

Markov Reliability and Availability Analysis

2

General Framework

General Framework

 SYSTEM

General Framework

 SYSTEM

System evolution $=$ Stochastic process

General Framework

SYSTEM

Under specified conditions:

System evolution = Stochastic process
 MARKOV PROCESS

Markov Processes:
 Basic Elements

Markov Processes: the System States (1)

- The system can occupy a finite or countably infinite number $N+1$ of states

Set of possible states $U=\{0,1,2, \ldots, N\}$

$$
=
$$

State-space of the random process

- The States are:
- Mutually Exclusive: $P($ State $=i \cap$ State $=j)=0$, if $i \neq j$ (the system can be only in one state at each time)
- Exhaustive: $P(U)=P\left(\cup_{i=1}^{N}\right.$ State $\left.=i\right)=\sum_{i=1}^{N} P($ State $=i)=1$ (the system must be in one state at all times
- Example:

Set of possible states $U=\{0,1,2,3\}$

$$
\begin{aligned}
P(U) & =P(\text { State }=0 \cup \text { State }=1 \cup \text { State }=2 \cup \text { State }=3) \\
& =P(\text { State }=0)+P(\text { State }=1)+P(\text { State }=2)+P(\text { State }=3)=1
\end{aligned}
$$

Markov Processes: Transitions between states

- Transitions from one state to another occur stochastically (i.e., randomly in time and in final transition state)

Markov Processes: Mathematical Representation

- The system state in time can be described by an integer random variable $X(t)$

$$
X(t)=5 \rightarrow \text { the system occupies the state labelled by number } \mathbf{5} \text { at time } t
$$

- The stochastic process may be observed at:
- Discrete times \rightarrow DISCRETE-TIME DISCRETE-STATE MARKOV PROCESS

- Continuously \rightarrow CONTINUOUS-TIME DISCRETE-STATE MARKOV PROCESS

Discrete-Time

Markov Processes

The Conceptual Model: Discrete Observation Times

- The stochastic process is observed at discrete times

$$
\begin{aligned}
& \Delta t(2)=t_{2}-t_{1} \quad \Delta t(4)=t_{4}-t_{3} \quad \Delta t(n)
\end{aligned}
$$

$$
\begin{aligned}
& t_{n}=t_{n-1}+\Delta t(n)
\end{aligned}
$$

The Conceptual Model: Discrete Observation Times

- The stochastic process is observed at discrete times

$$
\begin{aligned}
& \Delta t(2)=t_{2}-t_{1} \quad \Delta t(4)=t_{4}-t_{3}
\end{aligned}
$$

$$
\begin{aligned}
& t_{n}=t_{n-1}+\Delta t(n)
\end{aligned}
$$

- Hypotheses:
- The time interval $\Delta t(n)$ is small enough such that only one event (i.e., stochastic transition) can occur within it
- For simplicity, $\Delta t(n)=\Delta t=$ constant

The Conceptual Model: Mathematical Representation

- The random process of system transition in time is described by an integer random variable $X(\cdot)$
- $X(n):=$ system state at time $t_{n}=n \Delta t$
- $X(3)=5$: the system occupies state 5 at time t_{3}

The Conceptual Model: Objective

- The random process of system transition in time is described by an integer random variable $X(\cdot)$
- $X(n):=$ system state at time $t_{n}=n \Delta t$
- $X(3)=5$: the system occupies state 5 at time t_{3}

OBJECTIVE:

Compute the probability that the system is in a given state at a given time, for all possible states and times

$$
P[X(n)=j], n=1,2, \ldots, N_{\text {time }}, j=0,1, \ldots, N
$$

Objective:

$$
P[X(n)=j], n=1,2, \ldots, N_{\text {time }}, j=0,1, \ldots, N
$$

What do we need?

Objective:

$$
P[X(n)=j], n=1,2, \ldots, N_{\text {time }}, j=0,1, \ldots, N
$$

What do we need?

Transition Probabilities!

The Conceptual Model: the Transition Probabilities

- Transition probability: conditional probability that the system moves to state j at time t_{n} given that it is in state i at current time t_{m} and given the previous system history

$$
\begin{aligned}
P\left[X(n)=j \mid X(0)=x_{0}, X(1)\right. & \left.=x_{1}, X(2)=x_{2}, \ldots, X(m)=x_{m}=i\right] \\
\forall j & =0,1, \ldots, N
\end{aligned}
$$

state

$$
\begin{aligned}
& \left(x_{0} \rightarrow\left(x_{1}\right)\right.
\end{aligned}
$$

The Conceptual Model: the Markov Assumption

In general, for stochastic processes:

- the probability of a transition to a future state depends on its entire life history

$$
P\left[X(n)=j \mid X(0)=x_{0}, X(1)=x_{1}, X(2)=x_{2}, \ldots, X(m)=x_{m}=i\right]
$$

In Markov Processes:

- the probability of a transition to a future state only depends on its present state
$P\left[X(n)=j \mid V(0)-x_{0}, V(1)-x_{1}, V(2)-x_{2}, \ldots, X_{m}=x_{m}=i\right]$ $=$

THE PROCESS HAS "NO MEMORY"

