

Markov Reliability and Availability Analysis Part I: Discrete-Time Discrete State Markov Processes

Ibrahim Ahmed ibrahim.ahmed@polimi.it

General Framework

General Framework

 SYSTEM

General Framework

 SYSTEM

System evolution = Stochastic process

General Framework

SYSTEM

Under specified conditions:

System evolution = Stochastic process
 MARKOV PROCESS

Markov Processes: Basic Elements

Markov Processes: the System States (1)

- The system can occupy a finite or countably infinite number N of states

Set of possible states $U=\{0,1,2, \ldots, N\}$

$$
=
$$

State-space of the random process

- The States are:
- Mutually Exclusive: $P($ State $=i \cap$ State $=j)=0$, if $i \neq j$
(the system can be only in one state at each time)
- Exhaustive: $P(U)=P\left(\cup_{i=1}^{N}\right.$ State $\left.=i\right)=\sum_{i=1}^{N} P($ State $=i)=1$ (the system must be in one state at all times
- Example:

Set of possible states $U=\{0,1,2,3\}$

$$
\begin{aligned}
P(U) & =P(\text { State }=0 \cup \text { State }=1 \cup \text { State }=2 \cup \text { State }=3) \\
& =P(\text { State }=0)+P(\text { State }=1)+P(\text { State }=2)+P(\text { State }=3)=1
\end{aligned}
$$

Markov Processes: Transitions between states

- Transitions from one state to another occur stochastically (i.e., randomly in time and in final transition state)

Markov Processes: Mathematical Representation

- The system state in time can be described by an integer random variable $X(t)$

$$
X(t)=5 \rightarrow \text { the system occupies the state labelled by number } 5 \text { at time } t
$$

- The stochastic process may be observed at:
- Discrete times \rightarrow DISCRETE-TIME DISCRETE-STATE MARKOV CHAIN

- Continuously \rightarrow CONTINUOUS-TIME DISCRETE-STATE MARKOV PROCESS

Discrete-Time

Markov Processes

The Conceptual Model: Discrete Observation Times

- The stochastic process is observed at discrete times

$$
\begin{aligned}
& t_{n}=t_{n-1}+\Delta t(n)
\end{aligned}
$$

The Conceptual Model: Discrete Observation Times

- The stochastic process is observed at discrete times

$$
\begin{aligned}
& \Delta t(2)=t_{2}-t_{1} \quad \Delta t(4)=t_{4}-t_{3}
\end{aligned}
$$

$$
\begin{aligned}
& t_{n}=t_{n-1}+\Delta t(n)
\end{aligned}
$$

- Hypotheses:
- The time interval $\Delta t(n)$ is small enough such that only one event (i.e., stochastic transition) can occur within it
- For simplicity, $\Delta t(n)=\Delta t=$ constant

The Conceptual Model: Mathematical Representation

- The random process of system transition in time is described by an integer random variable $X(\cdot)$
- $X(n):=$ system state at time $t_{n}=n \Delta t$
- $X(3)=5$: the system occupies state 5 at time t_{3}

The Conceptual Model: Objective

- The random process of system transition in time is described by an integer random variable $X(\cdot)$
- $X(n):=$ system state at time $t_{n}=n \Delta t$
- $X(3)=5$: the system occupies state 5 at time t_{3}

OBJECTIVE:

Compute the probability that the system is in a given state at a given time, for all possible states and times

$$
P[X(n)=j], n=1,2, \ldots, N_{\text {time }}, j=0,1, \ldots, N
$$

Objective:

$$
P[X(n)=j], n=1,2, \ldots, N_{\text {time }}, j=0,1, \ldots, N
$$

What do we need?

Objective:

$$
P[X(n)=j], n=1,2, \ldots, N_{\text {time }}, j=0,1, \ldots, N
$$

What do we need?

Transition Probabilities!

The Conceptual Model: the Transition Probabilities

- Transition probability: conditional probability that the system moves to state j at time t_{n} given that it is in state i at current time t_{m} and given the previous system history

$$
\begin{array}{r}
P\left[X(n)=j \mid X(0)=x_{0}, X(1)=x_{1}, X(2)=x_{2}, \ldots, X(m)=x_{m}=i\right] \\
\forall j=0,1, \ldots, N
\end{array}
$$

The Conceptual Model: the Markov Assumption

In general for stochastic processes:

- the probability of a transition to a future state depends on its entire life history

$$
P\left[X(n)=j \mid X(0)=x_{0}, X(1)=x_{1}, X(2)=x_{2}, \ldots, X(m)=x_{m}=i\right]
$$

