POLITECNICO

MILANO 1863

Markov Reliability and Availability Analysis

Part II: Continuous Time Discrete State Markov Processes

Continuous Time Discrete State
 Markov Processes

- The stochastic process may be observed at:
- Discrete times
\rightarrow DISCRETE-TIME DISCRETE-STATE MARKOV PROCESSES

- Continuously

The conceptual model: Continuous-Time

- The stochastic process is observed continuously and transitions are assumed to occur continuously in time

The conceptual model: Finite State Space

- The random process of system transition between states in time is described by a stochastic process $\{X(t) ; t \geq 0\}$
- $X(t):=$ system state at time t
- $X(3.6)=5$: the system is in state number 5 at time $t=3.6$

OBJECTIVE:

Computing the probability that the system is in a given state as a function of time, for all possible states

$$
P[X(t)=j], t \in\left[0, T_{m}\right], j=0,1, \ldots, N
$$

Needed Information

Objective:

$$
P[X(t)=j], t \in\left[0, T_{m}\right], j=0,1, \ldots, N
$$

What do we need?

Transition Probabilities!

The Conceptual Model: Transition Probabilities

- Transition probability that the system will be in state j at time $t+v$ given that it is in state i at current time t and given the previous system history

$$
\begin{gathered}
P[X(t+v)=j \mid X(t)=i, X(u)=x(u), 0 \leq u<t] \\
(i=0,1, \ldots, N, j=0,1, \ldots, N)
\end{gathered}
$$

The Conceptual Model: Markov Assumption

- IN GENERAL STOCHASTIC PROCESSES:
the probability of a future state of the system usually depends on its entire life history

$$
\begin{gathered}
P[X(t+v)=j \mid X(t)=i, X(u)=x(u), 0 \leq u<t] \\
(i=0,1, \ldots, N, j=0,1, \ldots, N)
\end{gathered}
$$

- IN MARKOV PROCESSES:

the probability of a future state of the system only depends on its present state

$$
\begin{gathered}
P[X(t+v)=j \mid X(t)=i, X(u)=x(u), 0 \leq u<t] \\
P[X(t+v)=j \mid X(t)=i] \\
(i=0,1, \ldots, N, j=0,1, \ldots, N)
\end{gathered}
$$

THE PROCESS HAS "NO MEMORY"

The Conceptual Model: homogeneous Markov process

If the transition probability depends on the interval \boldsymbol{v} and not on the individual times t and $t+v$

- the transition probabilities are stationary
- the Markov process is homogeneous in time

$$
p_{i j}(t, t+v)=P[X(t+v)=j \mid X(t)=i]=p_{i j}(v)
$$

The Conceptual Model

- Homogeneus process without memory

Transition time \rightarrow Exponential distribution

The conceptual model: Transition Rates

HYPOTHESIS:

- The time interval $v=d t$ is small such that only one event (i.e., one stochastic transition) can occur within it

$$
p_{i j}(d t)=P[X(t+d t)=j \mid X(t)=i]=1-e^{-\alpha_{i j} \cdot d t}
$$

$\alpha_{i j}=$ transition rate from state i to state j

The conceptual model: Transition Rates

HYPOTHESIS:

- The time interval $v=d t$ is small such that only one event (i.e., one stochastic transition) can occur within it

$$
\begin{gathered}
p_{i j}(d t)=P[X(t+d t)=j \mid X(t)=i]=1-e^{-\alpha_{i j} \cdot d t} \\
=\quad\left(\text { Taylor } 1^{s t} \text { order expansion }\right) \\
\alpha_{i j} \cdot d t+\theta(d t), \lim _{d t \rightarrow 0} \frac{\theta(d t)}{d t}=0
\end{gathered}
$$