The Conceptual Model: the Markov Assumption - Notation

$$
p_{i j}(m, n)=P[X(n)=j \mid X(m)=i] \quad n>m \geq 0
$$

The Conceptual Model: Properties of the Transition Probabilities (1)

1. Transition probabilities $p_{i j}(m, n)$ are larger than or equal to 0

$$
p_{i j}(m, n) \geq 0, n>m \geq 0 \quad i=0,1,2, \ldots, N, j=0,1,2, \ldots, N
$$

(definition of probability)
2. Transition probabilities must sum to 1

$$
\begin{aligned}
& \sum_{\text {all } j} p_{i j}(m, n)=\sum_{j=0}^{N} p_{i j}(m, n)=1, n>m \geq 0 \quad i=0,1,2, \ldots, N \\
& \text { (the set of states is exhaustive) }
\end{aligned}
$$

Starting from $i=1$, the system either remains in $\boldsymbol{i}=\mathbf{1}$ or it goes somewhere else, i.e., to $\boldsymbol{j}=0$ or 2 or 3

The Chapman-Kolmogorov Equation

The conceptual model: properties of the transition probabilities (2)

3. $p_{i j}(m, n)=\sum_{k} p_{i k}(m, r) p_{k j}(r, n) \quad i=0,1,2, \ldots, N, j=0,1,2, \ldots, N$

$$
p[X(n)=j, X(m)=i]=\sum_{k} p[X(n)=j, X(r)=k, X(m)=i] \quad \text { (theorem of total probability) }
$$

\downarrow conditional probability
$=\sum_{k} p[X(n)=j \mid X(r)=k, X(m)=i] P[X(r)=k, X(m)=i]$
\downarrow Markov assumption

$$
=\sum_{k} p[X(n)=j \mid X(r)=k] P[X(r)=k, X(m)=i]
$$

$$
p_{i j}(m, n)=P[X(n)=j \mid X(m)=i]=\frac{P[X(n)=j, X(m)=i]}{P[X(m)=i]} \quad \text { (conditional probability) }
$$

\downarrow formula above

$$
=\sum_{k} p[X(n)=j \mid X(r)=k] \frac{P[X(r)=k, X(m)=i]}{P[X(m)=i]}
$$

\downarrow conditional probability

$$
=\sum_{k} P[X(n)=j \mid X(r)=k] P[X(r)=k \mid X(m)=i]=\sum_{k} p_{k j}(r, n) p_{i k}(m, r)
$$

The Conceptual Model: Stationary Transition Probabilities

- If the transition probability $p_{i j}(m, n)$ depends on the interval $\left(t_{n}-t_{m}\right)$ and not on the individual times t_{m} and t_{n}, (transition probabilities are stationary)

- the Markov process is called "homogeneous in time"

The Conceptual Model: Stationary Transition Probabilities- Notation

||

- If the transition probability $p_{i j}(m, n)$ depends on the interval $\left(t_{n}-t_{m}\right)$ and not on the individual time t_{m} then:

k time steps

$$
\begin{aligned}
p_{i j}(m, n) & =p_{i j}(m, m+(\overbrace{n-m)})=p_{i j}(m, m+k)=P[X(m+k)=j \mid X(m)=i] \\
& =P[X(k)=j \mid X(0)=i] \\
& =p_{i j}(k), k \geq 0 \quad i=0,1,2, \ldots, N, j=0,1,2, \ldots, N
\end{aligned}
$$

The Chapman-Kolmogorov equation for homogeneous systems

The Conceptual Model: Problem Setting

- We know:
- The one-step transition probabilities: $\quad p_{i j}(1)=p_{i j}$

$$
(i=0,1,2, \ldots, N, j=0,1,2, \ldots, N)
$$

- The state probabilities at time $n=0$ (initial condition):

$$
c_{j}=P[X(0)=j]
$$

- Objective:
- Compute the probability that the system is in a given state j at a given time t_{n}, for all possible states and times

$$
P[X(n)=j]=P_{j}(n), n=1,2, \ldots, N_{\text {time }}, j=0,1, \ldots, N
$$

The Conceptual Model: Computation of the Unconditional

 State Probabilities\downarrow Th. of Total Probability

$$
\begin{aligned}
& P_{j}(n)=P[X(n)=j]=\sum_{i=0}^{N} P[X(0)=i] \cdot P[X(n)=j \mid X(0)=i] \\
& =\sum_{i=0}^{N} c_{i} \cdot p_{i j}(n)
\end{aligned}
$$

Theorem of Total Probability (from Lecture 2)

- Let us consider a partition of the sample space Ω into n mutually exclusive and exhaustive events. In terms of Boolean events:
Ω

$$
E_{i} \cap E_{j}=0 \quad \forall i \neq j \quad \bigcup_{j=1}^{n} E_{j}=\Omega
$$

- Given any event A in Ω,

$$
\begin{gathered}
A=\bigcup_{j=1}^{n} A \cap E_{j} \\
P(A)=\sum_{j=1}^{n} P\left(A \cap E_{j}\right)=\sum_{j=1}^{n} P\left(A \mid E_{j}\right) P\left(E_{j}\right)
\end{gathered}
$$

