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Continuous Time Discrete State 

Markov Processes

• The stochastic process may be observed at:

• Discrete times

• Continuously

t1
0 t2 t3 tn Tm

0 Tm

t

t

→ DISCRETE-TIME DISCRETE-STATE MARKOV PROCESSES

→ CONTINUOUS-TIME DISCRETE-STATE MARKOV PROCESS
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The conceptual model: Continuous-Time
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• The stochastic process is observed continuously and transitions are 

assumed to occur continuously in time

0 Tm

t

state j = 0 state j = 5 state j = 2
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The conceptual model: Finite State Space
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• The random process of system transition between states in time is 

described by a stochastic process {X(t); t ≥ 0}

• 𝑋 𝑡 ≔ system state at time 𝑡
• 𝑋 3.6 = 5: the system is in state number 5 at time 𝑡 = 3.6

OBJECTIVE:

Computing the probability that the system is in a given state 

as a function of time, for all possible states

( )    NjTtjtXP m ...,,1,0,,0, ==
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Needed Information
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What do we need?

Objective:

Transition Probabilities!

𝑃 𝑋 𝑡 = 𝑗 , 𝑡 ∈ 0, 𝑇𝑚 , 𝑗 = 0,1, … , 𝑁
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The Conceptual Model: Transition Probabilities
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• Transition probability that the system will be in state j at time 𝑡 + 𝜈 given

that it is in state i at current time t and given the previous system history

i j

t + νt0 Tm

t

( ) ( ) ( ) ( ) tuuxuXitXjtXP ===+ 0,,|

(i = 0, 1, …, N, j = 0, 1, …, N)

u
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The Conceptual Model: Markov Assumption
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( ) ( ) ( ) ( ) tuuxuXitXjtXP ===+ 0,,|

• IN GENERAL STOCHASTIC PROCESSES: 

the probability of a future state of the system usually depends on its entire life 

history

( ) ( ) ( ) ( ) tuuxuXitXjtXP ===+ 0,,|

• IN MARKOV PROCESSES: 

the probability of a future state of the system only depends on its present state

=

THE PROCESS HAS “NO MEMORY”

( ) ( ) itXjtXP ==+ |

(i = 0, 1, …, N, j = 0, 1, …, N)

(i = 0, 1, …, N, j = 0, 1, …, N)
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The Conceptual Model: homogeneous Markov process
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If the transition probability depends on the interval ν and not on the 

individual times 𝑡 and 𝑡 + 𝜈
• the transition probabilities are stationary

• the Markov process is homogeneous in time

( ) ( ) ( )  ( ) ijij pitXjtXPttp ===+=+ |,

i j

𝑡10 Tm

t

i j

0 Tm

t

𝑡1 + 𝜈

𝑡2 𝑡2 + 𝜈
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The Conceptual Model

• Homogeneus process without memory 

    Transition time → Exponential distribution 
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The conceptual model: Transition Rates

HYPOTHESIS:

• The time interval 𝜈 = 𝑑𝑡 is small such that only one event (i.e., one 
stochastic transition) can occur within it

𝑝𝑖𝑗 𝑑𝑡 = 𝑃 𝑋 𝑡 + 𝑑𝑡 = 𝑗 𝑋 𝑡 = 𝑖 = 1 − 𝑒−𝛼𝑖𝑗∙𝑑𝑡

ij = transition rate from state i to state j
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The conceptual model: Transition Rates

HYPOTHESIS:

• The time interval 𝜈 = 𝑑𝑡 is small such that only one event (i.e., one 
stochastic transition) can occur within it

( )
0

lim 0
dt

dt

dt



→
=( ),dtdtij  +

= (Taylor 1𝑠𝑡 order expansion) 

𝑝𝑖𝑗 𝑑𝑡 = 𝑃 𝑋 𝑡 + 𝑑𝑡 = 𝑗 𝑋 𝑡 = 𝑖 = 1 − 𝑒−𝛼𝑖𝑗∙𝑑𝑡
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Analogy with the Discrete Time Markov Chains 
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Discrete-time 

00 01 0

10 11 1

0 1

0 1 ...