In Markov Processes:

- the probability of a transition to a future state only depends on its present state
$P\left[X(n)=j \mid V(0)-x_{0}, V(1)-x_{1}, V(2)-x_{2}, \ldots, X_{m}=x_{m}=i\right]$ $=$

THE PROCESS HAS "NO MEMORY"

The Conceptual Model: the Markov Assumption - Notation

$$
p_{i j}(m, n)=P[X(n)=j \mid X(m)=i] \quad n>m \geq 0
$$

The Conceptual Model: Properties of the Transition Probabilities (1)

1. Transition probabilities $p_{i j}(m, n)$ are larger than or equal to 0

$$
p_{i j}(m, n) \geq 0, n>m \geq 0 \quad i=0,1,2, \ldots, N, j=0,1,2, \ldots, N
$$ (definition of probability)

2. Transition probabilities must sum to 1

$$
\begin{aligned}
& \sum_{\text {all } j} p_{i j}(m, n)=\sum_{j=0}^{N} p_{i j}(m, n)=1, n>m \geq 0 \quad i=0,1,2, \ldots, N \\
& \text { (the set of states is exhaustive) }
\end{aligned}
$$

Starting from $i=1$, the system either remains in $\boldsymbol{i}=\mathbf{1}$ or it goes somewhere else, i.e., to $\boldsymbol{j}=0$ or 2 or 3

The conceptual model: properties of the transition probabilities (2)
3. $p_{i j}(m, n)=\sum_{k} p_{i k}(m, r) p_{k j}(r, n) \quad i=0,1,2, \ldots, N, j=0,1,2, \ldots, N$

\downarrow conditional probability
$=\sum_{k} p[X(n)=j \mid X(r)=k, X(m)=i] P[X(r)=k, X(m)=i]$
\downarrow Markov assumption

$$
=\sum_{k} p[X(n)=j \mid X(r)=k] P[X(r)=k, X(m)=i]
$$

$$
p_{i j}(m, n)=P[X(n)=j \mid X(m)=i]=\frac{P[X(n)=j, X(m)=i]}{P[X(m)=i]} \quad \text { (conditional probability) }
$$

\downarrow formula above

$$
=\sum_{k} p[X(n)=j \mid X(r)=k] \frac{P[X(r)=k, X(m)=i]}{P[X(m)=i]}
$$

\downarrow conditional probability

$$
=\sum_{k} P[X(n)=j \mid X(r)=k] P[X(r)=k \mid X(m)=i]=\sum_{k} p_{k j}(r, n) p_{i k}(m, r)
$$

The Conceptual Model: Stationary Transition Probabilities

- If the transition probability $p_{i j}(m, n)$ depends on the interval $\left(t_{n}-t_{m}\right)$ and not on the individual times t_{m} and t_{n}, then
- the transition probabilities are stationary
- the Markov process is homogeneous in time

The Conceptual Model: Stationary Transition Probabilities

- If the transition probability $p_{i j}(m, n)$ depends on the interval $\left(t_{n}-t_{m}\right)$ and not on the individual time t_{m} then:
- the transition probabilities are stationary
- the Markov process is homogeneous in time

$$
k \text { time steps }
$$

$$
\begin{aligned}
p_{i j}(m, n) & =p_{i j}(m, m+(\overbrace{n-m)})=p_{i j}(m, m+k)=P[X(m+k)=j \mid X(m)=i] \\
& =P[X(k)=j \mid X(0)=i] \\
& =p_{i j}(k), k \geq 0 \quad i=0,1,2, \ldots, N, j=0,1,2, \ldots, N
\end{aligned}
$$

The conceptual Model: Problem Setting

- We know:
- The one-step transition probabilities: $\quad p_{i j}(1)=p_{i j}$

$$
(i=0,1,2, \ldots, N, j=0,1,2, \ldots, N)
$$

- The state probabilities at time $n=0$ (initial condition):

$$
c_{j}=P[X(0)=j]
$$

- Objective:
- Compute the probability that the system is in a given state j at a given time t_{n}, for all possible states and times