The Conceptual Model: Computation of the Unconditional State Probabilities

\downarrow Th. of Total Probability

$$
\begin{aligned}
& P_{j}(n)=P[X(n)=j]=\sum_{\substack{i=0 \\
N}} P[X(0)=i] \cdot P[X(n)=j \mid X(0)=i] \\
& =\sum_{i=0}^{N} c_{i} \cdot p_{i j}(n)
\end{aligned}
$$

from Chapman-Kolmogorov equation using $p_{i j}$

Computation of the Unconditional State Probabilities at time 1

$$
\begin{aligned}
& P_{j}(1)=P[X(1)=j]=\sum_{i=0}^{N} P[X(0)=i] \cdot P[X(1)=j \mid X(0)=i] \\
& =\sum_{i=0}^{N} c_{i} \cdot p_{i j}=\left[c_{0}, \ldots, c_{i}, \ldots c_{N}\right] \cdot\left[\begin{array}{c}
p_{0 j} \\
\ldots \\
p_{i j} \\
\ldots \\
p_{N j}
\end{array}\right]
\end{aligned}
$$

Unconditional State Probabilities: Matrix Notation

- Introduce the row vectors:

$$
\underline{P}(n)=\left[P_{0}(n), P_{1}(n), \ldots, P_{i}(n), P_{N}(n)\right] \quad \begin{aligned}
& \text { probabilities of the system being in } \\
& \text { state } 0,1,2, \ldots, N \text { at the } n \text {-th time step }
\end{aligned}
$$

$$
\underline{P}(0)=\underline{C}=\left[c_{0}, c_{1}, \ldots, c_{i}, \ldots, c_{N}\right] \quad \text { initial condition }
$$

$$
\begin{aligned}
& P_{j}(1)=\sum_{i=0}^{N} c_{i} \cdot p_{i j}=\left[c_{0}, \ldots, c_{i}, \ldots c_{N}\right] \cdot\left[\begin{array}{c}
p_{0 j} \\
\ldots \\
p_{i j} \\
\ldots \\
p_{N j}
\end{array}\right] \\
& \underline{P}(1)=\left[c_{0}, \ldots, c_{i}, \ldots c_{N}\right] \cdot\left[\begin{array}{ccccc}
p_{00} & \ldots & p_{0 j} & \ldots & p_{0 N} \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
p_{i 0} & \ldots & p_{i j} & \ldots & p_{i N} \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
p_{N 0} & \ldots & p_{N j} & \ldots & p_{N N}
\end{array}\right]=\underline{C} \cdot \underline{\underline{A}}
\end{aligned}
$$

The Conceptual Model: Notation - the Transition Probability Matrix

Properties: \quad - $\operatorname{dim}(\underline{\underline{A}})=(N+1) \times(N+1)$

$$
\begin{aligned}
& i / j \quad 0 \quad 1 \quad \text {... } \quad N \\
& \stackrel{A}{=}=\begin{array}{c}
0 \\
1 \\
\\
\cdots \\
\\
N
\end{array}\left(\begin{array}{cccc}
p_{00} & p_{01} & \cdots & p_{0 N} \\
p_{10} & p_{11} & \cdots & p_{1 N} \\
\cdots & \cdots & \cdots & \cdots \\
p_{N 0} & p_{N 1} & \cdots & p_{N N}
\end{array}\right)
\end{aligned}
$$

(all elements are probabilities)

The Conceptual Model: Notation - the Transition Probability Matrix

Properties:

i / j
$\underline{A}=$
0
0
1
\cdots
N

p_{10} \& p_{11} \& \cdots \& p_{1 N}

\cdots \& \cdots \& \cdots \& \cdots

p_{N 0} \& p_{N 1} \& \cdots \& p_{N N}\end{array}\right)=1\)

- $\operatorname{dim}(\underline{\underline{A}})=(N+1) \times(N+1)$
- $0 \leq p_{i j} \leq 1, \forall i, j \in\{0,1,2, \ldots, N\}$
(all elements are probabilities)
\longrightarrow
only $(N+1) x N$ elements need to be known
- $\sum_{j=0}^{N} p_{i j}=1, i=0,1,2, \ldots, N$
(the set of states is exhaustive)
A is a Stochastic Matrix

Computation of the Unconditional State Probabilities (2)

- At the second time step $n=2$:

$$
\begin{array}{rlr}
P_{j}(2) & =P[X(2)=j] & \downarrow \text { theorem of total probability }+ \text { Markov assumption } \\
& =\sum_{k=0}^{N} P[X(2)=j \mid X(1)=k] \cdot P[X(1)=k] \\
& =\sum_{k=0}^{N} p_{k j} \cdot P_{k}(1) \quad= \\
& =P_{0}(1) \cdot p_{0 j}+P_{1}(1) \cdot p_{1 j}+P_{2}(1) \cdot p_{2 j}+\ldots+P_{N}(1) \cdot p_{N j},=\left[P_{1}(0), \ldots, P_{1}(i), \ldots, P_{1}(N)\right] \cdot \\
& \text { with } j=0,1,2, \ldots, N
\end{array}
$$

