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Markov Reliability and Availability Analysis
Part II: Continuous Time Discrete State

Markov Processes




Continuous Time Discrete State

Markov Processes

* The stochastic process may be observed at:

* Discrete times

= DISCRETE-TIME DISCRETE-STATE MARKOV PROCESSES

* Continuously

> CONTINUOUS-TIME DISCRETE-STATE MARKOV PROCESS
' —
0 T

m
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The conceptual model: Continuous-Time

* The stochastic process is observed continuously and transitions are
assumed to occur continuously in time

state j = 0 statej = 5 state j = 2
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The conceptual model: Finite State Space

* The random process of system transition between states in time 1s
described by a stochastic process {X(7); > 0}

e X(t) := system state at time ¢t
* X(3.6) = 5: the system is in state number 5 at time t = 3.6

—~—————

OBJECTIVE:
Computing the probability that the system is in a given state
as a function of time, for all possible states

P[X(t)=j].tel0,T ] j=0,1,..,N
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Needed Information

Objective:

P[X(t) =j,t€[0,T,],j=01,.. N
—
What do we need?

Transition Probabilities!
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The Conceptual Model: Transition Probabilities

* Transition probability that the system will be in state j at time ¢ + v given
that it 1s in state 7 at current time ¢ and given the previous system history

P[X (t+1)= j| X(t)=i, X (u)= x(u),0<u <t]
(i=0,1,..,N,j=0,1,....,N)

Piero Baraldi POLITECNICO MILANO 1863



The Conceptual Model: Markov Assumption

 IN GENERAL STOCHASTIC PROCESSES:
the probability of a future state of the system usually depends on its entire life
history

P[X(t+v)=j| X(t)=i,X(u)=x(u),0<u <t]
(i=0,1,...N,j=0,1,...,N)

 IN MARKOYV PROCESSES:
the probability of a future state of the system only depends on its present state

PIX(0+v)= 11 X(0) =i Xy o<t

PIX(t+v)=jI X(t)=i]
(i=0,1,..,N,j=0,1,...,N)

THE PROCESS HAS “NO MEMORY”
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The Conceptual Model: homogeneous Markov process

If the transition probability depends on the interval v and not on the
individual times t and t + v

* the transition probabilities are stationary
* the Markov process is homogeneous in time

pij(t’t+v): P[X(H'V): J X(t): i]: pij(V)

4
0 &y t1+v Tm
| | | 5
0 t, t, +"V Ly
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The Conceptual Model

*  Homogeneus process without memory

v

Transition time = Exponential distribution
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The conceptual model: Transition Rates

HYPOTHESIS:

* The time interval v = dt 1s small such that only one event (i.e., one
stochastic transition) can occur within it

v
p;;i(dt) = P[X(t +dt) =jIX(t) =i] =1— e %%

(ij = transition rate from state 7 to state j
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The conceptual model: Transition Rates

HYPOTHESIS:

* The time interval v = dt 1s small such that only one event (i.e., one
stochastic transition) can occur within it

v
p;;i(dt) = P[X(t +dt) =jIX(t) =i] =1— e %%

= (Taylor 1% order expansion)

a;; -dt+6(dt), lim o _y,

Piero Baraldi POLITECNICO MILANO 1863



Analogy with the Discrete Time Markov Chains

Discrete-time Continuous-time
PR+ D =X =i =p; ) PIXC+dD) =XO) = i] = a at
P(n+1)=P(n)-A } P(t+dt)=P()-A
N
-1 1-dt-) oy, Q,, - dt . Oy - dt
poo p01 p0N =1

>
I

plO pll e plN }

>
I

N
a,, - dt 1—d’[-Z:051j aeooyy -t
i=0

j=1

pNO le pNN
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The conceptual model: the fundamental matrix equation (1)

[P (t+dt)R(t+dt)..P (t+dt)] = [P{t)R)..P, )]

* First-equation:

P, (t+dt) [1 dtz%i )+ 0P, (1) dt+...+ oy Py ()t
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The conceptual model: the fundamental matrix equation (2)

) (t+dt) [1 dtz%i )+ 0P, (1) - dt+...+ oy Py (1) dt
v subtract P(f) on both sides
P,(t+dt)-P,(t)=P Zaoj t)dt +or, P (t)dt +...+ P, (t)dlt

—~—— divide by dt

P (t+dt
R d) Z%J t)+or P (t)+...+ oy, Py (1)