$$
P[X(n)=j]=P_{j}(n), n=1,2, \ldots, N_{\text {time }}, j=0,1, \ldots, N
$$

The Conceptual Model: Notation - the Transition Probability Matrix

$$
\begin{aligned}
& \text { Properties: } \quad \operatorname{dim}(\underline{\underline{A}})=(N+1) \times(N+1) \\
& i / j \quad 0 \quad 1 \quad \text {... } \quad N \\
& \underline{\underline{A}=\begin{array}{c}
0 \\
1 \\
\\
\ldots \\
N
\end{array}\left(\begin{array}{cccc}
p_{00} & p_{01} & \ldots & p_{0 N} \\
p_{10} & p_{11} & \ldots & p_{1 N} \\
\ldots & \ldots & \ldots & \ldots \\
p_{N 0} & p_{N 1} & \ldots & p_{N N}
\end{array}\right), ~} \\
& \text { - } 0 \leq p_{i j} \leq 1, \forall i, j \in\{0,1,2, \ldots, N\} \\
& \text { (all elements are probabilities) }
\end{aligned}
$$

The Conceptual Model: Notation - the Transition Probability Matrix

Properties:
$i / j \quad 0 \quad 1 \quad$... $\quad N$

$\underline{\underline{A}=}$| $0 \sum\left(\begin{array}{cccc}p_{00} & p_{01} & \cdots & p_{0 N} \\ p_{10} & p_{11} & \cdots & p_{1 N} \\ & \cdots \\ & \cdots & \cdots & \cdots \\ p_{N 0} & p_{N 1} & \cdots & p_{N N}\end{array}\right)=1$ |
| :--- |

- $\operatorname{dim}(\underline{\underline{A}})=(N+1) \times(N+1)$
- $0 \leq p_{i j} \leq 1, \forall i, j \in\{0,1,2, \ldots, N\}$
(all elements are probabilities)
only $(N+1) x N$ elements need to be known
- $\sum_{j=0}^{N} p_{i j}=1, i=0,1,2, \ldots, N$
(the set of states is exhaustive)
A is a Stochastic Matrix

The Conceptual Model: Notation - Unconditional State Probabilities

- Introduce the row vector:

$$
\underline{P}(n)=\left[P_{0}(n) P_{1}(n) \ldots P_{j}(n) \ldots P_{N}(n)\right]=\underset{ }{\text { probabilities of the system being in }} \begin{aligned}
& \text { state } 0,1,2, \ldots, N \text { at the } n \text {-th time step }
\end{aligned}
$$

- Initialize the vector $\underline{P}(n)$ at time step $n=0$:

$$
\underline{P}(0)=\underline{C}=\left[C_{0} C_{1} \ldots C_{j} \ldots C_{N}\right]
$$

Computation of the Unconditional State Probabilities (1)

$$
\begin{aligned}
P_{j}(1) & =P[X(1)=j] \quad \downarrow \text { theorem of total probability } \\
& =\sum_{i=0}^{N} P[X(1)=j \mid X(0)=i] P[X(0)=i] \\
& =\sum_{i=0}^{N} p_{i j} C_{i}=p_{0 j} \cdot C_{0}+p_{1 j} \cdot C_{1}+p_{2 j} \cdot C_{2}+\ldots+p_{N j} \cdot C_{N}, \\
& \text { with } j=0,1,2, \ldots, N
\end{aligned}
$$

Using Matrix Notation:

$$
\underline{P}(1)=\underline{C} \cdot \underline{\underline{A}}
$$

Computation of the Unconditional State Probabilities (2)

- At the second time step $n=2$:

$$
\begin{array}{rlr}
P_{j}(2) & =P[X(2)=j] & \downarrow \text { theorem of total probability } \\
& =\sum_{k=0}^{N} P[X(2)=j \mid X(1)=k] \cdot P[X(1)=k] \\
& =\sum_{k=0}^{N} p_{k j} \cdot P_{k}(1) & \downarrow \text { homogeneous process } \\
& =P_{0}(1) \cdot p_{0 j}+P_{1}(1) \cdot p_{1 j}+P_{2}(1) \cdot p_{2 j}+\ldots+P_{N}(1) \cdot p_{N j},
\end{array}
$$

$$
\downarrow \text { theorem of total probability }+ \text { Markov assumption }
$$

$$
\text { with } j=0,1,2, \ldots, N
$$

FUNDAMENTAL EQUATION

 OF THE HOMOGENEOUS DISCRETE-TIME DISCRETE-STATE MARKOV PROCESS$$
\underline{P}(2)=\underline{P}(1) \cdot \underline{\underline{A}}=(\underline{C} \underline{\underline{A}}) \underline{\underline{A}}=\underline{C} \underline{\underline{A}}^{2}
$$

Proceeding in the same recursive way...

$$
\underline{P}(n)=\underline{P}(0) \cdot \underline{A}^{n}=\underline{C} \cdot \underline{A}^{n}
$$