FUNDAMENTAL EQUATION

 OF THE HOMOGENEOUSDISCRETE-TIME DISCRETE-STATE MARKOV PROCESS

$$
\underline{P}(2)=\underline{P}(1) \cdot \underline{\underline{A}}=(\underline{C} \underline{\underline{A}}) \underline{\underline{A}}=\underline{C} \underline{\underline{A}}^{2}
$$

Proceeding in the same recursive way...

$$
\underline{P}(n)=\underline{P}(0) \cdot \underline{A}^{n}=\underline{C} \cdot \underline{A}^{n}
$$

Problem Setting \& Found Solution

- We know:
- The one-step transition probabilities: $p_{i j}$
- The initial condition $c_{j}=P[X(0)=j]$
- Objective:
- Compute the probability that the system is in a given state j at a given time t_{n}, for all possible states and times: $\underline{P}(n)$
- Solution:

$$
\underline{P}(n)=\underline{P}(0) \cdot \underline{A}^{n}=\underline{C} \cdot \underline{A}^{n}
$$

FUNDAMENTAL EQUATION

Multi-step Transition Probabilities: Interpretation

FUNDAMENTAL EQUATION $\underline{\underline{P}}(n)=\underline{P}(0) \cdot \underline{\underline{A}}^{n}=\underline{C} \cdot \underline{\underline{A}}^{n}$

$$
\stackrel{A}{A}^{n}=\left(\begin{array}{cccc}
p_{00}(n) & p_{01}(n) & \ldots & p_{0 N}(n) \\
p_{10}(n) & p_{11}(n) & \ldots & p_{1 N}(n) \\
\ldots & \ldots & \ldots & \ldots \\
p_{N 0}(n) & p_{N 1}(n) & \ldots & p_{N N}(n)
\end{array}\right) \quad \begin{gathered}
n \text {-th step } \\
\text { transition probability matrix } \\
p_{i j}(n) \\
? ? ?
\end{gathered}
$$

Multi-step Transition Probabilities: Interpretation

FUNDAMENTAL EQUATION $\underline{P}(n)=\underline{P}(0) \cdot \underline{\underline{A}}^{n}=\underline{C} \cdot \underline{\underline{A}}^{n}$

$$
\stackrel{A^{n}}{=}\left(\begin{array}{cccc}
p_{00}(n) & p_{01}(n) & \ldots & p_{0 N}(n) \\
p_{10}(n) & p_{11}(n) & \ldots & p_{1 N}(n) \\
\ldots & \ldots & \ldots & \ldots \\
p_{N 0}(n) & p_{N 1}(n) & \ldots & p_{N N}(n)
\end{array}\right) \quad \begin{gathered}
n \text {-th step } \\
\text { transition probability matrix } \\
p_{i j}(n) \\
=P[X(n)=j \mid X(0)=i]
\end{gathered}
$$

probability of arriving in state \boldsymbol{j} after \boldsymbol{n} steps given that the initial state was i

Multi-step transition probabilities (2)

EXAMPLE WITH $\boldsymbol{N}=2$ STATES AND $\boldsymbol{n}=2$ time steps

$$
\underline{\underline{A}}=\left(\begin{array}{ll}
p_{00} & p_{01} \\
p_{10} & p_{11}
\end{array}\right) \quad(i=0,1, j=0,1)
$$

$$
\underline{A}^{2}=\left(\begin{array}{cc}
p_{00} & p_{01} \\
p_{10} & p_{11}
\end{array}\right) \cdot\left(\begin{array}{cc}
p_{00} & p_{01} \\
p_{10} & p_{11}
\end{array}\right)=\left(\begin{array}{c:c}
p_{00} \cdot p_{00}+p_{01} \cdot p_{10} & p_{00} \cdot p_{01}+p_{01} \cdot p_{11} \\
p_{10} \cdot p_{00}+p_{11} \cdot p_{10} & p_{10} \cdot p_{01}+p_{11} \cdot p_{11}
\end{array}\right)
$$

Multi-step Transition Probabilities (3)

$$
p_{01}(2)=p_{00} \cdot p_{01}+p_{01} \cdot p_{11}
$$

$p_{i j}(n)=P[X(n)=j \mid X(0)=i], p_{i j}(n)$ is the sum of the probabilities of all trajectories with length \boldsymbol{n} which originate in state i and end in state j

Exercise 1: wet and dry days in a town

- Stochastic process of raining in a town (transitions between wet and dry days)

DISCRETE STATES

State 0: dry day
State 1: wet day
DISCRETE TIME
Time step $=1$ day

TRANSITION MATRIX

dry wet

$$
\stackrel{A}{=}=\begin{aligned}
& \text { wet } \\
& \\
& \text { wey }
\end{aligned}\left(\begin{array}{ll}
0.8 & 0.2 \\
0.5 & 0.5
\end{array}\right)
$$

You are required to:

1) Draw the Markov diagram
2) If today the weather is dry, what is the probability that it will be dry two days from now?