Analogy with the Discrete Time Markov Chains

Discrete-time

$$
P[X(n+1)=j \mid X(n)=i]=p_{i j}
$$

$$
\underline{P}(n+1)=\underline{P}(n) \cdot \underline{A}
$$

$$
\underline{\underline{A}}=\left(\begin{array}{cccc}
p_{00} & p_{01} & \ldots & p_{0 N} \\
p_{10} & p_{11} & \ldots & p_{1 N} \\
\ldots & \ldots & \ldots & \ldots \\
p_{N 0} & p_{N 1} & \ldots & p_{N N}
\end{array}\right) \quad \stackrel{\underline{A}}{=}=\left(\begin{array}{cccc}
1-d t \cdot \sum_{j=1}^{N} \alpha_{0 j} & \alpha_{01} \cdot d t & \ldots & \alpha_{0 N} \cdot d t \\
\alpha_{10} \cdot d t & 1-d t \cdot \sum_{\substack{j=0 \\
j \neq 1}}^{N} \alpha_{1 j} & \ldots & \alpha_{1 N} \cdot d t \\
\ldots & \ldots & \ldots & \ldots
\end{array}\right)
$$

The conceptual model: the fundamental matrix equation (1)

$$
\left[P_{0}(t+d t) P_{1}(t+d t) \ldots P_{N}(t+d t)\right]=\left[P_{0}(t) P_{1}(t) \ldots P_{N}(t)\right] \cdot\left(\begin{array}{cccc}
1-d t \cdot \sum_{j=1}^{N} \alpha_{0 j} & \alpha_{01} \cdot d t & \ldots & \alpha_{0 N} \cdot d t \\
\alpha_{10} \cdot d t & 1-d t \cdot \sum_{\substack{j=0 \\
j=1}}^{N} \alpha_{1 j} & \ldots & \alpha_{1 N} \cdot d t \\
\ldots & \ldots & \ldots & \ldots
\end{array}\right)
$$

- First-equation:

$$
P_{0}(t+d t)=\left[1-d t \sum_{j=1}^{N} \alpha_{0 j}\right] P_{0}(t)+\alpha_{10} P_{1}(t) \cdot d t+\ldots+\alpha_{N 0} P_{N}(t) d t
$$

The conceptual model: the fundamental matrix equation (2)

$$
P_{0}(t+d t)=\left[1-d t \sum_{j=1}^{N} \alpha_{0 j}\right] P_{0}(t)+\alpha_{10} P_{1}(t) \cdot d t+\ldots+\alpha_{N 0} P_{N}(t) d t
$$

subtract $P_{0}(t)$ on both sides

$$
P_{0}(t+d t)-P_{0}(t)=P_{0}(t)-P_{0}(t)-\sum_{j=1}^{N} \alpha_{0 j} P_{0}(t) d t+\alpha_{10} P_{1}(t) d t+\ldots+\alpha_{N 0} P_{N}(t) d t
$$

divide by $d t$

$$
\frac{P_{0}(t+d t)-P_{0}(t)}{d t}=-\sum_{j=1}^{N} \alpha_{0 j} P_{0}(t)+\alpha_{10} P_{1}(t)+\ldots+\alpha_{N 0} P_{N}(t)
$$

$$
\text { let } d t \rightarrow 0
$$

$$
\lim _{d t \rightarrow 0} \frac{P_{0}(t+d t)-P_{0}(t)}{d t}=\frac{d P_{0}}{d t}=-\sum_{j=1}^{N} \alpha_{0 j} \cdot P_{0}(t)+\alpha_{10} \cdot P_{1}(t)+\ldots+\alpha_{N 0} \cdot P_{N}(t)
$$

The conceptual model: The Transition Probability Matrix

$$
\frac{d P_{0}}{d t}=-\sum_{j=1}^{N} \alpha_{0 j} P_{0}(t)+\alpha_{10} P_{1}(t)+\cdots+\alpha_{N 0} P_{N}(t)=\left[P_{0}(t), P_{1}(t), \ldots, P_{N}(t)\right] \cdot\left[\begin{array}{c}
-\sum_{j=1}^{N} \alpha_{0 j} \\
\alpha_{10} \\
\ldots \\
\alpha_{N 0}
\end{array}\right]
$$