...0

...1

... ... ... ......

...

N

N

N N NN

i j N

p p p

A p p p

p p pN

 
 

=  
 
 
 

Continuous-time 

0 01 0

1

10 1 1

0
1

1 ...

1 ...

... ... ... ...

N

j N

j

N

j N

j
j

dt dt dt

A dt dt dt

  

  

=

=


 
−    

 
 

=  −   
 
 
  
 





𝑃 𝑛 + 1 = 𝑃 𝑛 ∙ 𝐴 𝑃 𝑡 + 𝑑𝑡 = 𝑃 𝑡 ∙ 𝐴

𝑃 𝑋 𝑛 + 1 = 𝑗 𝑋 𝑛 = 𝑖 = 𝑝𝑖𝑗
𝑃 𝑋 𝑡 + 𝑑𝑡 = 𝑗 𝑋 𝑡 = 𝑖 = 𝛼𝑖𝑗 𝑑𝑡
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0 01 0

1

10 1 1

0
1

1 ...

1 ...

... ... ... ...

N

j N

j

N

j N

j
j

dt dt dt

A dt dt dt

  

  

=

=


 
−    

 
 

=  −   
 
 
  
 




( ) ( ) ( ) tPtPtP N...10

( ) ( ) ( ) dttPdttPdttP N +++ ...10 =

• First-equation:

( ) ( ) ( ) ( )0 0 0 10 1 0

1

1 ...
N

j N N

j

P t dt dt P t P t dt P t dt  
=

 
+ = − +  + + 

 


The conceptual model: the fundamental matrix equation (1)
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( ) ( ) ( ) ( )0 0 0 10 1 0

1

1 ...
N

j N N

j

P t dt dt P t P t dt P t dt  
=

 
+ = − +  + + 

 


subtract P0(t) on both sides

( ) ( ) ( )0
0 0 10 1 0

1

...
N

j N N

j

dP
P t P t P t

dt
  

=

= −  +  + + 
( ) ( )

=
−+

→ dt

tPdttP

dt

00

0
lim

divide by dt

let dt → 0

( ) ( ) ( ) ( ) ( ) ( ) ( )dttPdttPdttPtPtPtPdttP NN

N

j

j 0110

1

000000 ...  +++−−=−+ 
=

( ) ( )
( ) ( ) ( )tPtPtP

dt

tPdttP
NN

N

j

j 0110

1

00
00 ...  +++−=

−+

=

The conceptual model: the fundamental matrix equation (2)
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The conceptual model: The Transition Probability Matrix

System of N+1 linear, first-order differential equations in the unknown state 

probabilities

( ), 0,1,2,..., , 0jP t j N t= 

TRANSITION RATE

MATRIX

• Extending to the other equations:

It will be indicated as A

𝑑𝑃0

𝑑𝑡
= − σ𝑗=1

𝑁 𝛼0𝑗𝑃0 𝑡 + 𝛼10𝑃1 𝑡 + ⋯ + 𝛼𝑁0𝑃𝑁 𝑡 = [ 𝑃0 𝑡 , 𝑃1 𝑡 , … , 𝑃𝑁 𝑡 ] ∙

− σ𝑗=1
𝑁 𝛼0𝑗 
𝛼10

…
𝛼𝑁0
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Exercise 1
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Consider a system made by one component that can be in two states: working or 

failed. Assume constant failure rate 𝜆 and constant repair rate 𝜇. You are required to:

• Draw the Markov diagram

• Find the transition rate matrix, A
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Exercise 2
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Consider a system made by 𝑵 identical components in parallel which can be in 
two states: working or failed. Assume constant failure rate 𝜆, that 𝑵 repairman 
are available and that the single component repair rate is constant and equal to 
𝜇. You are required to:
• Draw the Markov diagram
• Find the transition rate matrix, A
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Exercise 3: system with 𝑵 identical components and 𝟏 

repairman available

Consider a system made by 𝑵 identical components which can be in two states: 
working or failed. Assume constant failure rate 𝜆, that 1 repairman is available and 
that the component repair rate is constant and equal to 𝜇. You are required to:
• Draw the Markov diagram
• Find the transition rate matrix
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Solution to the Fundamental Equation

19
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Solution to the fundamental equation of the Markov process 

continuous in time: problem setting
20

System of N+1 linear, first-order

differential equations in the unknown 

state probabilities

( ), 0,1,2,..., , 0jP t j N t= 

0 01 0

1

10 1 1

0
1

...

