

Markov Reliability and Availability Analysis

POLITECNICO MILANO 1863

System evolution = Stochastic process

Under <u>specified</u> conditions:

System evolution = Stochastic process

MARKOV PROCESS

Markov Processes: Basic Elements

POLITECNICO MILANO 1863

Markov Processes: the System States (1)

• The **system** can occupy a **finite** or **countably infinite** number *N*+1 of states

Set of possible states $U = \{0, 1, 2, ..., N\}$ = State-space of the random process

POLITECNICO MILANO 1863

- The **States** are:
 - Mutually Exclusive: $P(\text{State} = i \cap \text{State} = j) = 0$, if $i \neq j$

(the system can be **only** in **one** state *at each time*)

• Exhaustive:
$$P(U) = P(\bigcup_{i=1}^{N} \text{State} = i) = \sum_{i=1}^{N} P(\text{State} = i) = 1$$

(the system must be in **one** state *at all times*

• Example:

Set of possible states $U = \{0, 1, 2, 3\}$

$$\begin{array}{c|c} \boldsymbol{U} & 1 & 2 \\ 0 & 3 \end{array}$$

$$P(U) = P(\text{State} = 0 \cup \text{State} = 1 \cup \text{State} = 2 \cup \text{State} = 3)$$
$$= P(\text{State} = 0) + P(\text{State} = 1) + P(\text{State} = 2) + P(\text{State} = 3) = 1$$

POLITECNICO MILANO 1863

• Transitions from one state to another occur stochastically (i.e., randomly in time and in final transition state)

POLITECNICO MILANO 1863

• The system state in **time** can be described by an **integer random variable** *X*(*t*)

 $X(t) = 5 \rightarrow$ the system occupies the state labelled by number 5 at time t

• The stochastic process may be observed at:

• Continuously \rightarrow CONTINUOUS-TIME DISCRETE-STATE MARKOV PROCESS 0 t

11

Discrete-Time Markov Processes

The Conceptual Model: Discrete Observation Times

- The stochastic process is **observed** at **discrete** times

The Conceptual Model: Discrete Observation Times

- The stochastic process is **observed** at **discrete** times

- Hypotheses:
 - The time interval $\Delta t(n)$ is **small** enough such that **only one** event (i.e., stochastic transition) can occur within it

POLITECNICO MILANO 1863

The Conceptual Model: Mathematical Representation

- The random process of system transition in time is described by an **integer random variable** *X*(·)
- $X(n) \coloneqq$ system state at time $t_n = n\Delta t$
 - X(3) = 5: the system occupies state 5 at time t_3

The Conceptual Model: Objective

- The random process of system transition in time is described by an **integer random variable** $X(\cdot)$
- $X(n) \coloneqq$ system state at time $t_n = n\Delta t$
 - X(3) = 5: the system occupies state 5 at time t_3

OBJECTIVE:

Compute the <u>probability</u> that the system is in a <u>given state</u> at a <u>given time</u>, for <u>all</u> possible states and times

$$P[X(n) = j], n = 1, 2, ..., N_{time}, j = 0, 1, ..., N$$

POLITECNICO MILANO 1863

Objective:

$$P[X(n)=j], n=1, 2, ..., N_{time}, j=0, 1, ..., N$$

What do we need?

Objective:

$$P[X(n)=j], n=1, 2, ..., N_{time}, j=0, 1, ..., N$$

What do we need?

Transition Probabilities!

The Conceptual Model: the Transition Probabilities

• **Transition probability:** conditional probability that the system moves to state *j* at time t_n given that it is in state *i* at current time t_m and given the previous system history

$$P[X(n) = j | X(0) = x_0, X(1) = x_1, X(2) = x_2, \dots, X(m) = x_m = i]$$

$$\forall j = 0, 1, \dots, N$$

POLITECNICO MILANO 1863

The Conceptual Model: the Markov Assumption

In general, for stochastic processes:

• the **probability** of a transition to a **future** state depends on its **entire life history**

$$P[X(n) = j | X(0) = x_0, X(1) = x_1, X(2) = x_2, \dots, X(m) = x_m = i]$$

In Markov Processes:

• the **probability** of a transition to a **future** state **only** depends on its **present state**

$$P[X(n) = j | \frac{X(0)}{X(0)} = \frac{x_0, X(1)}{x_1, X(2)} = \frac{x_2, \dots, X_m}{x_2, \dots, X_m} = x_m = i]$$

POLITECNICO MILANO 1863

The Conceptual Model: the Markov Assumption - Notation 20

 $p_{ij}(m,n) = P[X(n) = j | X(m) = i]$ $n > m \ge 0$

The Conceptual Model: Properties of the Transition Probabilities (1)