Problem Setting \& Found Solution

- We know:
- The one-step transition probabilities: $p_{i j}$
- The initial condition $c_{j}=P[X(0)=j]$
- Objective:
- Compute the probability that the system is in a given state j at a given time t_{n}, for all possible states and times: $\underline{P}(n)$
- Solution:

$$
\underline{P}(n)=\underline{P}(0) \cdot \underline{A}^{n}=\underline{C} \cdot \underline{A}^{n}
$$

FUNDAMENTAL EQUATION

Multi-step Transition Probabilities: Interpretation

FUNDAMENTAL EQUATION $\underline{P}(n)=\underline{P}(0) \cdot \underline{\underline{A}}^{n}=\underline{C} \cdot \underline{\underline{A}}^{n}$

$$
\left.\stackrel{A^{n}}{=} \begin{array}{cccc}
p_{00}(n) & p_{01}(n) & \ldots & p_{0 N}(n) \\
p_{10}(n) & p_{11}(n) & \ldots & p_{1 N}(n) \\
\ldots & \ldots & \ldots & \ldots \\
p_{N 0}(n) & p_{N 1}(n) & \ldots & p_{N N}(n)
\end{array}\right) \quad \begin{aligned}
& n \text {-th step } \\
& \text { transition probability matrix } \\
& p_{i j}(n)=P[X(n)=j \mid X(0)=i]
\end{aligned}
$$

probability of arriving in state \boldsymbol{j} after \boldsymbol{n} steps given that the initial state was i

Multi-step transition probabilities (2)

EXAMPLE WITH $\boldsymbol{N}=2$ STATES AND $\boldsymbol{n}=2$ time steps

$$
\underline{\underline{A}}=\left(\begin{array}{ll}
p_{00} & p_{01} \\
p_{10} & p_{11}
\end{array}\right) \quad(i=0,1, j=0,1)
$$

$$
\underline{\underline{A}}^{2}=\left(\begin{array}{cc}
p_{00} & p_{01} \\
p_{10} & p_{11}
\end{array}\right) \cdot\left(\begin{array}{cc}
p_{00} & p_{01} \\
p_{10} & p_{11}
\end{array}\right)=\left(\begin{array}{c:c}
p_{00} \cdot p_{00}+p_{01} \cdot p_{10} & p_{00} \cdot p_{01}+p_{01} \cdot p_{11} \\
p_{10} \cdot p_{00}+p_{11} \cdot p_{10} & p_{10} \cdot p_{01}+p_{11} \cdot p_{11}
\end{array}\right)
$$ WHAT IS THE "PHYSICAL" MEANING?

Multi-step Transition Probabilities (3)

|||

$$
p_{01}(2)=p_{00} \cdot p_{01}+p_{01} \cdot p_{11}
$$

$p_{i j}(n)=P[X(n)=j \mid X(0)=i], p_{i j}(n)$ is the sum of the probabilities of all trajectories with length \boldsymbol{n} which originate in state i and end in state j

Example 1: wet and dry days in a town

- Stochastic process of raining in a town (transitions between wet and dry days)

DISCRETE STATES

State 1: dry day
State 2: wet day
DISCRETE TIME
Time step = 1 day

TRANSITION MATRIX

dry wet

$$
\stackrel{A}{\underline{A}=} \begin{aligned}
& \text { dry } \\
& \text { wet }
\end{aligned}\left(\begin{array}{ll}
0.8 & 0.2 \\
0.5 & 0.5
\end{array}\right)
$$

You are required to:

1) Draw the Markov diagram
2) If today the weather is dry, what is the probability that it will be dry two days from now?

Open Problems

- We provided an analytical framework for computing the state probabilities
- Still open issues:

1. Estimate the transition matrix $A \rightarrow$ Problem of parameter identification from data or expert knowledge
2. Solve for a generic time n, i.e. find $P_{j}(n)$ as a function of n, without the need of multiplying n times the matrix A

Solution to the fundamental equation

Solution to the Fundamental Equation (1)

$$
\left\{\begin{array}{l}
\underline{P}(n)=\underline{P}(0) \underline{\underline{A}}^{n} \\
\underline{\underline{P}}(0)=\underline{C}
\end{array}\right.
$$