...

... ... ... ...

N

j N

j

N

j N

j
j

A

  

  

=

=


 
− 
 
 

= − 
 
 
  
 




( )

d P
P t A

dt
= 

( )0P C=

where
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Solution to the fundamental equation of the Markov process 

continuous in time
21

System of N+1 linear, first-order

differential equations in the unknown 

state probabilities

( ), 0,1,2,..., , 0jP t j N t= 

0 01 0

1

10 1 1

0
1

...

...

... ... ... ...

N

j N

j

N

j N

j
j

A

  

  

=

=


 
− 
 
 

= − 
 
 
  
 




( )

d P
P t A

dt
= 

( )0P C=

USE LAPLACE TRANSFORM

where
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• Laplace Transform:

• First derivative:

• Apply the Laplace operator to 

( ) ( ) ( )
0

st

j j jP s L P t e P t dt


− = =   Nj ,...,1,0, =

( )
( ) ( )0 , 0,1,...,

j

j j

dP t
L s P s P j N

dt

 
=  − =  

 

( )
d P

P t A
dt

= 

( )
( ) AtPL

dt

tPd
L =









Linearity( ) ( )sP s C P s A− = First derivative

( )
1

P s C s I A
−

 =   − 
= inverse transform of( )tP ( )sP

~

Solution to the fundamental equation of of the Markov process 

continuous in time: the Lapace Transform Method
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• At steady state

• Solve the (linear) system:

24

𝑑𝑃 𝑡

𝑑𝑡
= 0

( )
( ) 0=== AAtP

dt

tPd

0= A

0

1
N

j

j=

 =

Solution to the Fundamental Equation:                                 

Steady State Probabilities

⇒
𝑃 𝑡 = Π
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• At steady state:

• Solve the (linear) system:

• It can be shown that:

25

𝑑𝑃 𝑡

𝑑𝑡
= 0

( )
( ) 0=== AAtP

dt

tPd

0= A

0

1
N

j

j=

 =

Solution to the Fundamental Equation:                                 

Steady State Probabilities

⇒
𝑃 𝑡 = Π

0

0,1,2,...,
j

j N

i

i

D
j N

D
=

 = =
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Exercise 4: one component/one repairman – Solution to 

the fundamental equation (1)
26

Consider a system made by one component which can be in two states: working (‘0’) or 

Failed (‘1’). Assume constant failure rate 𝜆 and constant repair rate 𝜇 and that the component

is working at t = 0.

You are required to find:

• the component steady state availability

• the component instantaneous availability 
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• TIME-DEPENDENT STATE PROBABILITIES

• STEADY STATE PROBABILITIES

( )
MTBFMTTR

MTBF
tP

t +
=

+
=

+
==

→ 







11

1
lim 00

( )
MTBFMTTR

MTTR
tP

t +
=

+
=

+
==

→ 







11

1
lim 11

= average fraction of time the system is functioning

= average fraction of time the system is down (i.e., under repair)

(system instantaneous availability)

(system instantaneous unavailability)

( ) ( )tetP 







 +−

+
+

+
=0

( ) ( )tetP 







 +−

+
+

+
=1

Exercise 4: one component/one repairman – Solution to 

the fundamental equation (4)
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Quantity of Interest

28
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Frequency of departure from a state
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• Unconditional probability of arriving in state j in the next 𝑑𝑡 departing from 

state i at time t:

• Frequency of departure from state i to state j: 

• Total frequency of departure from state i to any other state j: 

𝑃[𝑋 𝑡 + 𝑑𝑡 = 𝑗, 𝑋 𝑡 = 𝑖]