- Extending to the other equations:

TRANSITION RATE MATRIX

It will be indicated as A

System of $\boldsymbol{N + 1}$ linear, first-order differential equations in the unknown state probabilities

$$
P_{j}(t), j=0,1,2, \ldots, N, t \geq 0
$$

Exercise 1

Consider a system made by one component that can be in two states: working or failed. Assume constant failure rate λ and constant repair rate μ. You are required to:

- Draw the Markov diagram
- Find the transition rate matrix, A

Exercise 2

Consider a system made by \boldsymbol{N} identical components in parallel which can be in two states: working or failed. Assume constant failure rate λ, that \boldsymbol{N} repairman are available and that the single component repair rate is constant and equal to μ. You are required to:

- Draw the Markov diagram
- Find the transition rate matrix, A

Exercise 3: system with N identical components and 1 repairman available

Consider a system made by \boldsymbol{N} identical components which can be in two states: working or failed. Assume constant failure rate λ, that 1 repairman is available and that the component repair rate is constant and equal to μ. You are required to:

- Draw the Markov diagram
- Find the transition rate matrix

Solution to the Fundamental Equation

Solution to the fundamental equation of the Markov process continuous in time: problem setting

$$
\left\{\begin{array}{l}
\frac{d \underline{P}}{d t}=\underline{P}(t) \cdot \underline{A} \\
\underline{P}(0)=\underline{C}
\end{array}\right.
$$

$$
\stackrel{A}{\underline{A}}=\left(\begin{array}{cccc}
-\sum_{j=1}^{N} \alpha_{0 j} & \alpha_{01} & \ldots & \alpha_{0 N} \\
\alpha_{10} & -\sum_{\substack{j=0 \\
j \neq 1}}^{N} \alpha_{1 j} & \ldots & \alpha_{1 N} \\
\ldots & \ldots & \ldots & \ldots
\end{array}\right)
$$

System of $\boldsymbol{N + 1}$ linear, first-order differential equations in the unknown state probabilities

$$
P_{j}(t), j=0,1,2, \ldots, N, t \geq 0
$$

Solution to the fundamental equation of the Markov process

continuous in time

$$
\left\{\begin{array}{l}
\frac{d \underline{P}}{d t}=\underline{P}(t) \cdot \underline{\underline{A}} \\
\underline{P}(0)=\underline{C}
\end{array}\right.
$$

$$
\stackrel{A}{=}=\left(\begin{array}{cccc}
-\sum_{j=1}^{N} \alpha_{0 j} & \alpha_{01} & \ldots & \alpha_{0 N} \\
\alpha_{10} & -\sum_{\substack{j=0 \\
j \neq 1}}^{N} \alpha_{1 j} & \ldots & \alpha_{1 N} \\
\ldots & \ldots & \ldots & \ldots
\end{array}\right)
$$

System of $\boldsymbol{N + 1}$ linear, first-order differential equations in the unknown state probabilities

$$
P_{j}(t), j=0,1,2, \ldots, N, t \geq 0
$$

Solution to the fundamental equation of of the Markov process continuous in time: the Lapace Transform Method

- Laplace Transform: $\tilde{P}_{j}(s)=L\left[P_{j}(t)\right]=\int_{0}^{\infty} e^{-s t} P_{j}(t) d t, j=0,1, \ldots, N$
- First derivative: $L\left(\frac{d P_{j}(t)}{d t}\right)=s \cdot \tilde{P}_{j}(s)-P_{j}(0), \quad j=0,1, \ldots, N$
- Apply the Laplace operator to $\frac{d \underline{P}}{d t}=\underline{P}(t) \cdot \underline{\underline{A}}$

$$
L\left[\frac{d \underline{P}(t)}{d t}\right]=L[\underline{P}(t) \cdot \underline{\underline{A}}]
$$

