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Markov Reliability and Availability Analysis
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General Framework

SYSTEM

r ——————— r _______ r ———————
| — Faﬂed ......... I | Fld ......... | P — I
: : alle :
| ol s , | e Failed |
IE Operating | IE Operating I I Operatlng """ |
s PP I Bl I
| I: R T T T,
| ; Hot standby : i Degraded  : I : Hot standby @ |
| Ly | : . I
.............................. [ ——— | I
| T Y T ———
. Degraded | 1 | Partilly faled: | b intenance | |
| s | s | i )
Component 1 Component 2 Component NV,
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General Framework

SYSTEM
| Failed I Failed : Random tranSItpn e Fld ........
| I oo atr=t, I e 2 .
IE Operating | IE Operating = I I Operatlng """ o
eeeresmresress e I | sommrerresreesrees I I
[ | I | ceeerermvmnnenens
| ; Hot standby : | i Degraded : I : : Hotstandby : |
I LN ] I I LN ] I .. I cee I
............................. || o, | Raflom transition :
E H . g, E
. Degraded  ViPartally fuledi@ | atr=1, b intenance | |
| s | J | b E )
Component 1 Component 2 Component NV,

System evolution = Stochastic process
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General Framework

SYSTEM
| Failed I Failed : Random tranSItpn e Fld ........
|:'.".'J'.".'J'.".'J'.".'J'.".' '''' . I il atr=t, | vt ; I
IE Operating | IE Operating = | I Operatlng """ |
eeeresmresress e I g oo 1 B |
| | I | seecrescmcncannnn
I ; Hot standby | ;i Degraded : I : : Hotstandby : |
I LN ] I I LN ) I . I cee I
............................. || o, | Raflom transition :
I H . e, :
. Degraded | Vipartally fiilediel | atr=1, b intenance | |
I J I J I --------------------------- -~ J
Component 1 Component 2 Component NV,

Under specified conditions:
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Markov Processes:

Basic Elements
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Markov Processes: the System States (1)

* The system can occupy a finite or countably infinite number N+1 of states

© ) ©

System functioning System in Sysjtem
cold standby under maintenance
System failed System degraded

Set of possible states U= {0, 1, 2, ..., N}

State-space of the random process
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Markov Processes: the System States (2)

* The States are:
o Mutually Exclusive: P(State =1NState = j): O, if i1=]
(the system can be only in one state at each time)
o Exhaustive: P(U) = P(UX, State = i) = Y., P(State = i) = 1
(the system must be in one state at all times

* Example:

Set of possible states U= {0, 1, 2, 3} U 1 2

P(U )= P(State = 0 State = 1U State = 2 U State = 3)
= P(State = 0)+ P(State =1)+ P(State = 2)+ P(State = 3)=1
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Markov Processes: Transitions between states

9

* Transitions from one state to another occur stochastically (i.e., randomly
in time and in final transition state)

Random transition at time ¢ = ¢,

©

Random transition at time ¢ = ¢, > ¢,

@

Random transition at time ¢ = ¢; > ¢,
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Markov Processes: Mathematical Representation

10

 The system state in time can be described by an integer random
variable X(?)

X (t) = 5 > the system occupies the state labelled by number 5 at time ¢

* The stochastic process may be observed at:

* Discrete times - [DISCRETE-TIME DISCRETE-STATE MARKOV PROCESS

. IContinuously = CONTINUOUS-TIME DISCRETE-STATE MARKOV PROCESS

| 5 ¢
0 T

m
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Discrete-Time

Markov Processes
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The Conceptual Model: Discrete Observation Times

* The stochastic process 1s observed at discrete times

At2)=t,—t,  At(4)=t, —t, At(n)

— {—*—\ A W
L1 ___L__L_ o ___ I L_s5
0 ZL1 b t3 Iy e Ly L tee Tm
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The Conceptual Model: Discrete Observation Times

* The stochastic process 1s observed at discrete times
At2)=t,—t,  At(4)=t, —t,

——
L _1___L__ L ____ e e _ L_s ¢
0 g t, oty t T,

t =t +At(n)

* Hypotheses:

* The time interval A#(n) is small enough such that only one event
(i.e., stochastic transition) can occur within 1t

* For simplicity, A¢#(n) = At = constant

At 2At 3At nAt
L __L___L___L_______ l |
0 tq ty t3 t, T,
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The Conceptual Model: Mathematical Representation

* The random process of system transition in time 1s described by an
integer random variable X(-)

* X(n) := system state at time t,, = nAt
X(3) = 5: the system occupies state 5 at time t3
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The Conceptual Model: Objective

* The random process of system transition in time 1s described by an
integer random variable X(*)

* X(n) := system state at time t,, = nAt
* X(3) = 5: the system occupies state 5 at time t3

v

OBJECTIVE:
Compute the probability that the system is in a given state
at a given time, for all possible states and times

P[X(n)=j],n=12,..,N,, .. j=0,1,...,N

time?
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Objective:
P[X(n)=j],n=12,...,

]=0,1...,N

tlme’

—
What do we need?
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Objective:
P[X(n)=j],n=12,...,

]=0,1...,N

tlme’

—
What do we need?