SOLVE THE EIGENVALUE PROBLEM ASSOCIATED TO MATRIX A
i) Set the eigenvalue problem $\underline{V} \cdot \underline{=}=\omega \cdot \underline{V}$
ii) Write the homogeneous form $\underline{V} \cdot(\underline{\underline{A}}-\omega \cdot \underline{\underline{I}})=0$
iii) Find non-trivial solutions by setting $\operatorname{det}(\underline{\underline{A}}-\omega \cdot \underline{\underline{I}})=0$
iv) From $\operatorname{det}(\underline{\underline{A}}-\omega \cdot \underline{\underline{I}})=0$ compute the eigenvalues $\omega_{j}, j=0,1, \ldots, N$
v) Set the $\boldsymbol{N}+\boldsymbol{1}$ eigenvalue problems $\underline{V_{j}} \cdot \underline{\underline{A}}=\omega_{j} \cdot \underline{V_{j}} \quad j=0,1, \ldots, N$
vi) From $\underline{V_{j}} \cdot \underline{\underline{A}}=\omega_{j} \cdot \underline{V_{j}}$ compute the eigenvectors $\underline{V_{j}}, j=0,1, \ldots, N$

Eigenvalues of a Stocastic Matrix

- A is a stocastic matrix
- The Markov process is regular and Ergodic

$$
\omega_{0}=1 \text { and }\left|\omega_{j}\right|<1, j=1,2, \ldots, N
$$

Solution to the fundamental equation (2)

The eigenvectors \underline{V}_{j} span the $(N+1)$-dimensional space and can be used as a basis to write any $(N+1)$-dimensional vector as a linear combination of them

$$
\underline{C}=\sum_{j=0}^{N} c_{j} \cdot \underline{V_{j}} \quad \text { AND } \quad \underline{P}(n)=\sum_{j=0}^{N} \alpha_{j} \cdot \underline{V_{j}}
$$

WE NEED TO FIND THE COEFFICIENTS α_{j} AND $c_{j}, j=0,1, \ldots, N$

Solution to the fundamental equation (3)

FIND THE COEFFICIENTS $\quad c_{j}, j=0,1, \ldots, N \quad$ FOR $\quad \underline{C}=\sum_{j=0}^{N} c_{j} \cdot \underline{V_{j}}$

SOLVE THE ASSOCIATED ADJOINT EIGENVALUE PROBLEM

i) Set the adjoint eigenvalue problem

$$
\underline{V}^{+} \cdot \underline{\underline{A}}^{+}=\omega^{+} \cdot \underline{V}^{+}
$$

ii) Since for real valued matrices $\underline{\underline{A}}^{+}=\underline{\underline{A}}^{T}$ then:

$$
\underline{V}^{+} \cdot \underline{\underline{A}}^{+}=\omega^{+} \cdot \underline{V}^{+} \Longleftrightarrow \underline{V}^{+} \cdot \underline{\underline{A}}^{T}=\omega^{+} \cdot \underline{V}^{+}
$$

iii) Since the eigenvalues $\omega_{j}^{+}, j=0,1, \ldots, N$ depend only on $\operatorname{det}\left(\underline{\underline{A^{T}}}\right)=\operatorname{det}(\underline{\underline{A}})$

$$
\Rightarrow \omega_{j}^{+}=\omega_{j}, j=0,1, \ldots, N
$$

Solution to the fundamental equation (4)

iv) From $\underline{V}_{j}^{+} \cdot \underline{\underline{A}}^{+}=\omega_{j} \cdot \underline{V}_{j}^{+}, j=0,1, \ldots, N$ compute the adjoint eigenvectors

$$
\underline{V}_{j}^{+}, j=0,1, \ldots, N
$$

v) By definition of the adjoint problem and since \underline{V}_{j}^{+}and \underline{V}_{j}
are orthogonal

$$
\Rightarrow\left\langle\underline{V_{j}^{+}}, \underline{V_{i}}\right\rangle \equiv \underline{V_{j}^{+}} \cdot \underline{V_{i}^{T}}=\left\{\begin{array}{l}
0 \text { if } i \neq j \\
\text { kotherwise }
\end{array}\right.
$$