- 1. Transition probabilities $p_{ij}(m, n)$ are larger than or equal to 0
 - $p_{ij}(m,n) \ge 0, n > m \ge 0$ i = 0,1,2,...,N, j = 0, 1, 2, ..., N

(definition of probability)

2. Transition probabilities **must sum to 1**

$$\sum_{all j} p_{ij}(m,n) = \sum_{j=0}^{N} p_{ij}(m,n) = 1, n > m \ge 0 \qquad i = 0, 1, 2, ..., N$$

(the set of states is exhaustive)

$$\begin{array}{c|c} U & i=1 & 2 \\ 0 & & & \\ 0 & & & \\ \end{array} & \begin{array}{c} 2 & \\ 3 & \\ \end{array} & \begin{array}{c} 3 & \\ 2 & \\ 3 & \end{array} & \begin{array}{c} 3 & \\ 2 & \\ 2 & \\ 3 & \end{array} & \begin{array}{c} 3 & \\ 2 & \\ 2 & \\ 3 & \end{array} & \begin{array}{c} 3 & \\ 2 & \\ 2 & \\ 3 & \end{array} & \begin{array}{c} 3 & \\ 2 & \\ 2 & \\ 3 & \end{array} & \begin{array}{c} 3 & \\ 2 & \\ 2 & \\ 3 & \end{array} & \begin{array}{c} 3 & \\ 2 & \\ 2 & \\ 3 & \end{array} & \begin{array}{c} 3 & \\ 2 & \\ 2 & \\ 3 & \end{array} & \begin{array}{c} 3 & \\ 2 & \\ 3 & \\ 2 & \\ 3 & \end{array} & \begin{array}{c} 3 & \\ 2 & \\ 3 & \\ 3 & \end{array} & \begin{array}{c} 3 & \\ 2 & \\ 3 & \\ 3 & \\ 3 & \end{array} & \begin{array}{c} 3 & \\ 3 & \\ 3 & \\ 3 & \\ 3 & \end{array} & \begin{array}{c} 3 & \\ 3 & \\ 3 & \\ 3 & \\ 3 & \\ 3 & \\ 3 & \\ 3 & \\ 3 & \end{array} & \begin{array}{c} 3 & \\ 3 &$$

Starting from i = 1, the system either remains in i = 1 or it goes somewhere else, i.e., to j = 0 or 2 or 3

The Chapman-Kolmogorov Equation

The conceptual model: properties of the transition probabilities (2)

3.
$$p_{ij}(m,n) = \sum_{k} p_{ik}(m,r)p_{kj}(r,n) \quad i = 0,1,2,...,N, j = 0, 1, 2, ..., N$$

$$p[X(n)=j,X(m)=i] = \sum_{k} p[X(n)=j,X(r)=k,X(m)=i] \quad \text{(theorem of total probability)}$$

$$\downarrow \text{ conditional probability}$$

$$= \sum_{k} p[X(n)=j|X(r)=k,X(m)=i]P[X(r)=k,X(m)=i]$$

$$\downarrow \text{ Markov assumption}$$

$$= \sum_{k} p[X(n)=j|X(r)=k]P[X(r)=k,X(m)=i]$$

$$p_{ij}(m,n) = P[X(n)=j|X(m)=i] = \frac{P[X(n)=j,X(m)=i]}{P[X(m)=i]} \quad \text{(conditional probability)}$$

$$\downarrow \text{ formula above}$$

$$= \sum_{k} p[X(n)=j|X(r)=k] \frac{P[X(r)=k,X(m)=i]}{P[X(m)=i]}$$

$$\downarrow \text{ conditional probability}$$

$$= \sum_{k} P[X(n)=j|X(r)=k]P[X(r)=k|X(m)=i] = \sum_{k} p_{kj}(r,n)p_{ik}(m,r)$$

The Conceptual Model: Stationary Transition Probabilities

• If the transition probability $p_{ij}(m, n)$ depends on the interval $(t_n - t_m)$ and not on the individual times t_m and t_n , (transition probabilities are stationary)

• the Markov process is called "homogeneous in time"

The Conceptual Model: Stationary Transition Probabilities- Notation

• If the transition probability $p_{ij}(m, n)$ depends on the interval $(t_n - t_m)$ and **not** on the individual time t_m then:

POLITECNICO MILANO 1863

The Chapman-Kolmogorov equation for homogeneous systems

The Conceptual Model: Problem Setting

- We know:
 - The one-step transition probabilities:

tities:
$$p_{ij}(1) = p_{ij}$$

 $(i = 0, 1, 2, ..., N, j = 0, 1, 2, ..., N)$

27

• The state probabilities at time n = 0 (initial condition):

$$c_j = P[X(0) = j]$$

- Objective:
 - Compute the probability that the system is in a given state j at a given time t_n , for all possible states and times

$$P[X(n) = j] = P_j(n), n = 1, 2, ..., N_{time}, j = 0, 1, ..., N$$

The Conceptual Model: Computation of the Unconditional State Probabilities

$$\downarrow \text{ Th. of Total Probability}$$

$$P_j(n) = P[X(n) = j] = \sum_{\substack{i=0\\i=0}}^{N} P[X(0) = i] \cdot P[X(n) = j | X(0) = i]$$

$$\downarrow \text{ homogeneous process}$$

$$= \sum_{\substack{i=0\\i=0}}^{N} c_i \cdot p_{ij}(n)$$

Theorem of Total Probability (from Lecture 2)

• Let us consider a partition of the sample space Ω into *n* mutually exclusive and exhaustive events. In terms of Boolean events:

$$E_i \cap E_j = 0 \quad \forall i \neq j \qquad \qquad \bigcup_{i=1}^n E_j = \Omega$$

• Given any event A in Ω ,

 $P(A) = \sum_{j=1}^{n} P(A \cap E_j) = \sum_{j=1}^{n} P(A|E_j) P(E_j)$

 Ω

 E_3

 E_6

Α

 E_1

 E_4

 E_2

 E_5

The Conceptual Model: Computation of the Unconditional State Probabilities

$$\downarrow \text{ Th. of Total Probability}$$

$$P_{j}(n) = P[X(n) = j] = \sum_{i=0}^{N} P[X(0) = i] \cdot P[X(n) = j | X(0) = i]$$

$$\downarrow \text{ homogeneous process}$$

$$= \sum_{i=0}^{N} c_{i} \cdot p_{ij}(n)$$

... from Chapman-Kolmogorov equation using p_{ij}

Computation of the Unconditional State Probabilities at time 1

$$P_{j}(1) = P[X(1) = j] = \sum_{i=0}^{N} P[X(0) = i] \cdot P[X(1) = j | X(0) = i]$$
$$= \sum_{i=0}^{N} c_{i} \cdot p_{ij} = [c_{0}, \dots, c_{i}, \dots c_{N}] \cdot \begin{bmatrix} p_{0j} \\ \dots \\ p_{ij} \\ \dots \\ p_{Nj} \end{bmatrix}$$

POLITECNICO MILANO 1863

Unconditional State Probabilities: Matrix Notation

• Introduce the row vectors:

$$\underline{P}(n) = [P_0(n), P_1(n), \dots, P_i(n), P_N(n)]$$

probabilities of the system being in state 0, 1, 2, ..., N at the *n*-th time step

initial condition

32

$$\underline{P}(0) = \underline{C} = [c_0, c_1, \dots, c_i, \dots, c_N]$$

$$P_{j}(1) = \sum_{i=0}^{N} c_{i} \cdot p_{ij} = [c_{0}, \dots, c_{i}, \dots c_{N}] \cdot \begin{bmatrix} p_{0j} \\ \dots \\ p_{ij} \\ \dots \\ p_{Nj} \end{bmatrix}$$
$$\underbrace{P(1) = [c_{0}, \dots, c_{i}, \dots c_{N}] \cdot \begin{bmatrix} p_{00} \dots p_{0j} \dots p_{0N} \\ \dots \dots \dots \dots \\ p_{i0} \dots p_{ij} \dots p_{iN} \\ \dots \dots \dots \\ p_{N0} \dots p_{Nj} \dots p_{NN} \end{bmatrix}}_{i=\underline{C} \cdot \underline{A}}$$

The Conceptual Model: Notation - the Transition Probability Matrix

Properties:

• dim
$$(\underline{\underline{A}}) = (N+1) \times (N+1)$$

•
$$0 \le p_{ij} \le 1, \forall i, j \in \{0, 1, 2, ..., N\}$$

33

(all elements are **probabilities**)

The Conceptual Model: Notation - the Transition Probability Matrix

$$i/j \quad 0 \quad 1 \quad \dots \quad N$$

$$0 \sum \left(\begin{array}{cccc} p_{00} & p_{01} & \dots & p_{0N} \end{array}\right) = 1$$

$$\underline{A} = 1 \qquad p_{10} \quad p_{11} \quad \dots \quad p_{1N}$$

$$\dots \quad \dots \quad \dots \quad \dots \quad \dots$$

$$N \qquad \left(\begin{array}{cccc} p_{N0} & p_{N1} & \dots & p_{NN} \end{array}\right)$$