Transition Probabilities!
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The Conceptual Model: the Transition Probabilities

* Transition probability: conditional probability that the system moves to
state j at time 7, given that it is in state 7 at current time 7, and given the
previous system history

Pl[X(n) =j|X(0) = x0,X(1) = x1,X(2) = x5, ..., X(M) = x,,, = i]
vji=01,.., N

N
e (x0) (1)) @ @

Lo L L Ll __--__ J____J ________ L_5
0 b t Ly T,

m

Present
Time
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The Conceptual Model: the Markov Assumption

In general, for stochastic processes:
 the probability of a transition to a future state depends on its entire life
history

Pl X(n) =j|X(0) = x0,X(1) = x1,X(2) = x5, ..., X(M) =x,,, = i]

In Markov Processes:
 the probability of a transition to a future state only depends on its present
state

P[X(n) = j|¥)===tigrrldn——ttprrtld==tbrree, Xy = Xy = ]

THE PROCESS HAS “NO MEMORY” /—\
state @ @

IS Y Y e
0 tl t2 tm e ty b Tm
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The Conceptual Model: the Markov Assumption - Notation

Pij(m;n)=P[X(n)=j|X(m) = i] n>m=>=0
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The Conceptual Model: Properties of the Transition Probabilities (1)

1. Transition probabilities p,(m, n) are larger than or equal to 0

pij(m, n)>0, n>m>0 i=0,1,2,....N,j=0,1,2, ... N
(definition of probability)

2. Transition probabilities must sum to 1

N
Zpij(m,n)zz pij(m,n)zl,n>m20 i=0,1,2,...,N
allj j=0
(the set of states is exhaustive)
=1 2 3
U z. Zplj(m,n):l,n>m20
0 3 j=0

Starting from i = 1, the system either remains ini =1 or
it goes somewhere else, i.e., toj=0or 2 or 3
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The Chapman-Kolmogorov Equation
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The conceptual model: properties of the transition probabilities (2)

3. p;(m,n) Zp.k m, r pk,(r N) i=0.1,2,...N.j=0,1,2,...N

p[X(n)=j, Z p[X(n)=j,X(r)=k,X(m)=i] (theorem of total probability)
! condltlonal probability
=2 pIX ()= J1X(r)=k, X (m)=i]P[X (r)=k. X (m)=i]
| Markov assumption
—Zp = jI X(r)=kJP[X(r)=k, X (m)=i]
p,;(m,n)=P[X(n)=j| X(m)=i]= P[X(P%x (J )X( ]) ] (conditional probability)
| formula above PIX (1) = k. X (m)=i]
—Zp[x J|X ) k] P[X(m):i]
! condltlonal probability

=S P[X(n)=j| X (r)=k]P[X (r)=k| X (m)=i]= Zpk, r,n)p;(m,r)

K
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The Conceptual Model: Stationary Transition Probabilities

Lo oo e o e oo de o Lo,
0 k m n=m-+k

* If the transition probability p(m, n) depends on the interval (¢, —z,) and
not on the individual times 7, and 7 , (transition probabilities are stationary)

T

* the Markov process is called “homogeneous in time”
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The Conceptual Model: Stationary Transition Probabilities- Notation

25

* If the transition probability p(m, n) depends on the interval (¢, —7,) and
not on the individual time ¢, then:

pij(m’n): pij(m,m+(m)= pij(m’m+k): P[X(m+k): J | X(m): i]

~P[X(K)= 1 X(0)=i]
= pi(k), k=0 i=0,1,2,..,N,j=0,1,2, ..., N
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The Chapman-Kolmogorov equation for homogeneous systems
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The Conceptual Model: Problem Setting

* We know:
= The one-step transition probabilities: P j (1) :.