Solution of the fundamental equation (4)

iv) From $\underline{V}_{j}^{+} \cdot \underline{\underline{A^{+}}}=\omega_{j} \cdot \underline{V}_{j}^{+}, j=0,1, \ldots, N$ compute the adjoint eigenvectors

$$
\underline{V}_{j}^{+}, j=0,1, \ldots, N
$$

v) By definition of the adjoint problem and since \underline{V}_{j}^{+}and \underline{V}_{j} are orthogonal

$$
\Rightarrow\left\langle\underline{V_{j}^{+}}, \underline{V_{i}}\right\rangle \equiv \underline{V_{j}^{+}} \cdot \underline{V_{i}^{T}}=\left\{\begin{array}{l}
0 \text { if } i \neq j \\
\text { kotherwise }
\end{array}\right.
$$

vi) Multiply the left- and right-hand sides of $\underline{C}=\sum_{i=0}^{N} c_{i} \underline{V}_{i}$ by \underline{V}_{j}^{+}

$$
\left\langle\underline{V}_{j}^{+}, \underline{C}\right\rangle=\sum_{i=0}^{N} c_{i}\left\langle\underline{\underline{V}}_{j}^{+}, \underset{\substack{\underline{V}_{i} \\ \text { (orthogonality) }}}{ }\left\langle\underline{\underline{V}}_{j}^{+}, \underline{V}_{j}\right\rangle \rightarrow c_{j}=\frac{\left\langle\underline{V}_{j}^{+}, \underline{C}\right\rangle}{\left\langle\underline{V}_{j}^{+}, \underline{V}_{j}\right\rangle}\right.
$$

Solution to the fundamental equation (5)

FIND THE COEFFICIENTS $\quad \alpha_{j}, j=0,1, \ldots, N \quad$ FOR $\quad \underline{P}(n)=\sum_{j=0}^{N} \alpha_{j} \cdot \underline{V_{j}}$ USE $\underline{P}(n)=\sum_{j=0}^{N} \alpha_{j} \cdot \underline{V_{j}}, \quad \underline{C}=\sum_{j=0}^{N} c_{j} \cdot \underline{V_{j}} \quad$ AND $\quad \underline{P}(n)=\underline{C} \underline{A}^{n}$

Solution to the fundamental equation (5)

FIND THE COEFFICIENTS $\quad \alpha_{j}, j=0,1, \ldots, N \quad$ FOR $\quad \underline{P}(n)=\sum_{j=0} \alpha_{j} \cdot V_{j}$
USE $\underline{P}(n)=\sum_{j=0}^{N} \alpha_{j} \cdot \underline{V_{j}}, \quad \underline{C}=\sum_{j=0}^{N} c_{j} \cdot \underline{V_{j}} \quad$ AND $\quad \underline{P}(n)=\underline{C} \underline{A}^{n}$
i) Substitute $\quad \underline{C}=\sum_{j=0}^{N} c_{j} \cdot \underline{V}_{j}$ into $\underline{P}(n)=\underline{C} \underline{A}^{n}$ to obtain $P(n)=\left(\sum_{j=0}^{N} c_{j} \underline{V}_{j}\right) \cdot \underline{\underline{A}}^{n}$
ii) Set $\quad \underline{P}(n)=\sum_{j=0}^{N} \alpha_{j} \cdot \underline{V}_{j}=\underline{C} \cdot \underline{\underline{A}}^{n}=\left(\sum_{j=0}^{N} c_{j} \underline{V}_{j}\right) \cdot \underline{A}^{n}$

Solution to the fundamental equation (6)

Since

$$
\underline{V_{j}} \cdot \underline{=A}=\omega_{j} \cdot \underline{V_{j}} \text { then } \underline{V_{j}} \cdot \underline{\underline{A^{2}}}=\omega_{j} \cdot \omega_{j} \cdot \underline{V_{j}}=\omega_{j}^{2} \cdot V_{j}
$$

... (proceeding in the same recursive way)

$$
\underline{V_{j}} \cdot \underline{\underline{A^{n}}}=\omega_{j}^{n} \cdot \underline{V_{j}}
$$

iv) Substitute $\quad \underline{V_{j}} \cdot \underline{\underline{A}}^{n}=\omega_{j}^{n} \cdot \underline{V_{j}}$ into $\underline{P}(n)=\sum_{j=0}^{N} \alpha_{j} \cdot \underline{V_{j}}=\underline{C} \cdot \underline{A}^{n}=\sum_{j=0}^{N} c_{j} \cdot \underline{V}_{j} \underline{\underline{A}}^{n}$

$$
\sum_{j=0}^{N} \alpha_{j} \cdot \underline{V_{j}}=\sum_{j=0}^{N} c_{j} \cdot \omega_{j}^{n} \cdot \underline{V_{j}} \alpha_{j}=c_{j} \cdot \omega_{j}^{n}
$$

Example 2: wet and dry days in a town - HOMEWORK send your solution by Friday before 8:00
 Correct solution: 0.714

- Stochastic process of raining in a town (transitions between wet and dry days)

DISCRETE STATES

State 1: dry day
State 2: wet day

DISCRETE TIME

Time step = 1 day

TRANSITION MATRIX
dry wet

$$
\underline{\underline{A}=} \begin{aligned}
& \text { dry } \\
& \text { wet }
\end{aligned}\left(\begin{array}{ll}
0.8 & 0.2 \\
0.5 & 0.5
\end{array}\right)
$$

Today the weather is dry

You are required to:

1) Estimate the probability that it will be dry \boldsymbol{n} days from now?