Properties: • dim $(\underline{A}) = (N+1) \times (N+1)$

•
$$0 \le p_{ij} \le 1, \forall i, j \in \{0, 1, 2, ..., N\}$$

34

(all elements are **probabilities**)

only (N+1)xN elements need to be known

•
$$\sum_{j=0}^{N} p_{ij} = 1, i = 0, 1, 2, ..., N$$

(the set of states is exhaustive)

Computation of the Unconditional State Probabilities (2)

At the second time step n = 2: $P_j(2) = P[X(2) = j]$ \downarrow theorem of total probability + Markov assumption $= \sum_{k=0}^{N} P[X(2) = j | X(1) = k] \cdot P[X(1) = k]$ \downarrow homogeneous process $= \sum_{k=0}^{N} n + P(1)$

$$= \sum_{k=0}^{p_{kj}} p_{kj} + P_{k}(1)$$

= $P_{0}(1) \cdot p_{0j} + P_{1}(1) \cdot p_{1j} + P_{2}(1) \cdot p_{2j} + \dots + P_{N}(1) \cdot p_{Nj}, = [P_{1}(0), \dots, P_{1}(i), \dots, P_{1}(N)] \cdot \begin{bmatrix} p_{0j} \\ \dots \\ p_{ij} \\ \dots \\ p_{Nj} \end{bmatrix}$
with $j = 0, 1, 2, \dots, N$

 $\underline{P}(2) = \underline{P}(1) \cdot \underline{\underline{A}} = (\underline{C}\underline{\underline{A}})\underline{\underline{A}} = \underline{C}\underline{\underline{A}}^{2}$

FUNDAMENTAL EQUATION OF THE HOMOGENEOUS DISCRETE-TIME DISCRETE-STATE MARKOV PROCESS

35

$$\underline{P}(n) = \underline{P}(0) \cdot \underline{\underline{A}}^n = \underline{\underline{C}} \cdot \underline{\underline{A}}^n$$

Problem Setting & Found Solution

- We know:
 - The one-step transition probabilities: *p_{ij}*
 - The initial condition $c_j = P[X(0) = j]$
- Objective:
 - Compute the probability that the system is in a given state *j* at a given time t_n , for all possible states and times: $\underline{P}(n)$
- Solution:

$$\underline{P}(n) = \underline{P}(0) \cdot \underline{A}^n = \underline{C} \cdot \underline{A}^n$$

FUNDAMENTAL EQUATION

Multi-step Transition Probabilities: Interpretation

Multi-step Transition Probabilities: Interpretation

probability of arriving in state *j* after *n* steps given that the initial state was *i*

Multi-step transition probabilities (2)

$$\underline{\underline{A}} = \begin{pmatrix} p_{00} & p_{01} \\ p_{10} & p_{11} \end{pmatrix} \quad (i = 0, 1, j = 0, 1)$$

$$\underline{\underline{A}}^{2} = \begin{pmatrix} p_{00} & p_{01} \\ p_{10} & p_{11} \end{pmatrix} \cdot \begin{pmatrix} p_{00} & p_{01} \\ p_{10} & p_{11} \end{pmatrix} = \begin{pmatrix} p_{00} \cdot p_{00} + p_{01} \cdot p_{10} \\ p_{10} \cdot p_{00} + p_{11} \cdot p_{10} \\ p_{10} \cdot p_{01} + p_{11} \cdot p_{11} \end{pmatrix}$$

WHAT IS THE "PHYSICAL" MEANING?

Multi-step Transition Probabilities (3)

$$p_{00}(2) = p_{00} \cdot p_{00} + p_{01} \cdot p_{10}$$

40

$$p_{01}(2) = p_{00} \cdot p_{01} + p_{01} \cdot p_{11}$$

 $p_{ij}(n) = P[X(n) = j | X(0) = i]$, $p_{ij}(n)$ is the sum of the probabilities of all trajectories with length n which originate in state i and end in state j

Exercise 1: wet and dry days in a town

• Stochastic process of raining in a town (transitions between wet and dry days)

TRANSITION MATRIX		
(dry	wet
$\underline{A} = dry$ (0.8	0.2
- wet	0.5	0.5
	$\underline{\underline{A}} = \frac{dry}{wet} \begin{pmatrix} \\ \\ \\ \\ \end{pmatrix}$	$\underline{\underline{A}} = \frac{dry}{wet} \begin{pmatrix} 0.8\\ 0.5 \end{pmatrix}$

You are required to:

- 1) Draw the Markov diagram
- If today the weather is dry, what is the probability that it will be dry two days from now?