𝑃[𝑋 𝑡 + 𝑑𝑡 = 𝑗, 𝑋 𝑡 = 𝑖]=𝑃 𝑋 𝑡 + 𝑑𝑡 = 𝑗 𝑋 𝑡 = 𝑖 ∙ 𝑃 𝑋 𝑡 = 𝑖 = 𝑝𝑖𝑗 𝑑𝑡 𝑃𝑖(𝑡)

𝜈𝑖𝑗
𝑑𝑒𝑝

𝑡 = lim
𝑑𝑡→0

𝑃[𝑋 𝑡 + 𝑑𝑡 = 𝑗, 𝑋 𝑡 = 𝑖]

𝑑𝑡
= lim

𝑑𝑡→0

𝑝𝑖𝑗 𝑑𝑡 𝑃𝑖 𝑡

𝑑𝑡
= 𝛼𝑖𝑗𝑃𝑖(𝑡)

𝑣𝑖
𝑑𝑒𝑝

𝑡 = 
𝑗=0
𝑗≠𝑖

𝑁

𝜈𝑖𝑗
𝑑𝑒𝑝

𝑡 = 
𝑗=0
𝑗≠𝑖

𝑁

𝛼𝑖𝑗 ⋅ 𝑃𝑖 𝑡 = 𝑃𝑖 𝑡 
𝑗=0
𝑗≠𝑖

𝑁

𝛼𝑖𝑗 = −𝛼𝑖𝑖 ⋅ 𝑃𝑖 𝑡
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Frequency of departure from a state at steady state
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• Unconditional probability of arriving in state j in the next 𝑑𝑡 departing from 

state i at time t:

• Frequency of departure from state i to state j: 

= 
dep

ij ij iv = 

• Total frequency of departure from state i to any other state j: 

i ii iv = − 

(at steady state)

(at steady state)

𝑃[𝑋 𝑡 + 𝑑𝑡 = 𝑗, 𝑋 𝑡 = 𝑖]

𝑃[𝑋 𝑡 + 𝑑𝑡 = 𝑗, 𝑋 𝑡 = 𝑖]=𝑃 𝑋 𝑡 + 𝑑𝑡 = 𝑗 𝑋 𝑡 = 𝑖 ∙ 𝑃 𝑋 𝑡 = 𝑖 = 𝑝𝑖𝑗 𝑑𝑡 𝑃𝑖(𝑡)

𝜈𝑖𝑗
𝑑𝑒𝑝

𝑡 = lim
𝑑𝑡→0

𝑃[𝑋 𝑡 + 𝑑𝑡 = 𝑗, 𝑋 𝑡 = 𝑖]

𝑑𝑡
= lim

𝑑𝑡→0

𝑝𝑖𝑗 𝑑𝑡 𝑃𝑖 𝑡

𝑑𝑡
= 𝛼𝑖𝑗𝑃𝑖(𝑡)

dep
𝑣𝑖

𝑑𝑒𝑝
𝑡 = 

𝑗=0
𝑗≠𝑖

𝑁

𝜈𝑖𝑗
𝑑𝑒𝑝

𝑡 = 
𝑗=0
𝑗≠𝑖

𝑁

𝛼𝑖𝑗 ⋅ 𝑃𝑖 𝑡 = 𝑃𝑖 𝑡 
𝑗=0
𝑗≠𝑖

𝑁

𝛼𝑖𝑗 = −𝛼𝑖𝑖 ⋅ 𝑃𝑖 𝑡



Piero Baraldi

Frequency of arrival to a state
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• Unconditional probability of arriving in state j in the next 𝑑𝑡 departing from 

state i at time t:

• Frequency of arrival from state i to state j: 

• Total frequency of arrival to state j: 

𝑣𝑗
𝑎𝑟𝑟 𝑡 = 

𝑖=0
𝑖≠𝑗

𝑁

𝜈𝑖𝑗
𝑎𝑟𝑟 𝑡 = 

𝑖=0
𝑖≠𝑗

𝑁

𝛼𝑖𝑗 ⋅ 𝑃𝑖 𝑡

𝑃[𝑋 𝑡 + 𝑑𝑡 = 𝑗, 𝑋 𝑡 = 𝑖]