Quantity of Interest

Ergodic Markov Process

A Markov process is called ergodic if it is possible to eventually get from every state to every other state with positive probability

$$
\begin{array}{rlrl}
A= & \left(\begin{array}{cc}
0.8 & 0.2 \\
0.50 & 0.5
\end{array}\right) & A=\left(\begin{array}{cc}
0.8 & 0.2 \\
0 & 1
\end{array}\right) \\
& \text { Ergodic } & & \text { Non Ergodic }
\end{array}
$$

A Markov process is said to be regular if some power of the stochastic matrix A has all positive entries (i.e. strictly greater than zero).

$$
\begin{gathered}
A=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \\
A^{2}=A^{4}=\cdots=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
A^{3}=A^{5}=\cdots=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
\end{gathered}
$$

Ergodic - Non Regular

Steady State Probabilities

Is it possible to make long-term predictions ($n \rightarrow+\infty$) of a Markov process?

It is possible to show that if the Markov process is regular then:

$$
\lim _{n \rightarrow+\infty} \underline{P}(n)=\Pi
$$

[^0]
Steady State Probabilities

- Steady state probabilities $\boldsymbol{\pi}_{\boldsymbol{j}}$: probability of the system being in state j asymptotically - TWO ALTERNATIVE APPROACHES:

1) Since $\quad \omega_{0}=1$ and $\left|\omega_{j}\right|<1, j=1,2, \ldots, N$

AT STEADY STATE: $\lim _{n \rightarrow \infty} \underline{P}(n)=\lim _{n \rightarrow \infty} \sum_{j=0}^{N} \underline{\alpha_{j}} \cdot \underline{V_{j}}=\lim _{n \rightarrow \infty} \sum_{j=0}^{N} \sqrt[c_{j} \cdot \omega_{j}^{n}]{ } \cdot \underline{V_{j}}=c_{0} \underline{V_{0}}=\underline{\Pi}$

Steady state probabilities

- Steady state probabilities $\boldsymbol{\pi}_{\boldsymbol{j}}$: probability of the system being in state j asymptotically
- TWO ALTERNATIVE APPROACHES:

1) Since $\omega_{0}=1$ and $\left|\omega_{j}\right|<1, j=1,2, \ldots, N$

AT STEADY STATE: $\lim _{n \rightarrow \infty} \underline{P}(n)=\lim _{n \rightarrow \infty} \sum_{j=0}^{N} \alpha_{\dot{j}} \cdot \underline{V_{j}}=\lim _{n \rightarrow \infty} \sum_{j=0}^{N} c_{j} \cdot \omega_{j}^{n} \cdot \underline{V_{j}}=c_{0} \underline{V_{0}}=\underline{\Pi}$
2) Use the recursive equation $\underline{P}(n)=\underline{P}(n-1) \cdot \underline{\underline{A}}$

AT STEADY STATE: $\underline{P}(n)=\underline{P}(n-1)=\underline{\Pi}$
SOLVE $\underline{\Pi}=\underline{\Pi} \cdot \underline{\underline{A}}$ subject to $\quad \sum_{j=0}^{N} \Pi_{j}=1$

Example 3: wet and dry days in a town (continue)

$$
\underline{A}=\underset{\text { dry }}{\text { wet }} \begin{gathered}
d r y \\
\text { wet } \\
\text { wet }
\end{gathered}\left(\begin{array}{ll}
0.8 & 0.2 \\
0.5 & 0.5
\end{array}\right) \quad \underline{C}=\left[\begin{array}{ll}
1 & 0
\end{array}\right]
$$

- Question: what is the probability that one year from now the day will be dry?