Open Problems

- We provided an analytical framework for computing the state probabilities
- Still open issues:
 - 1. Estimate the transition matrix $A \rightarrow$ Problem of parameter identification from data or expert knowledge
 - 2. Solve for a generic time *n*, i.e. find $P_j(n)$ as a function of *n*, without the need of multiplying *n* times the matrix *A*

Solution to the fundamental equation

POLITECNICO MILANO 1863

A Markov process is called **ergodic** if it is possible to eventually get from every state to every other state with positive probability

$$A = \begin{pmatrix} 0.8 & 0.2 \\ 0.50 & 0.5 \end{pmatrix} \qquad A = \begin{pmatrix} 0.8 & 0.2 \\ 0 & 1 \end{pmatrix}$$

Ergodic Non Ergodic

A Markov process is said to be regular if some power of the stochastic matrix *A* has all positive entries (i.e. strictly greater than zero).

$$A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
$$A^2 = A^4 = \dots = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
$$A^3 = A^5 = \dots = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

Ergodic – Non Regular

Solution to the Fundamental Equation (1)

$\begin{cases} \underline{P}(n) = \underline{P}(0) \underline{\underline{A}}^n \\ P(0) = C \end{cases}$ SOLVE THE EIGENVALUE PROBLEM ASSOCIATED TO MATRIX A i) Set the eigenvalue problem $\underline{V} \cdot \underline{\underline{A}} = \boldsymbol{\omega} \cdot \underline{\underline{V}}$ ii) Write the homogeneous form $\underline{V} \cdot (\underline{A} - \boldsymbol{\omega} \cdot \underline{I}) = 0$ iii) Find **non-trivial solutions** by setting $det(\underline{A} - \omega \cdot \underline{I}) = 0$ iv) From det $(\underline{A} - \omega \cdot \underline{I}) = 0$ compute the **eigenvalues** $\omega_j, j = 0, 1, ..., N$ v) Set the *N*+1 eigenvalue problems $V_j \cdot \underline{\underline{A}} = \omega_j \cdot \underline{V_j}$ j = 0, 1, ..., Nvi) From $V_j \cdot \underline{\underline{A}} = \omega_j \cdot V_j$ compute the **eigenvectors** $V_j, j = 0, 1, ..., N$

POLITECNICO MILANO 1863

Eigenvalues of a Stocastic Matrix

- *A* is a stocastic matrix
- The Markov process is regular and Ergodic

 $\omega_0 = 1 \text{ and } |\omega_j| < 1, j = 1, 2, \dots, N$

The **eigenvectors** \underline{V}_j span the (N+1)-dimensional space and can be used as a **basis** to write **any** (N+1)-dimensional vector as a **linear combination** of them

WE NEED TO FIND THE COEFFICIENTS α_j and $c_j, j = 0, 1, ..., N$

POLITECNICO MILANO 1863

Solution to the fundamental equation (3)

i) Set the adjoint eigenvalue problem

$$\underline{V}^{+} \cdot \underline{\underline{A}}^{+} = \omega^{+} \cdot \underline{V}^{+}$$

ii) Since for **real valued** matrices $\underline{\underline{A}}^{+} = \underline{\underline{A}}^{T}$ then:

$$\underline{V}^{+} \cdot \underline{\underline{A}}^{+} = \omega^{+} \cdot \underline{V}^{+} \implies \underline{V}^{+} \cdot \underline{\underline{A}}^{T} = \omega^{+} \cdot \underline{V}^{+}$$

iii) Since the eigenvalues ω_j^+ , j = 0, 1, ..., N depend **only** on $det(\underline{A}^T) = det(\underline{A})$

$$\implies \omega_{j}^{+} = \omega_{j}, j = 0, 1, ..., N$$

Solution to the fundamental equation (4)

iv) From $\underline{V}_{j}^{+} \cdot \underline{\underline{A}}^{+} = \omega_{j} \cdot \underline{V}_{j}^{+}, j = 0, 1, ..., N$ compute the adjoint eigenvectors $\underline{V}_{j}^{+}, j = 0, 1, ..., N$

v) Adjoint problem

$$< \underline{V_j^+}, \underline{V_i} > \equiv \underline{V_j^+} \cdot \underline{V_i^T} = \begin{cases} 0 & if \ i \neq j \\ k & otherwise \end{cases}$$