𝑃[𝑋 𝑡 + 𝑑𝑡 = 𝑗, 𝑋 𝑡 = 𝑖]=𝑃 𝑋 𝑡 + 𝑑𝑡 = 𝑗 𝑋 𝑡 = 𝑖 ∙ 𝑃 𝑋 𝑡 = 𝑖 = 𝑝𝑖𝑗 𝑑𝑡 𝑃𝑖(𝑡)

𝜈𝑖𝑗
𝑎𝑟𝑟 𝑡 = lim

𝑑𝑡→0

𝑃[𝑋 𝑡 + 𝑑𝑡 = 𝑗, 𝑋 𝑡 = 𝑖]

𝑑𝑡
= lim

𝑑𝑡→0

𝑝𝑖𝑗 𝑑𝑡 𝑃𝑖 𝑡

𝑑𝑡
= 𝛼𝑖𝑗𝑃𝑖(𝑡)
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Frequency of arrival to a state at steady state 
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• Unconditional probability of arriving in state j in the next 𝑑𝑡 departing from 

state i at time t:

• Frequency of arrival from state i to state j: 

• Total frequency of arrival to state j: 

𝑣𝑗
𝑎𝑟𝑟 𝑡 = 

𝑖=0
𝑖≠𝑗

𝑁

𝜈𝑖𝑗
𝑎𝑟𝑟 𝑡 = 

𝑖=0
𝑖≠𝑗

𝑁

𝛼𝑖𝑗 ⋅ 𝑃𝑖 𝑡

𝑃[𝑋 𝑡 + 𝑑𝑡 = 𝑗, 𝑋 𝑡 = 𝑖]

𝑃[𝑋 𝑡 + 𝑑𝑡 = 𝑗, 𝑋 𝑡 = 𝑖]=𝑃 𝑋 𝑡 + 𝑑𝑡 = 𝑗 𝑋 𝑡 = 𝑖 ∙ 𝑃 𝑋 𝑡 = 𝑖 = 𝑝𝑖𝑗 𝑑𝑡 𝑃𝑖(𝑡)

𝜈𝑖𝑗
𝑎𝑟𝑟 𝑡 = lim

𝑑𝑡→0

𝑃[𝑋 𝑡 + 𝑑𝑡 = 𝑗, 𝑋 𝑡 = 𝑖]

𝑑𝑡
= lim

𝑑𝑡→0

𝑝𝑖𝑗 𝑑𝑡 𝑃𝑖 𝑡

𝑑𝑡
= 𝛼𝑖𝑗𝑃𝑖(𝑡) (at steady state)

(at steady state) 𝑣𝑗
𝑎𝑟𝑟 = σ𝑖=0

𝑖≠𝑗

𝑁 𝛼𝑖𝑗 ⋅ Π𝑖=…

𝜈𝑖𝑗
𝑎𝑟𝑟= 𝛼𝑖𝑗Π𝑖 
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Frequency of arrival to a state

34

( ) ( )
0

0

N
arr

i ki k

k
k i

N
arr

i ki k

k
k i

v t P t

 

=


=


= 

= 



 (at steady state)

AT STEADY STATE:

frequency of departures from state i = frequency of arrivals to state i
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System Failure Intensity
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• Rate at which system failures occur 

• SYSTEM FAILURE INTENSITY Wf:
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System Failure Intensity (Simple case)
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• Rate at which system failures occur 

• SYSTEM FAILURE INTENSITY Wf:

𝑊𝑓 𝑡 = 𝑣𝑓
𝑎𝑟𝑟 𝑡 = 

𝑖=0
𝑖≠𝑓

𝑁

𝜈𝑖𝑓
𝑎𝑟𝑟 𝑡 = 

𝑖=0
𝑖≠𝑓

𝑁

𝛼𝑖𝑓 ⋅ 𝑃𝑖 𝑡

1 failure state [f], N operating states
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System Failure Intensity (General Case)
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• Rate at which system failures occur 