Use the approximation based on the recursive equation

First Passage Probabilities (1)

- FIRST PASSAGE PROBABILITY AFTER n TIME STEPS:

Probability that the system arrives for the first time in state j after \boldsymbol{n} steps, given that it was in state i at the initial time 0

$$
\begin{gathered}
f_{i j}(n)=P[X(n)=j \text { for the first time } \mid X(0)=i] \\
= \\
f_{i j}(n)=P[X(n)=j, X(m) \neq j, 0<m<n \mid X(0)=i]
\end{gathered}
$$

NOTICE:

$$
f_{i j}(n) \neq p_{i j}(n)
$$

$p_{i j}(n)=$ probability that the system reaches state j after \boldsymbol{n} steps starting from state i, but not necessarily for the first time

Example 4: First Passage Probabilities

Compute for the markov process in the Figure below:

- $f_{11}(1)$
- $f_{11}(n)$
- $f_{12}(n)$

- Probability of going from state 1 to state 1 in 1 step for the first time

$$
f_{11}(1)=?
$$

- Probability that the system, starting from state 1 , will return to the same state 1 for the first time after n steps

$$
f_{11}(n)=?
$$

- Probability that the system will arrive for the first time in state 2 after n steps

$$
f_{12}(n)=?
$$

First Passage Probabilities (4)

- RELATIONSHIP WITH TRANSITION PROBABILITIES

$$
\begin{aligned}
& f_{i j}(1)=p_{i j}(1)=p_{i j} \\
& f_{i j}(2)=p_{i j}(2)-f_{i j}(1) \cdot p_{i j}
\end{aligned}
$$

Probability that the system reaches state j
at step 2 , given that it was in i at 0
Probability that the system reaches state j for the first time at step 1 (starting from i at 0) and that it remains in j at the successive step

$$
f_{i j}(3)=p_{i j}(3)-f_{i j}(1) \cdot p_{i j}(2)-f_{i j}(2) \cdot p_{i j}
$$

$$
f_{i j}(k)=p_{i j}(k)-\sum_{l=1}^{k-1} f_{i j}(k-l) p_{j j}(l) \quad \text { (Renewal Equation) }
$$

Recurrent, Transient and Absorbing States (1)

DEFINITIONS:

- First passage probability that the system goes to state j within \boldsymbol{m} steps given that it was in i at time 0 :
$q_{i j}(m)=\sum_{n=1}^{m} f_{i j}(n) \begin{gathered}\text { sum of the probabilities of the mutually exclusive events of } \\ \text { reaching } j \text { for the first time after } n=1,2,3, \ldots, m \text { steps }\end{gathered}$
- Probability that the system eventually reaches state j from state i :

$$
q_{i j}(\infty)=\lim _{m \rightarrow \infty} q_{i j}(m)
$$

- Probability that the system eventually returns to the initial state:

$$
f_{i i}=q_{i i}(\infty)
$$

Recurrent, transient and absorbing states (2)

- State i is recurrent if the system starting at such state will surely return to it sooner or later (i.e., in finite time):

$$
f_{i i}=q_{i i}(\infty)=1
$$

- For recurrent states $\Pi_{i} \neq 0$

Recurrent, transient and absorbing states (2)

- State i is recurrent if the system starting at such state will surely return to it sooner or later (i.e., in finite time):

$$
f_{i i}=q_{i i}(\infty)=1
$$

- For recurrent states $\Pi_{i} \neq 0$
- State i is transient if the system starting at such state has a finite probability of never returning to it:
$f_{i i}=q_{i i}(\infty)<1$
- For these states, at steady state $\Pi_{i}=0$

> we cannot have a finite Markov process in which all states are transients because eventually it will leave them and somewhere it must go at steady state

- State i is absorbing if the system cannot leave it once it enters: $p_{i i}=1$

Example 5

Classify the states of the following Markov Chain

Sojourn Time in a state (Average Occupation Time of a State)

$S_{i}=$ number of consecutive time steps the system remains in state i

$$
\boldsymbol{E}\left[\boldsymbol{S}_{\boldsymbol{i}}\right]=\boldsymbol{l}_{\boldsymbol{i}}=\text { Average occupation time of state } i
$$

$=$
average number of time steps before the system exits state i

- Recalling that:
$p_{i i}=$ probability that the system "moves to" i in one step, given that it was in i
$1-p_{i i}=$ probability that the system exits i in one step, given that it was in i

$$
\begin{aligned}
& \mathrm{P}\left(S_{i}=n\right)=p_{i i}^{n}\left(1-p_{i i}\right) \\
& S_{i} \sim{\operatorname{Geom}\left(1-p_{i i}\right)}^{\boldsymbol{l}_{\boldsymbol{i}}=\boldsymbol{E}\left[\boldsymbol{S}_{\boldsymbol{i}}\right]=\frac{1}{1-p_{i i}}}
\end{aligned}
$$

[^0]: Steady state probabilities