$\begin{aligned} & \text { First derivative } \longleftarrow \underline{s}(s)-\underline{C}=\underline{\tilde{P}}(s) \cdot \underline{\underline{A}} \longrightarrow \text { Linearity } \\ & \underline{\tilde{P}}(s)=\underline{C} \cdot[s \cdot \underline{\underline{I}}-\underline{\underline{A}}]^{-1} \underline{P}(t)=\text { inverse transform of } \underline{\tilde{P}}(s)\end{aligned}$

Solution to the Fundamental Equation:

Steady State Probabilities

- At steady state $\quad \underline{P}(t)=\underline{\Pi}$

$$
\underline{d \underline{P}(t)}=0 \quad \Rightarrow \quad \frac{d \underline{P}(t)}{d t}=\underline{P}(t) \cdot \underline{\underline{A}}=\underline{\Pi} \cdot \underline{\underline{A}}=0
$$

- Solve the (linear) system: $\left\{\begin{array}{l}\underline{\Pi} \cdot \underline{A}=0 \\ \sum_{j=0}^{N} \Pi_{j}=1\end{array}\right.$

Solution to the Fundamental Equation:
 Steady State Probabilities

- At steady state: $\underline{P}(t)=\underline{\Pi}$

$$
\Rightarrow \quad \frac{d \underline{P}(t)}{d t}=\underline{P}(t) \cdot \underline{\underline{A}}=\underline{\Pi} \cdot \underline{\underline{A}}=0
$$

- Solve the (linear) system:

$$
\left\{\begin{array}{l}
\underline{\Pi} \cdot \underline{A}=0 \\
\sum_{j=0}^{N} \Pi_{j}=1
\end{array}\right.
$$

- It can be shown that:

$$
\Pi_{j}=\frac{D_{j}}{\sum_{i=0}^{N} D_{i}} \quad j=0,1,2, \ldots, N
$$

$D_{j}=\begin{gathered}\text { determinant of the square matrix obtained from } \\ \text { by deleting the } j \text {-th row and column }\end{gathered} \underline{=}$

Exercise 4: one component/one repairman - Solution to the fundamental equation (1)

Consider a system made by one component which can be in two states: working (' 0 ') or Failed (' 1 '). Assume constant failure rate λ and constant repair rate μ and that the component is working at $t=0$.
You are required to find:

- the component steady state availability
- the component instantaneous availability

Exercise 4: one component/one repairman - Solution to the fundamental equation (4)

- TIME-DEPENDENT STATE PROBABILITIES

$$
\begin{array}{ll}
P_{0}(t)=\frac{\mu}{\mu+\lambda}+\frac{\lambda}{\mu+\lambda} e^{-(\lambda+\mu) t} & \text { (system instantaneous availability) } \\
P_{1}(t)=\frac{\lambda}{\mu+\lambda}+\frac{\lambda}{\mu+\lambda} e^{-(\lambda+\mu) t} & \text { (system instantaneous unavailability) }
\end{array}
$$

- STEADY STATE PROBABILITIES

$$
\Pi_{0}=\lim _{t \rightarrow \infty} P_{0}(t)=\frac{\mu}{\mu+\lambda}=\frac{1 / \lambda}{1 / \mu+1 / \lambda}=\frac{M T B F}{M T T R+M T B F}
$$

$=$ average fraction of time the system is functioning
$\Pi_{1}=\lim _{t \rightarrow \infty} P_{1}(t)=\frac{\lambda}{\mu+\lambda}=\frac{1 / \mu}{1 / \mu+1 / \lambda}=\frac{M T T R}{M T T R+M T B F}$
$=$ average fraction of time the system is down (i.e., under repair)