• SYSTEM FAILURE INTENSITY Wf:

λi→ F = conditional (transition) probability of leaving success state i towards

            failure states  

𝑆 =Set of the success states; 𝐹 = Set of the operating states 

𝑊𝐹 𝑡 = 

𝑗∈𝐹

𝑣𝑓
𝑎𝑟𝑟 𝑡 = 

𝑗∈𝐹


𝑖∈𝑆

𝜈𝑖𝑗
𝑎𝑟𝑟 𝑡 =

=  

𝑗∈𝐹


𝑖∈𝑆

𝛼𝑖𝑗 𝑃𝑖 𝑡 = 

𝑖∈𝑆

𝑃𝑖(𝑡) 
𝑗∈𝐹

𝛼𝑖𝑗 =  

𝑖∈𝑆

𝑃𝑖 𝑡 λ𝑖→𝐹
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System Repair Intensity

• Rate at which system repairs occur 

• SYSTEM REPAIR INTENSIT 𝑾𝒓:

F = set of failure states of the system

= probability of the system being in the failure state j at time t( )tPj

μj→ S = conditional (transition) probability of leaving failure state j towards

            success states

( ) ( )r j j S

j F

W t P t  →



= 

S = set of success states of the system



Piero Baraldi

Exercise 5: one component/one repairman
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Consider a system made by one component which can be in two states: working (‘0’) or 

Failed (‘1’). Assume constant failure rate 𝜆 and constant repair rate 𝜇 and that the component

is working at t = 0:

- You are required to find the failure and repair intensities
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Sojourn Time in a state (1)
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• Time of occupance of state i (sojourn time) = 𝑻𝒊

• Is the time (t) that the system has already been in state i influencing the time (s) the 

system will remain in state i? 

P 𝑇𝑖 > 𝑡 + 𝑠 𝑇𝑖 > 𝑡 = 𝑃 𝑋 𝑡 + 𝑢 = 𝑖, 0 ≤ 𝑢 ≤ 𝑠  𝑋 𝜏 = 𝑖, 0 ≤ 𝜏 ≤ 𝑡) =

= P(𝑋 𝑡 + 𝑢 = 𝑖, 0 ≤ 𝑢 ≤ 𝑠|𝑋 𝑡 = 𝑖) (by Markov property)

= P(𝑋 𝑢 = 𝑖, 0 ≤ 𝑢 ≤ 𝑠|𝑋 0 = 𝑖) (by homogeneity)

= 𝑃(𝑇𝑖 > 𝑠)    Memoryless Property 

• The only distribution satisfying the memoryless property is the Exponential distribution

𝑇𝑖~𝐸𝑥𝑝



Piero Baraldi

41

Sojourn Time in a state (2)

• System departure rate from state i (at steady state):  −𝛼𝑖𝑖

• Expected sojourn time 𝒍𝒊: average time of occupancy of state 𝑖

𝑇𝑖~𝐸𝑥𝑝(−𝛼𝑖𝑖)

𝑙𝑖 =  𝔼 𝑇𝑖 =
1

−𝛼𝑖𝑖
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Sojourn Time in a state (3)

i ii i = − • Total frequency of departure at steady state: 

l

i
i ii i

i


 = −  =

• Average time of occupancy of state:
1

li
ii

=
−

iii l= 

The mean proportion of time i that the system spends in state i is equal 

to the total frequency of arrivals to state i multiplied by the mean 

duration of one visit in state i

dep

dep

𝑣𝑖
𝑑𝑒𝑝

= 𝑣𝑖
𝑎𝑟𝑟

arr
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System Availability

43

S = set of success states of the system

F = set of failure states of the system

• System instantaneous availability at time t

= sum of the probabilities of being in a success state at time t

( ) ( ) ( ) ( )1 1i j

i S j F

p t P t q t P t
 

= = − = − 

( ) ( ) ( )
1

i j

i S j F

p s P s P s
s 

= = − 

In the Laplace domain
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System Reliability
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• TWO CASES:

1) Non-Reparaible Systems

       → No repairs allowed

2)  Reparaible Systems

        → Repairs allowed
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• No repairs allowed ⇒

• In the Laplace Domain:

• Mean Time to Failure (MTTF):

Reliability = Availability ( ) ( ) ( )tqtptR −= 1

( ) ( ) ( )
1

i j

i S j F

R s P s P s
s 

= = − 

( ) ( ) ( ) ( ) ( )
0000

~1
0

~
0

~

=
=



−











−===








== 

sFj

j

Si

i

s

st sP
s

PRdtetRdttRMTTF

System Reliability: Non-Reparaible Systems
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System Reliability
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• TWO CASES:

1) Non-reparaible systems

       → No repairs allowed

2)  Reparaible systems

        → Repairs allowed
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System Reliability: Reparaible Systems (1)

operating

operating

failed

 2=F

 1,0=S

𝑅 𝑡 = 𝑃 𝑇 > 𝑡 = 𝑃 𝑋 𝜏 = 0 𝑜𝑟 𝑋 𝜏 = 1 , ∀𝜏 ∈ 0, 𝑡 = 𝑃0
∗ 𝑡 + 𝑃1

∗ 𝑡

Can I trasnsform the Markov Diagram in such a way that  𝑅 𝑡 = 𝑃0
∗ 𝑡 + 𝑃1

∗ 𝑡 ?
  

Parallel System of two identical components
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System Reliability: Reparaible Systems (1)

operating

operating

failed

 2=F

 1,0=S

operating failed

ABSORBING 
STATE!

operating

𝑅 𝑡 = 𝑃 𝑇 > 𝑡 = 𝑃 𝑋 𝜏 = 0 𝑜𝑟 𝑋 𝜏 = 1, ∀𝜏 ∈ 0, 𝑡 = 𝑃0
∗ 𝑡 + 𝑃1

∗ 𝑡

Can I trasnsform the Markov Diagram in such a way that  𝑅 𝑡 = 𝑃0
∗ 𝑡 + 𝑃1

∗ 𝑡 ?
  

Parallel System of two identical components
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System Reliability: Reparaible Systems (1)

1. Transform the failed states 𝑗 ∈ 𝐹 into absorbing states (the system cannot be repaired → 

it is not possible to escape from a failed state)

operating

operating

failed
 2=F

 1,0=S

𝐴

=
−2𝜆 2𝜆 0

𝜇 −(𝜇 + 𝜆) 𝜆
0 2𝜇 −2𝜇

The new matrix        contains the transition rates for transitions only

among the success states 

𝐴∗

Si
(the “reduced” system is virtually functioning continuously with no interruptions)

𝐴∗ =
−2𝜆 2𝜆 0

𝜇 −(𝜇 + 𝜆) 𝜆
0 0 0

 𝐴∗ =
−2𝜆 2𝜆

𝜇 −(𝜇 + 𝜆)
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System Reliability: Reparaible Systems (2)

2. Solve the reduced problem of        for the probabilities             

       of being in these (transient) safe states

( ) SitPi ,*

Reliability

𝑑𝑃∗ 𝑡

𝑑𝑡
= 𝑃∗ 𝑡 ⋅ 𝐴∗

( ) ( )i

i S

R t P t



=

Mean Time To Failure (MTTF)

( ) ( ) ( )
0

0 0i

i S

MTTF R t dt P R







= = =

NOTICE: in the reduced problem we have only transient states ⇒ ( ) 0** == ii P

𝐴∗
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Exercise 6 

Consider a system made by 2 identical components in series. Each 

component can be in two states: working or failed. Assume constant 

failure rate 𝜆, that 2 repairman are available and that the single 

component repair rate is constant and equal to 𝜇. You are required to:

• find the system reliability 

• find the system MTTF

51
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Exercise 7 

Consider a system made by 2 identical components in parallel. Each 

component can be in two states: working or failed. Assume constant 

failure rate 𝜆, that 2 repairman are available and that the single 

component repair rate is constant and equal to 𝜇. You are required to:

• find the system reliability 

• find the system MTTF

52
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