(i=0,1,2,..,N,j=0,1,2, ..., N)

= The state probabilities at time n =0 (initial condition):

= P[X(0) =]

g

* Objective:
= Compute the probability that the system is in a given state j at a
given time t,, for all possible states and times

P[X(n)=j]= .n:1, 2,....Ny o j=0,4,...,N
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The Conceptual Model: Computation of the Unconditional

State Probabilities

| Th. of Total Probability

P.(n) = P[X(n) = J] ZP X(0) = i] - P[X(n) = j1X(0) = i]

N ! homogeneous process

= Z ¢i - pij(n)

=0
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Theorem of Total Probability (from Lecture 2)

» Let us consider a partition of the sample space £2 into n mutually
exclusive and exhaustive events. In terms of Boolean events:

E,NE; =0 Vi ] UE; =0

)=l

 Givenanyevent Ain £,

n
A=UAﬂE]
j=1

v
P(A) =¥7_, P(ANE;) =X}, P(A|E;)P(E))




The Conceptual Model: Computation of the Unconditional

State Probabilities

| Th. of Total Probability

P.(n) = P[X(n) = J] ZP X(0) = i] - P[X(n) = j1X(0) = i]

N ! homogeneous process

= Z ¢; - pij(n)

=0
BN
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Computation of the Unconditional State Probabilities at time 1

N
P(1) = PIX(1) =j1 = ) PLX(0) =il PX(1) = IX(0) = i
0

l=

_pOj_
N
= Z C; * pl] = [Co, v ) Gy CN] ’ pl]
=
PnNj |
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Unconditional State Probabilities: Matrix Notation

* Introduce the row vectors:

P(n) = [Py(n), Py (1), ..., Pi(n), Py(n probabilities of the system being in
P(n) = [Po(n), Py (n) (), Py(n)] state 0, 1, 2, ..., N at the n-th time step

P(0) =C = [co, 1, e Cjy s CN ] initial condition

POLITECNICO MILANO 1863



The Conceptual Model: Notation - the Transition Probability

Matrix

Properties: o dim (é)z (N +1)x(N +1)

i/j O 1 .. N e 0<p,<LVi je{012,..,N}

0 ( Poo Por - Pon A (all elements are probabilities)
é: 1 Po  Pu - Puw

N \ Pno Par -+ P Y,
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The Conceptual Model: Notation - the Transition Probability

Matrix

Properties: o dim (é)z (N +1)x(N +1)

i/j O 1 .. N e 0<p,<LVi je{012,..,N}
0 _ (all elements are probabilities)
~g
é - P1o P - Py only (N+1)xN elements need to be known
N
° -=11=0,12,...,.N
N \Pno Pnao-o Pan ) jzop”
(the set of states is exhaustive)

v

A is a Stochastic Matrix
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Computation of the Unconditional State Probabilities (2)

* At the second time step n = 2:

P.(2)=P[X(2)=]] y .
J | theorem of total probability + Markov assumption

N
= P[X(2)= j|X (1) =k]-P[X (1) =K]
k=0 | homogeneous process

= Zpk] P (1) = " Poj T
=0

=B,(1): Po; + P, (1)- i, + P, (1)- Py; +.o+ Py (1) pygs = [PLO), o, PL D, o, PLW] - | P
with j=0,1,2,...,N

| Pnj
'

P(2)=P(1)-A=(CA)A=CA’
FUNDAMENTAL EQUATION - =/= =

Proceeding in the same

OF THE HOMOGENEOUS ~—— :
DISCRETE-TIME DISCRETE-STATE recursive way...
MARKOV PROCESS P(n)— P(O)- A" —C. A"
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Problem Setting & Found Solution

* We know:

= The one-step transition probabilities:

* The initial condition ¢; = P[X(0) =]
*  Objective:

= Compute the probability that the system is in a given state j at a
given time t,,, for all possible states and times: P(n)

=  Solution:

P(n) =P(0)-A" =C- A"

FUNDAMENTAL EQUATION
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Multi-step Transition Probabilities: Interpretation

FUNDAMENTAL EQUATION |P(n)=P(0)-A"=C-A"

v
( poo(n) p01(n) -+ Pon (n)\
A — plO(n) pll(n) o Py (n) n-th step

= transition probability matrix

\pNO(n) le(n) pNN(n))
T
pij(n) P?79?
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Multi-step Transition Probabilities: Interpretation

FUNDAMENTAL EQUATION |P(n)=P(0)-A"=C-A"

v
( poo(n) p01(n) -+ Pon (n)\
A — plO(n) pll(n) o Py (n) n-th step

= transition probability matrix

\pNo(n) le(n) pNN(n))
v
pij(n) = P[X(n) = j|X(0) = i]

probability of arriving in state j after n steps
given that the initial state was i
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Multi-step transition probabilities (2)