Quantity of Interest

Frequency of departure from a state

- Unconditional probability of arriving in state j in the next $d t$ departing from state i at time $t: P[X(t+d t)=j, X(t)=i]$

$$
P[X(t+d t)=j, X(t)=i]=P[X(t+d t)=j \mid X(t)=i] \cdot P[X(t)=i]=p_{i j}(d t) P_{i}(t)
$$

- Frequency of departure from state \boldsymbol{i} to state \boldsymbol{j} :

$$
v_{i j}^{d e p}(t)=\lim _{d t \rightarrow 0} \frac{P[X(t+d t)=j, X(t)=i]}{d t}=\lim _{d t \rightarrow 0} \frac{p_{i j}(d t) P_{i}(t)}{d t}=\alpha_{i j} P_{i}(t)
$$

- Total frequency of departure from state i to any other state j :

$$
v_{i}^{d e p}(t)=\sum_{\substack{j=0 \\ j \neq i}}^{N} v_{i j}^{d e p}(t)=\sum_{\substack{j=0 \\ j \neq i}}^{N} \alpha_{i j} \cdot P_{i}(t)=P_{i}(t) \sum_{\substack{j=0 \\ j \neq i}}^{N} \alpha_{i j}=-\alpha_{i i} \cdot P_{i}(t)
$$

Frequency of departure from a state at steady state

|||

- Unconditional probability of arriving in state j in the next $d t$ departing from state i at time $t: P[X(t+d t)=j, X(t)=i]$

$$
P[X(t+d t)=j, X(t)=i]=P[X(t+d t)=j \mid X(t)=i] \cdot P[X(t)=i]=p_{i j}(d t) P_{i}(t)
$$

- Frequency of departure from state i to state j :

$$
v_{i j}^{d e p}(t)=\lim _{d t \rightarrow 0} \frac{P[X(t+d t)=j, X(t)=i]}{d t}=\lim _{d t \rightarrow 0} \frac{p_{i j}(d t) P_{i}(t)}{d t}=\alpha_{i j} P_{i}(t)
$$

$$
(\text { at steady state })=v_{i j}^{d e p}=\alpha_{i j} \cdot \Pi_{i}
$$

- Total frequency of departure from state \boldsymbol{i} to any other state \boldsymbol{j} :

$$
v_{i}^{d e p}(t)=\sum_{\substack{j=0 \\ j \neq i}}^{N} v_{i j}^{d e p}(t)=\sum_{\substack{j=0 \\ j \neq i}}^{N} \alpha_{i j} \cdot P_{i}(t)=P_{i}(t) \sum_{\substack{j=0 \\ j \neq i}}^{N} \alpha_{i j}=-\alpha_{i i} \cdot P_{i}(t) \quad(\text { at steady state }) \quad v_{i}^{\text {dep }}=-\alpha_{i i} \cdot \Pi_{i}
$$

Frequency of arrival to a state

- Unconditional probability of arriving in state j in the next $d t$ departing from state \boldsymbol{i} at time $t: P[X(t+d t)=j, X(t)=i]$

$$
P[X(t+d t)=j, X(t)=i]=P[X(t+d t)=j \mid X(t)=i] \cdot P[X(t)=i]=p_{i j}(d t) P_{i}(t)
$$

- Frequency of arrival from state \boldsymbol{i} to state \boldsymbol{j} :

$$
v_{i j}^{a r r}(t)=\lim _{d t \rightarrow 0} \frac{P[X(t+d t)=j, X(t)=i]}{d t}=\lim _{d t \rightarrow 0} \frac{p_{i j}(d t) P_{i}(t)}{d t}=\alpha_{i j} P_{i}(t)
$$

- Total frequency of arrival to state j :

$$
v_{j}^{\operatorname{arr}}(t)=\sum_{\substack{i=0 \\ i \neq j}}^{N} v_{i j}^{a r r}(t)=\sum_{\substack{i=0 \\ i \neq j}}^{N} \alpha_{i j} \cdot P_{i}(t)
$$