Open Problems

- We provided an analytical framework for computing the state probabilities
- Still open issues:

1. Estimate the transition matrix $A \rightarrow$ Problem of parameter identification from data or expert knowledge
2. Solve for a generic time n, i.e. find $P_{j}(n)$ as a function of n, without the need of multiplying n times the matrix A

Solution to the fundamental equation

Ergodic Markov Process

A Markov process is called ergodic if it is possible to eventually get from every state to every other state with positive probability

$$
\begin{array}{rlrl}
A= & \left(\begin{array}{cc}
0.8 & 0.2 \\
0.50 & 0.5
\end{array}\right) & A=\left(\begin{array}{cc}
0.8 & 0.2 \\
0 & 1
\end{array}\right) \\
& \text { Ergodic } & & \text { Non Ergodic }
\end{array}
$$

A Markov process is said to be regular if some power of the stochastic matrix A has all positive entries (i.e. strictly greater than zero).

$$
\begin{aligned}
A & =\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \\
A^{2}=A^{4} & =\cdots=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
A^{3}=A^{5} & =\cdots=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
\end{aligned}
$$

Ergodic - Non Regular

Solution to the Fundamental Equation (1)

$$
\left\{\begin{array}{l}
\underline{P}(n)=\underline{P}(0) \underline{\underline{A}}^{n} \\
\underline{\underline{P}}(0)=\underline{C}
\end{array}\right.
$$

SOLVE THE EIGENVALUE PROBLEM ASSOCIATED TO MATRIX A
i) Set the eigenvalue problem $\underline{V} \cdot \underline{\underline{A}}=\omega \cdot \underline{V}$
ii) Write the homogeneous form $\underline{V} \cdot(\underline{\underline{A}}-\omega \cdot \underline{\underline{I}})=0$
iii) Find non-trivial solutions by setting $\operatorname{det}(\underline{\underline{A}}-\omega \cdot \underline{\underline{I}})=0$
iv) From $\operatorname{det}(\underline{\underline{A}}-\omega \cdot \underline{\underline{I}})=0$ compute the eigenvalues $\omega_{j}, j=0,1, \ldots, N$
v) Set the $\boldsymbol{N}+\boldsymbol{1}$ eigenvalue problems $\underline{V_{j}} \cdot \underline{\underline{A}}=\omega_{j} \cdot \underline{V_{j}} \quad j=0,1, \ldots, N$
vi) From $\underline{V_{j}} \cdot \underline{\underline{A}}=\omega_{j} \cdot \underline{V_{j}}$ compute the eigenvectors $\underline{V_{j}}, j=0,1, \ldots, N$

Eigenvalues of a Stocastic Matrix

- A is a stocastic matrix
- The Markov process is regular and Ergodic

$$
\omega_{0}=1 \text { and }\left|\omega_{j}\right|<1, j=1,2, \ldots, N
$$

Solution to the fundamental equation (2)

The eigenvectors \underline{V}_{j} span the $(N+1)$-dimensional space and can be used as a basis to write any $(N+1)$-dimensional vector as a linear combination of them

$$
\underline{C}=\sum_{j=0}^{N} c_{j} \cdot \underline{V_{j}} \quad \text { AND } \quad \underline{P}(n)=\sum_{j=0}^{N} \alpha_{j} \cdot \underline{V_{j}}
$$

WE NEED TO FIND THE COEFFICIENTS α_{j} AND $c_{j}, j=0,1, \ldots, N$

Solution to the fundamental equation (3)

FIND THE COEFFICIENTS $\quad c_{j}, j=0,1, \ldots, N \quad$ FOR $\quad \underline{C}=\sum_{j=0}^{N} c_{j} \cdot \underline{V_{j}}$

SOLVE THE ASSOCIATED ADJOINT EIGENVALUE PROBLEM

i) Set the adjoint eigenvalue problem

$$
\underline{V}^{+} \cdot \underline{\underline{A}}^{+}=\omega^{+} \cdot \underline{V}^{+}
$$

ii) Since for real valued matrices $\underline{\underline{A}}^{+}=\underline{\underline{A}}^{T}$ then:

$$
\underline{V}^{+} \cdot \underline{\underline{A}}^{+}=\omega^{+} \cdot \underline{V}^{+} \Longleftrightarrow \underline{V}^{+} \cdot \underline{\underline{A}}^{T}=\omega^{+} \cdot \underline{V}^{+}
$$

iii) Since the eigenvalues $\omega_{j}^{+}, j=0,1, \ldots, N$ depend only on $\operatorname{det}\left(\underline{\underline{A^{T}}}\right)=\operatorname{det}(\underline{\underline{A}})$

$$
\Rightarrow \omega_{j}^{+}=\omega_{j}, j=0,1, \ldots, N
$$

Solution to the fundamental equation (4)

iv) From $\underline{V}_{j}^{+} \cdot \underline{\underline{A^{+}}}=\omega_{j} \cdot \underline{V}_{j}^{+}, j=0,1, \ldots, N$ compute the adjoint eigenvectors

$$
\underline{V}_{j}^{+}, j=0,1, \ldots, N
$$

v) Adjoint problem

$$
\Rightarrow\left\langle\underline{V_{j}^{+}}, \underline{V_{i}}\right\rangle \equiv \underline{V_{j}^{+}} \cdot \underline{V_{i}^{T}}=\left\{\begin{array}{l}
0 \text { if } i \neq j \\
\text { kotherwise }
\end{array}\right.
$$