= letdt— 0

im W) B S B (1) oy (U)ot g -y (1)
- dt = 0j 0 10 1 NO N
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The conceptual model: The Transition Probability Matrix

- ?’:1 o] -
dP
d_t0= — ;y=1a0jP0(t)+a10P1(t)+“'+C¥N0PN(t) — [ Po(t), Pl(t); ;PN(t)] ' @10
: : aNo
* Extending to the other equations:
N
D) a4y TRANSITION RATE
7= ay MATRIX

System of N+1 linear, first-order differential equations in the unknown state
probabilities

P (t),j=012,...,N, t>0
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Exercise 1

Consider a system made by one component that can be in two states: working or
failed. Assume constant failure rate A and constant repair rate y. You are required to:
* Draw the Markov diagram

* Find the transition rate matrix, 4
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Exercise 2

Consider a system made by N identical components in parallel which can be in
two states: working or failed. Assume constant failure rate A, that N repairman
are available and that the single component repair rate is constant and equal to
w. You are required to:

 Draw the Markov diagram

* Find the transition rate matrix, A
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Exercise 3: system with N identical components and 1

repairman available

Consider a system made by N identical components which can be in two states:
working or failed. Assume constant failure rate A, that 1 repairman is available and
that the component repair rate is constant and equal to u. You are required to:

* Draw the Markov diagram

* Find the transition rate matrix

Piero Baraldi POLITECNICO MILANO 1863



Solution to the Fundamental Equation
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Solution to the fundamental equation of the Markov process

continuous in time: problem setting

_ dE _;a0j Aoy o
= = E(t) . A N

— dt — where A= «a —Z Ay | oy
| P(0)=C 2

System of N+1 linear, first-order
differential equations in the unknown
state probabilities

P (t),j=0,12,...,N, t>0
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Solution to the fundamental equation of the Markov process

continuous in time

_ dE _;a0j Aoy o
= = E(t) . A N

— dt — where A= «a —Z Ay | oy
| P(0)=C 2

System of N+1 linear, first-order
differential equations in the unknown
state probabilities

P (t),j=0,12,...,N, t>0

o
USE LAPLACE TRANSFORM
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Solution to the fundamental equation of of the Markov process

continuous in time: the Lapace Transform Method

 Laplace Transform: |5j(S)=L[Pj (t)]= Oooe P (t)dt, j=01...,N
* First derivative: L(dpd—t()st-li s)-P.(0), j=01..,N

* Apply the Laplace operator to

First derivative «—— SE(S) -Cl= E (S) : é —— Linearity

= inverse transform of E(S)
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Solution to the Fundamental Equation:

Steady State Probabilities

* At steady state P(t) =TI

dP(t) _ LI A
dP(t) = T—E(t) A=11-A=0
=0
dt
_ H-é:O
* Solve the (linear) system: — N
Z;szl
L=
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Solution to the Fundamental Equation:

Steady State Probabilities

* Atsteady state: P(t) = ]

dP(t)
———2=P(t)-A=I1-A=0
dP(t) = dt _()= T
=0
dt
1-A=0
* Solve the (linear) system: J N -
ZHJ =1
L J=0
D. :
* It can be shown that: Hj =— J ]=0,12,...,N
>0,
i=0

Dj = determinant of the square matrix obtained from é
by deleting the j-th row and column
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Exercise 4: one component/one repairman — Solution to

the fundamental equation (1)

Consider a system made by one component which can be in two states: working (‘0’) or
Failed (‘1’). Assume constant failure rate A and constant repair rate y and that the component
is working at £ = 0.

You are required to find:

» the component steady state availability
* the component instantaneous availability
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Exercise 4: one component/one repairman — Solution to

the fundamental equation (4)

e TIME-DEPENDENT STATE PROBABILITIES

P (t) __H n A o~ (A+ult (system instantaneous availability)
° u+A u+Ai
P (t) _ A 4 A o~ (A+ult (system instantaneous unavailability)
' u+A u+A
e STEADY STATE PROBABILITIES
M, = lim p(t)= £ - Y4 MTBF
t=e0 u+A Ywu+l/2 MTIR + MTBF
= average fraction of time the system is functioning
M, —limp(t)=—24_-_Y¥# __ MTR
t=>o0 u+A Ywu+l/2 MTIR+MTBF

= average fraction of time the system is down (i.e., under repair)
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Quantity of Interest
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Frequency of departure from a state

* Unconditional probability of arriving in state j in the next dt departing from
state 7 at time #; P[X(t + dt) =j,X(t) =]