Solution of the fundamental equation (4)

iv) From $\underline{V}_{j}^{+} \cdot \underline{\underline{A}}^{+} = \omega_{j} \cdot \underline{V}_{j}^{+}, j = 0, 1, ..., N$ compute the adjoint eigenvectors $\underline{V}_{j}^{+}, j = 0, 1, ..., N$

v) By **definition** of the adjoint problem <u>and</u> since \underline{V}_{j}^{+} and \underline{V}_{j}^{-} are **orthogonal** $\langle \underline{V}_{j}^{+}, \underline{V}_{i}^{-} \rangle \equiv \underline{V}_{j}^{+} \cdot \underline{V}_{i}^{T} = \begin{cases} 0 & \text{if } i \neq j \\ k & \text{otherwise} \end{cases}$

vi) Multiply the left-hand sides of

$$\underline{C} = \sum_{i=0}^{N} c_i \underline{V_i} \quad \text{by } \underline{V}_j^+$$

$$\left\langle \underline{V}_{j}^{+}, \underline{C} \right\rangle = \sum_{i=0}^{N} c_{i} \left\langle \underline{V}_{j}^{+}, \underline{V}_{i} \right\rangle = c_{j} \left\langle \underline{V}_{j}^{+}, \underline{V}_{j} \right\rangle \rightarrow c_{j} = \frac{\left\langle \underline{V}_{j}^{+}, \underline{C} \right\rangle}{\left\langle \underline{V}_{j}^{+}, \underline{V}_{j} \right\rangle}$$
(orthogonality)

POLITECNICO MILANO 1863

Solution to the fundamental equation (5)

FIND THE COEFFICIENTS $\alpha_j, j = 0, 1, ..., N$ FOR $\underline{P}(n) = \sum_{j=0}^N \alpha_j \cdot \underline{V}_j$ USE $\underline{P}(n) = \sum_{j=0}^N \alpha_j \cdot \underline{V}_j$, $\underline{C} = \sum_{j=0}^N c_j \cdot \underline{V}_j$ AND $\underline{P}(n) = \underline{C}\underline{A}^n$

Solution to the fundamental equation (5)

FIND THE COEFFICIENTS $\alpha_j, j = 0, 1, ..., N$ FOR $\underline{P}(n) = \sum_{j=0}^{N} \alpha_j \cdot \underline{V}_j$ USE $\underline{P}(n) = \sum_{j=0}^{N} \alpha_j \cdot \underline{V}_j$, $\underline{C} = \sum_{j=0}^{N} c_j \cdot \underline{V}_j$ AND $\underline{P}(n) = \underline{C}\underline{A}^n$

i) Substitute
$$\underline{C} = \sum_{j=0}^{N} c_{j} \cdot \underline{V}_{j}$$
 into $\underline{P}(n) = \underline{C}\underline{\underline{A}}^{n}$ to obtain $P(n) = \left(\sum_{j=0}^{N} c_{j}\underline{V}_{j}\right) \cdot \underline{\underline{A}}^{n}$

ii) Set
$$\underline{P}(n) = \sum_{j=0}^{N} \alpha_j \cdot \underline{V}_j = \underline{C} \cdot \underline{\underline{A}}^n = \left(\sum_{j=0}^{N} c_j \underline{V}_j\right) \cdot \underline{\underline{A}}^n$$

Solution to the fundamental equation (6)

iii) Multiply
$$\underline{V_j} \cdot \underline{\underline{A}} = \omega_j \cdot \underline{V_j}$$
 by $\underline{\underline{A}}$ to obtain $\underline{V_j} \cdot \underline{\underline{A}} \cdot \underline{\underline{A}} = \omega_j \cdot \underline{V_j} \cdot \underline{\underline{A}}$
Since $\underline{V_j} \cdot \underline{\underline{A}} = \omega_j \cdot \underline{V_j}$ then $\underline{V_j} \cdot \underline{\underline{A}}^2 = \omega_j \cdot \omega_j \cdot \underline{V_j} = \omega_j^2 \cdot \underline{V_j}$

••• (proceeding in the same recursive way)

$$\underline{V_j} \cdot \underline{\underline{A}}^n = \omega_j^n \cdot \underline{V_j}$$

iv) Substitute $\underline{V}_{j} \cdot \underline{\underline{A}}^{n} = \omega_{j}^{n} \cdot \underline{V}_{j}$ into $\underline{P}(n) = \sum_{j=0}^{N} \alpha_{j} \cdot \underline{V}_{j} = \underline{C} \cdot \underline{\underline{A}}^{n} = \sum_{j=0}^{N} c_{j} \cdot \underline{V}_{j} \underline{\underline{A}}^{n}$ $\sum_{j=0}^{N} \alpha_{j} \cdot \underline{V}_{j} = \sum_{j=0}^{N} c_{j} \cdot \omega_{j}^{n} \cdot \underline{V}_{j}$ $\alpha_{j} = c_{j} \cdot \omega_{j}^{n}$

Exercise 1: wet and dry days in a town

• Stochastic process of raining in a town (transitions between wet and dry days)

DISCRETE STATES	TRANSITION MATRIX	
State 0: dry day	dry	wet
State 1: wet day	A = dry (0.8)	0.2
DISCRETE TIME	$= \frac{1}{wet} \begin{bmatrix} 0.5 \end{bmatrix}$	05
Time step = 1 day		0.5

Today the weather is dry

You are required to:

1) Estimate the probability that it will be dry *n* days from now?