Solution of the fundamental equation (4)

iv) From $\underline{V}_{j}^{+} \cdot \underline{\underline{A}}^{+}=\omega_{j} \cdot \underline{V}_{j}^{+}, j=0,1, \ldots, N$ compute the adjoint eigenvectors

$$
\underline{V}_{j}^{+}, j=0,1, \ldots, N
$$

v) By definition of the adjoint problem and since \underline{V}_{j}^{+}and \underline{V}_{j} are orthogonal

$$
\Rightarrow\left\langle\underline{V_{j}^{+}}, \underline{V_{i}}\right\rangle \equiv \underline{V_{j}^{+}} \cdot \underline{V_{i}^{T}}=\left\{\begin{array}{l}
0 \text { if } i \neq j \\
\text { kotherwise }
\end{array}\right.
$$

vi) Multiply the left-hand sides of

$$
\underline{C}=\sum_{i=0}^{N} c_{i} \underline{V}_{i} \text { by } \underline{V}_{j}^{+}
$$

$$
\left\langle\underline{V}_{j}^{+}, \underline{C}\right\rangle=\sum_{i=0}^{N} c_{i}\left\langle\underline{V}_{j}^{+}, \underline{V}_{i}\right\rangle=c_{j}\left\langle\underline{V}_{j}^{+}, \underline{V}_{j}\right\rangle \rightarrow c_{j}=\frac{\left\langle\underline{V}_{j}^{+}, \underline{C}\right\rangle}{\left\langle\underline{V}_{j}^{+}, \underline{V}_{j}\right\rangle}
$$

Solution to the fundamental equation (5)

FIND THE COEFFICIENTS $\quad \alpha_{j}, j=0,1, \ldots, N \quad$ FOR $\quad \underline{P}(n)=\sum_{j=0}^{N} \alpha_{j} \cdot \underline{V_{j}}$
USE $\underline{P}(n)=\sum_{j=0}^{N} \alpha_{j} \cdot \underline{V_{j}}, \quad \underline{C}=\sum_{j=0}^{N} c_{j} \cdot \underline{V_{j}} \quad$ AND $\quad \underline{P}(n)=\underline{C} \underline{A}^{n}$

Solution to the fundamental equation (5)

FIND THE COEFFICIENTS $\quad \alpha_{j}, j=0,1, \ldots, N \quad$ FOR $\quad \underline{P}(n)=\sum_{j=0} \alpha_{j} \cdot V_{j}$

$$
\text { USE } \underline{P}(n)=\sum_{j=0}^{N} \alpha_{j} \cdot \underline{V_{j}}, \quad \underline{C}=\sum_{j=0}^{N} c_{j} \cdot \underline{V_{j}} \quad \text { AND } \quad \underline{P}(n)=\underline{C} \underline{A}^{n}
$$

i) Substitute $\quad \underline{C}=\sum_{j=0}^{N} c_{j} \cdot \underline{V_{j}}$ into $\underline{P}(n)=\underline{C} \underline{\underline{A}}^{n}$ to obtain $P(n)=\left(\sum_{j=0}^{N} c_{j} \underline{V}_{j}\right) \cdot \underline{\underline{A}}^{n}$
ii) Set $\quad \underline{P}(n)=\sum_{j=0}^{N} \alpha_{j} \cdot \underline{V}_{j}=\underline{C} \cdot \underline{\underline{A}}^{n}=\left(\sum_{j=0}^{N} c_{j} \underline{V}_{j}\right) \cdot \underline{\underline{A}}^{n}$

Solution to the fundamental equation (6)

Since

$$
\underline{\underline{V_{j}}} \cdot \underline{=A}=\omega_{j} \cdot \underline{V_{j}} \text { then } \underline{V_{j}} \cdot \underline{\underline{A}}=\omega_{j} \cdot \omega_{j} \cdot \underline{V_{j}}=\omega_{j}^{2} \cdot V_{j}
$$

... (proceeding in the same recursive way)

$$
\underline{V_{j}} \cdot \underline{\underline{A^{n}}}=\omega_{j}^{n} \cdot \underline{V_{j}}
$$

iv) Substitute $\quad \underline{V_{j}} \cdot \underline{\underline{A}}^{n}=\omega_{j}^{n} \cdot \underline{V_{j}}$ into $\underline{P}(n)=\sum_{j=0}^{N} \alpha_{j} \cdot \underline{V_{j}}=\underline{C} \cdot \underline{\underline{A}}^{n}=\sum_{j=0}^{N} c_{j} \cdot \underline{V}_{j} \underline{\underline{A}}^{n}$

$$
\begin{aligned}
\sum_{j=0}^{N} \alpha_{j} \cdot \underline{V_{j}}=\sum_{j=0}^{N} c_{j} \cdot \omega_{j}^{n} \cdot \underline{V_{j}} \\
\alpha_{j}=c_{j} \cdot \omega_{j}^{n}
\end{aligned}
$$

Exercise 1: wet and dry days in a town

- Stochastic process of raining in a town (transitions between wet and dry days)

DISCRETE STATES

State 0: dry day
State 1: wet day
DISCRETE TIME
Time step $=1$ day

TRANSITION MATRIX
dry wet
$\underline{=}=\begin{aligned} & \text { dry } \\ & \text { wet }\end{aligned}\left(\begin{array}{ll}0.8 & 0.2 \\ 0.5 & 0.5\end{array}\right)$

Today the weather is dry

You are required to:

1) Estimate the probability that it will be dry \boldsymbol{n} days from now?