PIX(t +dt) = j,X(t) = i]=P[X(t + dt) = jIX(@) = i] - P[X () = i] = p;;(d)P; (L)

* Frequency of departure from state 7 to state j:

- PX@+dt) =, X@®) =i] _ . py(d@)P(t)
vy O = Jim, Z =dm T - who

* Total frequency of departure from state i to any other state j:

N N N
d d
VPO = ) VPO = ) ay - PO = Pi®) ) @y = —ay - PO
=0 j=0 j=0
J#i J#i JE!
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Frequency of departure from a state

* Unconditional probability of arriving in state j in the next dt departing from
state 7 at time #; P[X(t + dt) =j,X(t) =]

PIX(t +dt) = j,X(t) = i]=P[X(t + dt) = jIX(@) = i] - P[X () = i] = p;;(d)P; (L)

* Frequency of departure from state 7 to state j:
PlX d = .,X =1 ii d Pi —

* Total frequency of departure from state i to any other state j:

N N N

v P (D) = Z v () = Z ai; - Pi(t) = Pi(t) ) ajj = —ay - P(6) (atsteady state) _
70 7=0 j=0
J#i JES! J#l
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Frequency of arrival to a state

* Unconditional probability of arriving in state j in the next dt departing from
state 7 at time #; P[X(t + dt) =j,X(t) =]

PIX(t +dt) = j,X(t) = i]=P[X(t + dt) = jIX(@) = i] - P[X () = i] = p;;(d)P; (L)

* Frequency of arrival from state i to state j:

P[X(t + dt) = ],X(t) = l] pl](dt)Pl(t)
arr — 1 — | — .. P
vij (8 = c}%r—?o dt B c%tlrr—{lo dt = aPi(t)

* Total frequency of arrival to state j:

N N

v = )Y VT = ) @y PO
=0 =0
£ £
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Frequency of arrival to a state

* Unconditional probability of arriving in state j in the next dt departing from
state 7 at time #; P[X(t + dt) =j,X(t) =]

PIX(t +dt) = j,X(t) = i]=P[X(t + dt) = jIX(@) = i] - P[X () = i] = p;;(d)P; (L)

* Frequency of arrival from state i to state j:

_ PX@+dt)=jX()=i] .  pid)P(t)
viaj"(t) = (}%l’_r)lo T = C}%r_r}o% = q;;jP;(t) (atsteady state) viajrrz a; jHi

* Total frequency of arrival to state j:

N N
arr arr p@T =N =
vt (t) = E vi; (t) = E a;; - P;(t) (at steady state) jo T 4i=0 %yt T
i
=0 =0 J
i#j i#j
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Frequency of arrival to a state

v (t) =k§i‘;aki R(1)

k=i

N
par — Zaki 1, (at steady state)

N
II-4=0 = > o, -1, =0 (i=0,1,2, . N)

k=0
N
akf A1, (i=0,1,2, ..., N)
2
AT STEADY STATE:

frequency of departures from state i = frequency of arrivals to state i
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System Failure Intensity

* SYSTEM FAILURE INTENSITY W

* Rate at which system failures occur
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System Failure Intensity (Simple case)

1 failure state [f], N operating states

* SYSTEM FAILURE INTENSITY W

* Rate at which system failures occur

N N

We(t) = vf'" (8) = E viy () = E air - Pi(t)
i=0 i=0
I=f i£f
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System Failure Intensity (General Case)

S =Set of the success states; F = Set of the operating states

* SYSTEM FAILURE INTENSITY W

* Rate at which system failures occur

We(®) = ) v @) = ) Y viT() =

jEF JEF €S
= YN agr =Y PO Y ay= Y PO
JEF €S (€S JEF LES

A; 5 » = conditional (transition) probability of leaving success state i towards
failure states
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System Repair Intensity

* SYSTEM REPAIR INTENSIT W,

* Rate at which system repairs occur

W, (t):ZPj () 4

jeF

S = set of success states of the system
F = set of failure states of the system

Pj (t) = probability of the system being in the failure state j at time ¢

K, > s = conditional (transition) probability of leaving failure state j towards
success states
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Exercise 5: one component/one repairman

Consider a system made by one component which can be in two states: working (‘0’) or
Failed (‘1’). Assume constant failure rate A and constant repair rate y and that the component
is working at £ = 0:

- You are required to find the failure and repair intensities
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Sojourn Time in a state (1)

* Time of occupance of state i (sojourn time) =T;

* Is the time (7) that the system has already been in state i influencing the time (s) the
system will remain in state i?