POLITECNICO MILANO 1863

Some Definitions

Quantity of Interest

Steady State Probabilities

Is it possible to make long-term predictions $(n \rightarrow +\infty)$ of a Markov process?

It is possible to show that if the Markov process is regular then:

57

$$\exists \lim_{n \to +\infty} \underline{P}(n) = \Pi$$

Steady state probabilities

Steady State Probabilities

- Steady state probabilities π_i : probability of the system being in state *j* asymptotically
- **TWO ALTERNATIVE APPROACHES:** 1) Since $\omega_0 = 1$ and $|\omega_j| < 1, j = 1, 2, ..., N$ **AT STEADY STATE:** $\lim_{n \to \infty} \underline{P}(n) = \lim_{n \to \infty} \sum_{j=0}^{N} \alpha_j \cdot \underline{V}_j = \lim_{n \to \infty} \sum_{j=0}^{N} c_j \cdot \omega_j^n \cdot \underline{V}_j = c_0 \underline{V}_0 = \underline{\Pi}$

Steady state probabilities

- Steady state probabilities π_j : probability of the system being in state *j* asymptotically
- **TWO ALTERNATIVE APPROACHES:** 1) Since $\omega_0 = 1$ and $|\omega_j| < 1, j = 1, 2, ..., N$ **AT STEADY STATE:** $\lim_{n \to \infty} \underline{P}(n) = \lim_{n \to \infty} \sum_{j=0}^{N} \alpha_j \cdot \underline{V}_j = \lim_{n \to \infty} \sum_{j=0}^{N} c_j \cdot \omega_j^n \cdot \underline{V}_j = c_0 \underline{V}_0 = \underline{\Pi}$
 - 2) Use the recursive equation $\underline{P}(n) = \underline{P}(n-1) \cdot \underline{\underline{A}}$ **AT STEADY STATE:** $\underline{P}(n) = \underline{P}(n-1) = \underline{\Pi}$

SOLVE
$$\underline{\Pi} = \underline{\Pi} \cdot \underline{\underline{A}}$$
 subject to $\sum_{i=0}^{N} \Pi_{i} =$

POLITECNICO MILANO 1863

Exercise 1: wet and dry days in a town (continue)

Question: what is the probability that one year from now the day will be dry?
 Use the approximation based on the recursive equation

FIRST PASSAGE PROBABILITY AFTER *n* TIME STEPS:

Probability that the system arrives **for the first time** in state *j* **after** *n* **steps**, given that it was in state *i* at the initial time 0

$$f_{ij}(n) = P[X(n) = j \text{ for the first time} | X(0) = i]$$

$$=$$

$$f_{ij}(n) = P[X(n) = j, X(m) \neq j, 0 < m < n | X(0) = i]$$

NOTICE:

 $f_{ij}(n) \neq p_{ij}(n)$

 $p_{ij}(n)$ =probability that the system reaches state *j* after *n* steps starting from state *i*, but not necessarily for the first time

POLITECNICO MILANO 1863

First Passage Probabilities: Exercise 3

Compute for the markov process in the Figure below:

- $f_{11}(1)$
- $f_{11}(n)$
- $f_{12}(n)$

POLITECNICO MILANO 1863

$f_{11}(1) = p_{11}$

probability of going from state 1 to state 1 in 1 step for the first time

 $f_{11}(n) = p_{12} \cdot p_{22}^{n-2} \cdot p_{21}$

probability that the system, starting from state 1, will return to the same state 1 for the first time after *n* steps: this is achieved by jumping in state 2 at the first step (p_{12}), remaining in state 2 during the successive *n*-2 steps (p_{22}^{n-2}) and moving back in the initial state 1 at the *n*-th step (p_{21}).