Frequency of arrival to a state at steady state

- Unconditional probability of arriving in state j in the next $d t$ departing from state i at time $t: P[X(t+d t)=j, X(t)=i]$

$$
P[X(t+d t)=j, X(t)=i]=P[X(t+d t)=j \mid X(t)=i] \cdot P[X(t)=i]=p_{i j}(d t) P_{i}(t)
$$

- Frequency of arrival from state \boldsymbol{i} to state \boldsymbol{j} :

$$
v_{i j}^{a r r}(t)=\lim _{d t \rightarrow 0} \frac{P[X(t+d t)=j, X(t)=i]}{d t}=\lim _{d t \rightarrow 0} \frac{p_{i j}(d t) P_{i}(t)}{d t}=\alpha_{i j} P_{i}(t) \quad(\text { at steady state }) \quad v_{i j}^{a r r}=\alpha_{i j} \Pi_{i}
$$

- Total frequency of arrival to state j :

$$
v_{j}^{a r r}(t)=\sum_{\substack{i=0 \\ i \neq j}}^{N} v_{i j}^{\text {arr }}(t)=\sum_{\substack{i=0 \\ i \neq j}}^{N} \alpha_{i j} \cdot P_{i}(t) \quad \text { (at steady state) } \quad v_{j}^{\text {arr }}=\sum_{\substack{i=0 \\ i \neq j}}^{N} \alpha_{i j} \cdot \Pi_{i}=\ldots
$$

Frequency of arrival to a state

$$
\begin{aligned}
& v_{i}^{a r r}(t)=\sum_{\substack{k=0 \\
k \neq i}}^{N} \alpha_{k i} \cdot P_{k}(t) \\
& v_{i}^{a r r}=\sum_{\substack{k=0 \\
k \neq i}}^{N} \alpha_{k i} \cdot \Pi_{k} \quad(\text { at steady state }) \\
& \underline{\Pi} \cdot \underline{\underline{A}}=0 \quad \Rightarrow \quad \sum_{k=0}^{N} \alpha_{k i} \cdot \Pi_{k}=0 \quad(i=0,1,2, \ldots, N) \\
& \alpha_{i i} \cdot \Pi_{i}=\sum_{\substack{k=0 \\
k \neq 1}}^{N} \alpha_{k i} \cdot \Pi_{k}(i=0,1,2, \ldots, N)
\end{aligned}
$$

frequency of departures from state $i=$ frequency of arrivals to state i

System Failure Intensity

- SYSTEM FAILURE INTENSITY W_{f} :
- Rate at which system failures occur

System Failure Intensity (Simple case)

1 failure state $[f], N$ operating states

- SYSTEM FAILURE INTENSITY \boldsymbol{W}_{f} :
- Rate at which system failures occur

$$
W_{f}(t)=v_{f}^{\operatorname{arr}}(t)=\sum_{\substack{i=0 \\ i \neq f}}^{N} v_{i f}^{a r r}(t)=\sum_{\substack{i=0 \\ i \neq f}}^{N} \alpha_{i f} \cdot P_{i}(t)
$$

System Failure Intensity (General Case)

$S=$ Set of the success states; $F=$ Set of the operating states

- SYSTEM FAILURE INTENSITY \boldsymbol{W}_{f} :
- Rate at which system failures occur

$$
\begin{aligned}
& W_{F}(t)=\sum_{j \in F} v_{f}^{a r r}(t)=\sum_{j \in F} \sum_{i \in S} v_{i j}^{a r r}(t)= \\
& =\sum_{j \in F} \sum_{i \in S} \alpha_{i j} P_{i}(t)=\sum_{i \in S} P_{i}(t) \sum_{j \in F} \alpha_{i j}=\sum_{i \in S} P_{i}(t) \lambda_{i \rightarrow F}
\end{aligned}
$$

$\lambda_{i \rightarrow F}=$ conditional (transition) probability of leaving success state i towards failure states