P(T; >t+s|T; >t) =PX(t+uw) =i,0Ssu<s|X(r)=i0<1t<t) =
=PX(t+u)=1i,0<u<s|X(t) =1i) (by Markov property)
=P(X(u) =1i,0 <u <s|X(0) =1i) (by homogeneity)

= P(T; > s) Memoryless Property

* The only distribution satisfying the memoryless property is the Exponential distribution
v

T;~Exp
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Sojourn Time in a state (2)

» System departure rate from state i (at steady state): —a;;

v
Ti~Exp(—ay;)

* Expected sojourn time [;: average time of occupancy of state i
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Sojourn Time in a state (3)

* Total frequency of departure at steady state: V(iep: —ojj - 11

» Average time of occupancy of state:|lj =——

de
—~— 7=y

The mean proportion of time I, that the system spends in state i 1s equal
to the total frequency of arrivals to state i multiplied by the mean
duration of one visit in state i
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System Availability

* System instantaneous availability at time ¢

= sum of the probabilities of being in a success state at time ¢

p(t)=> R (t)=1-q(t)=1-> P(t)

ieS jeF
— In the Laplace domain
) N R
p(5)= 2R (5)= 125, (5)
ie je

S = set of success states of the system

F = set of failure states of the system
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System Reliability

* TWO CASES:

1) Non-Reparaible Systems
=> No repairs allowed

2) Reparaible Systems
-> Repairs allowed
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System Reliability: Non-Reparaible Systems

No repairs allowed = Reliability = Availability R(t) = p(t) =1- C](t)

In the Laplace Domain: R Z P(s)=—- Z P.

ieS jeF

Mean Time to Failure (MTTF):

MTTF = I R(t)dt = BO R(t)e“dt} =R(0)=>"P(0)= {

s=0 ieS
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System Reliability

* TWO CASES:

1) Non-reparaible systems
=> No repairs allowed

2) Reparaible systems
-> Repairs allowed
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System Reliability: Reparaible Systems (1)

Parallel System of two identical components

2hA
operating t failed = {O, 1}

S
offoloNR="

uAs operating 2mnAs
R(t)=P(T >t) =P{[X(t) =0 or X(r) = 1],vr € [0,t)} = P5(t) + P{(t)

Can | trasnsform the Markov Diagram in such a way that R(t) = Py(t) + P;(t)?
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System Reliability: Reparaible Systems (1)

Parallel System of two identical components

2hA
operating t failed = {O, 1}

S
offoloNR="

uAs operating 2mnAs
R(t)=P(T>t)=P{X(t) =0 orX(t) =1,vT €[0,t)} = P;(t) + P;(t)
Can | trasnsform the Markov Diagram in such a way that R(t) = Py(t) + P;(t)?

. 20A? AA?
operating

ABSORBING
STATE!
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System Reliability: Reparaible Systems (1)

49

1. Transform the failed states j € F into absorbing states (the system cannot be repaired -

it 1s not possible to escape from a failed state)

. 2AAL AA? failed S = {0,1}
operating aile
uAr operating 2pAs

4 o ; —-21 22 ull e [—2/1 21
(7 A=lp —-@W+td) 1|W= po —u+A
=| u w+1) 2 = 0 0 0

0 2U —2uU

The new matrix A" contains the transition rates for transitions only

among the success states 1€ S
(the “reduced” system is virtually functioning continuously with no interruptions)
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System Reliability: Reparaible Systems (2)

2. Solve the reduced problem of A" for the probabilities Pi*(t ), 1€ S
of being in these (transient) safe states

dP*(t) )
il A ORY:\

v
Reliability

R(t)=2_R"(t)

ieS

1

Mean Time To Failure (MTTF)

MTTF = [R(t)dt =Y P"(0)=R(0)

ieS

NOTICE: 1n the reduced problem we have only transient states = H: = Pi*(oo) =0
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Exercise 6

Consider a system made by 2 identical components in series. Each
component can be in two states: working or failed. Assume constant
failure rate A, that 2 repairman are available and that the single
component repair rate is constant and equal to u. You are required to:

 find the system reliability
* find the system MTTF
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Exercise 7

Consider a system made by 2 identical components in parallel. Each
component can be in two states: working or failed. Assume constant
failure rate A, that 2 repairman are available and that the single
component repair rate is constant and equal to u. You are required to:

 find the system reliability
* find the system MTTF
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