$f_{12}(n) = p_{11}^{n-1} \cdot p_{12}$

probability that the system will arrive for the first time in state 2 after *n* steps; this is equal to the probability of remaining in state 1 for *n*-1 steps (p_{11}^{n-1}) and then jumping in state 2, at the final step (p_{12})

First Passage Probabilities (4)

 $-(f_{ij}(1) \cdot p_{jj})$

RELATIONSHIP WITH TRANSITION PROBABILITIES

Probability that the system reaches state *j* at step 2, given that it was in state *i* at step 0

 $f_{ij}(1) = p_{ij}(1) = p_{ij}$

 $f_{ij}(2)$

Probability that the system reaches state *j* for the first time at step 1 (starting from state *i* at 0) and that it remains in *j* at the successive step

$$f_{ij}(3) = p_{ij}(3) - f_{ij}(1) \cdot p_{jj}(2) - f_{ij}(2) \cdot p_{jj}$$

...
$$f_{ij}(k) = p_{ij}(k) - \sum_{l=1}^{k-1} f_{ij}(k-l)p_{jj}(l) \quad \text{(Renewative}$$

(Renewal Equation)

POLITECNICO MILANO 1863

Exercise 1: wet and dry days in a town (Group Work –Part III)

$\begin{array}{ccc} dry & wet \\ \underline{A} = & dry \\ wet & \begin{pmatrix} 0.8 & 0.2 \\ 0.5 & 0.5 \end{pmatrix} \quad \underline{C} = \begin{bmatrix} 1 & 0 \end{bmatrix} \end{array}$

- *Question*: if today is dry, what is the probability that
 - 1) the first wet day will be Thursday?
 - 2) Wednesday will be wet?
 - 3) The first wet day will be within Thursday?

Recurrent, Transient and Absorbing States (1)

DEFINITIONS:

• First passage probability that the system goes to state *j* within *m* steps given that it was in *i* at time 0:

 $q_{ij}(m) = \sum_{n=1}^{m} f_{ij}(n) = \text{sum of the probabilities of the$ **mutually exclusive events**of reaching*j*for the first time after*n*= 1, 2, 3, ...,*m*steps

- Probability that the system **eventually** reaches state *j* from state *i*: $q_{ij}(\infty) = \lim_{m \to \infty} q_{ij}(m)$
- Probability that the system **eventually** returns to the initial state:

 $f_{ii} = q_{ii}(\infty)$

Recurrent, transient and absorbing states (2)

67

• State *i* is **recurrent** if the system starting at such state will **surely** return to it (**sooner or later**), i.e., in finite time:

$$f_{ii} = q_{ii}(\infty) = 1$$

• For recurrent states $\Pi_i \neq 0$

Recurrent, transient and absorbing states (2)

• State *i* is **recurrent** if the system starting at such state will **surely** return to it **sooner or later** (i.e., in finite time):

 $f_{ii} = q_{ii}(\infty) = 1$

- For recurrent states $\Pi_i \neq 0$
- State *i* is **transient** if the system starting at such state has a **finite probability** of **never** returning to it:

$$f_{ii} = q_{ii}(\infty) < 1$$

• For these states, at steady state $\Pi_i = 0$

68

we cannot have a finite Markov process in which all states are transients because eventually it will leave them and somewhere it must go at steady state

• State *i* is **absorbing** if the system cannot leave it once it enters: $p_{ii} = 1$

Classify the states of the following Markov Chain

POLITECNICO MILANO 1863

Average Occupation Time of a State

S_i = number of consecutive time steps the system remains in state *i* $E[S_i] = l_i$ = Average occupation time of state *i* = average number of time steps before the system exits state *i*

• Recalling that:

 p_{ii} = probability that the system "moves to" *i* in one time step, given that it was in *i*

 $1 - p_{ii} = probability$ that the system exits *i* in one time step, given that it was in *i*

$$P(S_i = n) = p_{ii}^n (1 - p_{ii})$$

$$S_i \sim \text{Geom}(1 - p_{ii})$$

$$I_i = E[S_i] = \frac{1}{1 - p_{ii}}$$

POLITECNICO MILANO 1863

Univariate Discrete Distributions, Geometric Distribution

 $p = P{Failure}$ FAILURE=*Exit from the STATE*; $p = 1 - p_{ii}$

T= trail of the first experiment whose outcome is "failure" (or number of trials between two successive occurrences of failure); S_i = number of consecutive time steps the system remains in state $i \rightarrow S_i = T - 1$

The probability mass function:

$$g(t; p) = (1 - p)^{t-1} p \qquad g(S_i, 1 - p_{ii}) = p_{ii}(1 - p_{ii})^{S_i}$$

$$t=1, 2, \dots \qquad S_i=0, 1, \dots$$

Expected value of *T* (or return period):

$$E[T] = \sum_{t=1}^{\infty} t(1-p)^{t-1} p = p[1+2(1-p)+3(1-p)^2 + \dots] = \frac{p}{[1-(1-p)]^2} = \frac{1}{p}$$
$$E[S_i] = \frac{1}{1-p_{ii}}$$

Piero Baraldi