System Repair Intensity

- SYSTEM REPAIR INTENSIT \boldsymbol{W}_{r} :
- Rate at which system repairs occur

$$
W_{r}(t)=\sum_{j \in F} P_{j}(t) \cdot \mu_{j \rightarrow S}
$$

$S=$ set of success states of the system
$F=$ set of failure states of the system
$P_{j}(t)=$ probability of the system being in the failure state j at time t
$\mu_{j \rightarrow S}=$ conditional (transition) probability of leaving failure state j towards success states

Exercise 5: one component/one repairman

Consider a system made by one component which can be in two states: working (' 0 ') or Failed (' 1 '). Assume constant failure rate λ and constant repair rate μ and that the component is working at $t=0$:

- You are required to find the failure and repair intensities

Sojourn Time in a state (1)

- Time of occupance of state $\boldsymbol{i}($ sojourn time $)=\boldsymbol{T}_{\boldsymbol{i}}$
- Is the time (t) that the system has already been in state i influencing the time (s) the system will remain in state i ?
$\mathrm{P}\left(T_{i}>t+s \mid T_{i}>t\right)=P(X(t+u)=i, 0 \leq u \leq s \mid X(\tau)=i, 0 \leq \tau \leq t)=$
$=\mathrm{P}(X(t+u)=i, 0 \leq u \leq s \mid X(t)=i)$ (by Markov property)
$=\mathrm{P}(X(u)=i, 0 \leq u \leq s \mid X(0)=i)$ (by homogeneity)
$=P\left(T_{i}>s\right) \quad$ Memoryless Property
- The only distribution satisfying the memoryless property is the Exponential distribution

$$
T_{i} \sim E x p
$$

Sojourn Time in a state (2)

- System departure rate from state \boldsymbol{i} (at steady state): $-\alpha_{i i}$

$$
T_{i} \sim \operatorname{Exp}\left(-\alpha_{i i}\right)
$$

- Expected sojourn time $\boldsymbol{l}_{\boldsymbol{i}}$: average time of occupancy of state i

$$
l_{i}=\mathbb{E}\left\{T_{i}\right\}=\frac{1}{-\alpha_{i i}}
$$

Sojourn Time in a state (3)

- Total frequency of departure at steady state: $v_{i}^{\text {dep }}=-\alpha_{i i} \cdot \Pi_{i}$
- Average time of occupancy of state: $l_{i}=\frac{1}{-\alpha_{i i}}$

$$
\begin{aligned}
& v_{i}^{\text {dep }}=-\alpha_{i i} \cdot \Pi_{i}=\frac{\Pi_{i}}{l_{i}} \sqrt{v_{i}^{d e p}=v_{i}^{a r r}} \\
& \Pi_{i}=v_{i}^{\text {arr }} \cdot l_{i}
\end{aligned}
$$

The mean proportion of time Π_{i} that the system spends in state i is equal to the total frequency of arrivals to state i multiplied by the mean duration of one visit in state i

System Availability

- System instantaneous availability at time t
$=$ sum of the probabilities of being in a success state at time t

$$
p(t)=\sum_{i \in S} P_{i}(t)=1-q(t)=1-\sum_{j \in F} P_{j}(t)
$$

In the Laplace domain

$$
\tilde{p}(s)=\sum_{i \in S} \tilde{P}_{i}(s)=\frac{1}{s}-\sum_{j \in F} \tilde{P}_{j}(s)
$$

$S=$ set of success states of the system
$F=$ set of failure states of the system

System Reliability

- TWO CASES:

1) Non-Reparaible Systems \rightarrow No repairs allowed

2) Reparaible Systems
\rightarrow Repairs allowed

System Reliability: Non-Reparaible Systems

- No repairs allowed \Rightarrow Reliability = Availability $R(t) \equiv p(t)=1-q(t)$
- In the Laplace Domain: $\tilde{R}(s)=\sum_{i \in S} \tilde{P}_{i}(s)=\frac{1}{s}-\sum_{j \in F} \tilde{P}_{j}(s)$
- Mean Time to Failure (MTTF):

$$
M T T F=\int_{0}^{\infty} R(t) d t=\left[\int_{0}^{\infty} R(t) e^{-s t} d t\right]_{s=0}=\tilde{R}(0)=\sum_{i \in S} \widetilde{P}_{i}(0)=\left[\frac{1}{s}-\sum_{j \in F} \widetilde{P}_{j}(s)\right]_{s=0}
$$

System Reliability

- TWO CASES:

1) Non-reparaible systems
 \rightarrow No repairs allowed

2) Reparaible systems
\rightarrow Repairs allowed

System Reliability: Reparaible Systems (1)

Parallel System of two identical components

Can I trasnsform the Markov Diagram in such a way that $R(t)=P_{0}^{*}(t)+P_{1}^{*}(t)$?

System Reliability: Reparaible Systems (1)

$R(t)=P(T>t)=P\{X(\tau)=0$ or $X(\tau)=1, \forall \tau \in[0, t)\}=P_{0}^{*}(t)+P_{1}^{*}(t)$
Can I trasnsform the Markov Diagram in such a way that $R(t)=P_{0}^{*}(t)+P_{1}^{*}(t)$?

System Reliability: Reparaible Systems (1)

1. Transform the failed states $j \in F$ into absorbing states (the system cannot be repaired \rightarrow it is not possible to escape from a failed state)

$$
\begin{aligned}
& S=\{0,1\} \\
& F=\{2\}
\end{aligned}
$$

$$
\left.=\left(\begin{array}{ccc}
-2 \lambda & 2 \lambda & 0 \\
\mu & -(\mu+\lambda) & \lambda \\
0 & 2 \mu & -2 \mu
\end{array}\right) \quad \underline{A^{*}}=\left[\begin{array}{ccc}
-2 \lambda & 2 \lambda & 0 \\
\mu & -(\mu+\lambda) & \lambda \\
0 & 0 & 0
\end{array}\right]\right\rangle \underline{A}^{*}=\left[\begin{array}{cc}
-2 \lambda & 2 \lambda \\
\mu & -(\mu+\lambda)
\end{array}\right]
$$

The new matrix $\stackrel{A^{*}}{\underline{*}}$ contains the transition rates for transitions only among the success states $i \in S$
(the "reduced" system is virtually functioning continuously with no interruptions)

System Reliability: Reparaible Systems (2)

2. Solve the reduced problem of \underline{A}^{*} for the probabilities $P_{i}^{*}(t), i \in S$ of being in these (transient) safe states

$$
\frac{d \underline{P}^{*}(t)}{d t}=\underline{P}^{*}(t) \cdot \underline{A^{*}}
$$

Reliability

$$
R(t)=\sum_{i \in S} P_{i}^{*}(t)
$$

$$
\begin{gathered}
\text { Mean Time To Failure (MTTF) } \\
M T T F=\int_{0}^{\infty} R(t) d t=\sum_{i \in S} \tilde{P}_{i}^{*}(0)=\tilde{R}(0)
\end{gathered}
$$

NOTICE: in the reduced problem we have only transient states $\Rightarrow \Pi_{i}^{*}=P_{i}^{*}(\infty)=0$

Exercise 6

Consider a system made by 2 identical components in series. Each component can be in two states: working or failed. Assume constant failure rate λ, that 2 repairman are available and that the single component repair rate is constant and equal to μ. You are required to:

- find the system reliability
- find the system MTTF

Exercise 7

Consider a system made by 2 identical components in parallel. Each component can be in two states: working or failed. Assume constant failure rate λ, that 2 repairman are available and that the single component repair rate is constant and equal to μ. You are required to:

- find the system reliability
- find the system MTTF