Some Definitions

Quantity of Interest

Steady State Probabilities

Is it possible to make long-term predictions ($n \rightarrow+\infty$) of a Markov process?

It is possible to show that if the Markov process is regular then:

$$
\underset{n \rightarrow+\infty}{\exists \lim _{P}^{P}}(n)=\Pi
$$

Steady State Probabilities

- Steady state probabilities $\boldsymbol{\pi}_{\boldsymbol{j}}$: probability of the system being in state j asymptotically
- TWO ALTERNATIVE APPROACHES:

1) Since $\quad \omega_{0}=1$ and $\left|\omega_{j}\right|<1, j=1,2, \ldots, N$

AT STEADY STATE: $\lim _{n \rightarrow \infty} \underline{P}(n)=\lim _{n \rightarrow \infty} \sum_{j=0}^{N} \underline{\alpha_{j}} \cdot \underline{V_{j}}=\lim _{n \rightarrow \infty} \sum_{j=0}^{N} \sqrt[c_{j}]{ } \cdot \omega_{j}^{n} \cdot \underline{V_{j}}=c_{0} \underline{V_{0}}=\underline{\Pi}$

Steady state probabilities

- Steady state probabilities $\boldsymbol{\pi}_{\boldsymbol{j}}$: probability of the system being in state j asymptotically
- TWO ALTERNATIVE APPROACHES:

1) Since $\omega_{0}=1$ and $\left|\omega_{j}\right|<1, j=1,2, \ldots, N$

AT STEADY STATE: $\lim _{n \rightarrow \infty} \underline{P}(n)=\lim _{n \rightarrow \infty} \sum_{j=0}^{N} \alpha_{j} \cdot \underline{V_{j}}=\lim _{n \rightarrow \infty} \sum_{j=0}^{N} c_{j} \cdot \omega_{j}^{n} \cdot \underline{V_{j}}=c_{0} \underline{V_{0}}=\underline{\Pi}$
2) Use the recursive equation $\underline{P}(n)=\underline{P}(n-1) \cdot \underline{\underline{A}}$

AT STEADY STATE: $\underline{P}(n)=\underline{P}(n-1)=\underline{\Pi}$
SOLVE $\underline{\Pi}=\underline{\Pi} \cdot \underline{\underline{A}}$ subject to $\sum_{j=0}^{N} \Pi_{j}=1$

Exercise 1: wet and dry days in a town (continue)

$$
\stackrel{A}{=}=\begin{gathered}
\text { dry } \\
\text { dry } \\
\text { wet }
\end{gathered}\left(\begin{array}{ll}
0.8 & 0.2 \\
0.5 & 0.5
\end{array}\right) \quad \underline{C}=\left[\begin{array}{ll}
1 & 0
\end{array}\right]
$$

- Question: what is the probability that one year from now the day will be dry?

Use the approximation based on the recursive equation

First Passage Probabilities (1)

- FIRST PASSAGE PROBABILITY AFTER \boldsymbol{n} TIME STEPS:

Probability that the system arrives for the first time in state j after \boldsymbol{n} steps, given that it was in state i at the initial time 0

$$
\begin{gathered}
f_{i j}(n)=P[X(n)=j \text { for the firsttime } \mid X(0)=i] \\
f_{i j}(n)=P[X(n)=j, X(m) \neq j, 0<m<n \mid X(0)=i]
\end{gathered}
$$

NOTICE:

$$
f_{i j}(n) \neq p_{i j}(n)
$$

$p_{i j}(n)=$ probability that the system reaches state j after \boldsymbol{n} steps starting from state i, but not necessarily for the first time

First Passage Probabilities: Exercise 3

Compute for the markov process in the Figure below:

- $f_{11}(1)$
- $f_{11}(n)$
- $f_{12}(n)$

EXAMPLE

$f_{11}(1)=p_{11}$
probability of going from state 1 to state 1 in 1 step for the first time
$f_{11}(n)=p_{12} \cdot p_{22}^{n-2} \cdot p_{21}$
probability that the system, starting from state 1 , will return to the same state 1 for the first time after n steps: this is achieved by jumping in state 2 at the first step $\left(p_{12}\right)$, remaining in state 2 during the successive $n-2$ steps (p_{22}^{n-2}) and moving back in the initial state 1 at the n-th step $\left(p_{21}\right)$.
$f_{12}(n)=p_{11}^{n-1} \cdot p_{12}$
probability that the system will arrive for the first time in state 2 after n steps; this is equal to the probability of remaining in state 1 for $n-1$ steps (p_{11}^{n-1}) and then jumping in state 2 , at the final step (p_{12})

First Passage Probabilities (4)

