from f1(x)

• the probability that a shot hits x Î dx is f1(x)dx

• the award is
( ) ( )
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MC Evaluation of Definite Integrals (1D)
Biased Case
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SIMULATION OF SYSTEM 
TRANSPORT
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Monte Carlo simulation for system reliability

PLANT = system of Nc suitably connected components.

COMPONENT = a subsystem of the plant (pump, valve,...) which may stay in 
different exclusive (multi)states (nominal, failed, stand-by,... ). Stochastic 
transitions from state-to-state occur at stochastic times.

STATE of the PLANT at t = the set of the states in which the Nc components 
stay at t. The states of the plant are labeled by a scalar which enumerates all 
the possible combinations of all the component states.

PLANT TRANSITION = when any one of the plant components performs a state 
transition we say that the plant has performed a transition. The time at which 
the plant performs the n-th transition is called tn and the plant state thereby 
entered is called kn.

PLANT LIFE = stochastic process.
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T(tôt’; k’)dt = conditional probability of a transition at tÎ dt, given that the 
preceding transition occurred at t’ and that the state thereby entered was k’.

C(k ô k’; t) = conditional probability that the plant enters state k, given that a 
transition occurred at time t when the system was in state k’.

Both these probabilities form the ”trasport kernel” :

K(t; k ô t’; k’)dt = T(t ô t’; k’)dt C(k ô k’; t)

y(t; k) = ingoing transition density or probability density function (pdf) of a 
system transition at t, resulting in the entrance in state k

Stochastic Transitions: Governing Probabilities
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Plant life: random walk

Random walk = realization of the system life generated by the underlying 
state-transition stochastic process.
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The von Neumann’s Approach and
the Transport Equation

The transition density y(t; k) is expanded in series of the partial 
transition densities:

yn(t; k) = pdf that the system performs the n-th transition at t, 
entering the state k.

Then,

Transport equation for the plant states
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Von Neumann approach:

• Initial Conditions: t0=t*, k0=k*, P0≡P*

• The subsequent transition densities in the random walk:

• Changing notation:
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Monte Carlo Solution to the Transport Equation (1)
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Monte Carlo Solution to the Transport Equation (3)

)**,,(),,(),(),( 11001100
0

* 011
1

0

1 ktktKktktKktdtkt
k

t

t
==åò yy

),,()**,,(

),,(),(),(

112211* 1

112211
1

* 122
2

1

2

1

2

ktktKktktKdt

ktktKktdtkt

k

t

t

k

t

t

åò

åò

=

== yy

……

),,(),,(*)*,,(...

...),(

11112211* 1

* 2
,...,,

* 1

2

1

121

--

--

×××

=

ò

òå ò
-

-

nn

t

t

t

t n
kkk

t

t n
n

ktktKktktKktktKdt

dtdtkt n

n

ny

Initial Conditions: (t*, k*)
Formally rewrite the partial transition densities:
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MC Evaluation of Definite Integrals
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•MC analog dart game: sample x = (t1, k1; t2, k2; ...) from  

f(x)=

• the probability that a shot hits x Î dx is f(x)dx

• the award is g(x)=1

Consider N  trials with result {x1, x2, …,xn}: the average award is
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SIMULATION FOR SYSTEM 
RELIABILITY ANALYSIS
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Monte Carlo Simulation in RAMS
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• G = subset of all system failure states
• Rk(t,t) = 1 Þ G(t) = unreliability
• Rk(t,t) = prob. system not exiting before t from the 

state k entered at t<t  
Þ G(t) = unavailability

Monte Carlo solution of a definite integral:
expected value @ sample mean

Expected value
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• Each trial of a Monte Carlo simulation consists in
generating a random walk which guides the system from one
configuration to another, at different times.

• During a trial, starting from a given system configuration
k’ at t’, we need to determine when the next transition occurs
and which is the new configuration reached by the system as
a consequence of the transition.

• This can be done in two ways which give rise to the so
called “indirect” and “direct” Monte Carlo approach.

Monte Carlo Simulation Approaches
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The indirect approach consists in:

1. Sampling first the time t of a system transition from the
corresponding conditional probability density of the
system performing one of its possible transitions out of k’
entered at time t’.

2. Sampling the transition to the new configuration k from the
conditional probability that the system enters the new
state k given that a transition has occurred at t starting from
the system in state k’.

3. Repeating the procedure from k’ at time t to the next
transition.

( )',ktkC

( )',' kttT

Indirect Monte Carlo



Prof. Enrico Zio

The direct approach differs from the previous one in that the system transitions are
not sampled by considering the distributions for the whole system but rather by
sampling directly the times of all possible transitions of all individual components
of the system and then arranging the transitions along a timeline, in accordance to
their times of occurrence. Obviously, this timeline is updated after each transition
occurs, to include the new possible transitions that the transient component can
perform from its new state. In other words, during a trial starting from a given
system configuration k’ at t’:

1. We sample the times of transition , of each component i,
i = 1, 2,…, Nc leaving its current state j’i and arriving to the state mi from the
corresponding transition time probability distributions .

2. The time instants thereby obtained are arranged in ascending order
along a timeline from tmin to tmax£TM
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Direct Monte Carlo (1)
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3. The clock time of the trial is moved to the first occurring transition time tmin=
t* in correspondence of which the system configuration is changed, i.e. the
component i* undergoing the transition is moved to its new state mi*.

4. At this point, the new times of transition , of component i*
out of its current state mi* are sampled from the corresponding transition time
probability distributions, , and placed in the proper position of
the timeline.

5. The clock time and the system are then moved to the next first occurring
transition time and corresponding new configuration, respectively.

6. The procedure repeats until the next first occurring transition time falls
beyond the mission time, i.e. tmin > TM.

Compared to the previous indirect method, the direct approach is more suitable
for systems whose components’ failure and repair behaviours are represented by
different stochastic distribution laws.
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Direct Monte Carlo (2)
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145Exercise

• Consider the following system

• Transition rates:

Failure: λ1 = 0.001; λ2 = 0.002; λ3 = 0.005;
Repair: μ1 = 0.1; μ 2 = 0.15; μ 3 = 0.05;

• Estimate the reliability and availability of the system over a mission
time Tmiss = 500 

1

32
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