- RELATIONSHIP WITH TRANSITION PROBABILITIES

$$
f_{i j}(1)=p_{i j}(1)=p_{i j}
$$

$$
f_{i j}(2)=p_{i j}(2)-f_{i j}(1) \cdot p_{i j}
$$

Probability that the system reaches state j
at step 2 , given that it was in state i at step 0

$$
f_{i j}(3)=p_{i j}(3)-f_{i j}(1) \cdot p_{j j}(2)-f_{i j}(2) \cdot p_{j j}
$$

$$
f_{i j}(k)=p_{i j}(k)-\sum_{l=1}^{k-1} f_{i j}(k-l) p_{j j}(l) \quad \text { (Renewal Equation) }
$$

Exercise 1: wet and dry days in a town (Group Work -Part

 III)$$
\stackrel{A}{=}=\begin{gathered}
\text { dry } \\
\text { dry } y \text { wet } \\
\text { wet }
\end{gathered}\left(\begin{array}{ll}
0.8 & 0.2 \\
0.5 & 0.5
\end{array}\right) \quad \underline{C}=\left[\begin{array}{ll}
1 & 0
\end{array}\right]
$$

- Question: if today is dry, what is the probability that

1) the first wet day will be Thursday?
2) Wednesday will be wet?
3) The first wet day will be within Thursday?

Recurrent, Transient and Absorbing States (1)

DEFINITIONS:

- First passage probability that the system goes to state j within \boldsymbol{m} steps given that it was in i at time 0 :
$q_{i j}(m)=\sum_{n=1}^{m} f_{i j}(n) \begin{gathered}\text { sum of the probabilities of the mutually exclusive events of } \\ \text { reaching } j \text { for the first time after } n=1,2,3, \ldots, m \text { steps }\end{gathered}$
- Probability that the system eventually reaches state j from state i :

$$
q_{i j}(\infty)=\lim _{m \rightarrow \infty} q_{i j}(m)
$$

- Probability that the system eventually returns to the initial state:

$$
f_{i i}=q_{i i}(\infty)
$$

Recurrent, transient and absorbing states (2)

- State i is recurrent if the system starting at such state will surely return to it (sooner or later), i.e., in finite time:

$$
f_{i i}=q_{i i}(\infty)=1
$$

- For recurrent states $\Pi_{i} \neq 0$

Recurrent, transient and absorbing states (2)

- State i is recurrent if the system starting at such state will surely return to it sooner or later (i.e., in finite time):

$$
f_{i i}=q_{i i}(\infty)=1
$$

- For recurrent states $\Pi_{i} \neq 0$
- State i is transient if the system starting at such state has a finite probability of never returning to it:
$f_{i i}=q_{i i}(\infty)<1$
- For these states, at steady state $\Pi_{i}=0$

> we cannot have a finite Markov process in which all states are transients because eventually it will leave them and somewhere it must go at steady state

- State i is absorbing if the system cannot leave it once it enters: $p_{i i}=1$

Exercise 2

Classify the states of the following Markov Chain

Average Occupation Time of a State

$S_{i}=$ number of consecutive time steps the system remains in state i

$$
\boldsymbol{E}\left[\boldsymbol{S}_{i}\right]=\boldsymbol{l}_{\boldsymbol{i}}=\text { Average occupation time of state } i
$$

$=$
average number of time steps before the system exits state i

- Recalling that:
$p_{i i}=$ probability that the system "moves to" i in one time step, given that it was in i
$1-p_{i i}=$ probability that the system exits i in one time step, given that it was in i

$$
\begin{aligned}
& \mathrm{P}\left(S_{i}=n\right)=p_{i i}^{n}\left(1-p_{i i}\right) \\
& S_{i} \sim{\operatorname{Geom}\left(1-p_{i i}\right)}^{\boldsymbol{l}_{\boldsymbol{i}}=\boldsymbol{E}\left[\boldsymbol{S}_{\boldsymbol{i}}\right]=\frac{1}{1-p_{i i}}}
\end{aligned}
$$

Univariate Discrete Distributions, Geometric Distribution

$p=\mathrm{P}\{$ Failure $\} \quad$ FAILURE $=$ Exit from the STATE; $p=1-p_{i i}$
$T=$ trail of the first experiment whose outcome is "failure" (or number of trials
between two successive occurrences of failure);
$S_{i}=$ number of consecutive time steps the system remains in state $i \rightarrow S_{i}=T-1$

The probability mass function:

$$
\begin{array}{cc}
g(t ; p)=(1-p)^{t-1} p & g\left(S_{i}, 1-p_{i i}\right)=p_{i i}\left(1-p_{i i}\right)^{S_{i}} \\
t=1,2, \ldots & S_{i}=0,1, \ldots
\end{array}
$$

Expected value of T (or return period):

$$
E[T]=\sum_{t=1}^{\infty} t(1-p)^{t-1} p=p\left[1+2(1-p)+3(1-p)^{2}+\ldots\right]=\frac{p}{[1-(1-p)]^{2}}=\frac{1}{p}
$$

$$
\boldsymbol{E}\left[\boldsymbol{S}_{i}\right]=\frac{1}{1-p_{i i}}
$$