EXAMPLE WITH N =2 STATES AND n =2 time steps

_(poo pmj (=0.17=0.1)
T l: b 7]: 9
Pro  Pu

13>

Pro  Prs Pio P/ \ P Pog® Pii Pro  Pio-Por+ Pis- Py

A2 ( Pos pmj [ Poo pmj _ (poo'poo"'pm' P10 Poo Pos + Pox -pnj
- Pio* Pog ™ Pi1-Pio P

WHAT IS THE “PHYSICAL” MEANING?
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Multi-step Transition Probabilities (3)

poo(z): Poo * Poo T Po1 " Pio

~~~~~~~~

p01(2): Poo - Por + Po1 - Pis

p;(n)=P[X(n)=j| X(0)=i] ,p;(n)is the sum of the probabilities of all trajectories with length n
which originate in state i and end in state j
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Exercise 1: wet and dry days in a town

* Stochastic process of raining in a town (transitions between wet and dry days)

DISCRETE STATES TRANSITION MATRIX
State 0: dry day dry wet
State 1: wet d

e e ey A= dry (08 0.2
DISCRETE TIME wet |05 05

Time step = 1 day

You are required to:

1) Draw the Markov diagram

2) Iftoday the weather is dry, what is the probability that it will be dry two days from
now?
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Open Problems

We provided an analytical framework for computing the state
probabilities

» Still open issues:

1. Estimate the transition matrix A = Problem of parameter
identification from data or expert knowledge

2. Solve for a generic time n, i.e. find P;(n) as a function of n,
without the need of multiplying n times the matrix A
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Solution to the fundamental
equation
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Ergodic Markov Process

A Markov process is called ergodic if it is possible to eventually get
from every state to every other state with positive probability

4= (050 03) 1= %)
Ergodic Non Ergodic

A Markov process 1s said to be regular if some power of the stochastic
matrix 4 has all positive entries (1.e. strictly greater than zero).

4=(1 o
PP,
) #essmm (1)
rpodio Maskov Chsine ErgOC/ic—Non Regular
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Solution to the Fundamental Equation (1)

{E(n)=E(0)é”
P(0)=C

SOLVE THE EIGENVALUE PROBLEM ASSOCIATED TO MATRIX A

i) Set the eigenvalue problem V-A=w-\V
ii) Write the homogeneous form ( A-w- L) =0
iii) Find non-trivial solutions by setting det ( A-w- L) =0
iv) From det ( A-o- L) =0 compute the eigenvalues o, j=0,1,...,N
v) Set the N+1 eigenvalue problems \i A=, \i ]=01..,N

vi) From V- -A=®, -V, compute the eigenvectors \ﬁ, 1=0,1..,N
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Eigenvalues of a Stocastic Matrix

* A 1s a stocastic matrix

* The Markov process is regular and Ergodic

—~————

wo=1land |w;| <1,j=12,...,N
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Solution to the fundamental equation (2)

e
N N
C= Z(;Cj \i AND P(n) =JZ_(;05]- \i
iz n
e

WE NEED TO FIND THE COEFFICIENTS &; AND C;,J=01..,N
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Solution to the fundamental equation (3)

N
FIND THE COEFFICIENTS  C;, j=0,1,..,N  FOR C=5c;-V,
j=0 T

SOLVE THE ASSOCIATED ADJOINT EIGENVALUE PROBLEM

i) Set the adjoint eigenvalue problem

VA= V"
ii) Since for real valued matrices A" = AT then:

\i+‘é+:a)+'\i+ ‘ \i+'éT :a)+-V+

iii) Since the eigenvalues a)j+, ]=01,...,N dependonlyon det(éT )= det(é)
™ o =0,j=01.,N
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Solution to the fundamental equation (4)

iv)] From VI.A" = W, \ij J=01...,N compute the adjoint eigenvectors

_J —

Vi, j=01..N

v) Adjoint problem
Oifi=]
k otherwise

‘ <VJ-+,Vi > EVJ-+ AvAl ={
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Solution of the fundamental equation (4)

iv) From V} AT = o, \ij J=01...,N compute the adjoint eigenvectors

Vi, j=01..N

+
v) By definition of the adjoint problem and since \ij and \ij

are orthogonal B <V >V :{0 if i+ ]

— | kotherwise
vi) Multiply the left-hand sides of ngci\ﬁ by \ij
Ny vic)
N V:,C
Vi) =Ne ViV )=¢, ViV, )sc =
< | > =0 < | (ort>hogona<llty)J J> <\ij’\ij>
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Solution to the fundamental equation (5)

. N
FIND THE COEFFICIENTS ¢, ] =0,1..,N  FOR P(n)=>a;-V,

=0

N
USE P(M=>a;-V; C=>¢c;-V; AND P(n)=CA"
i -
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Solution to the fundamental equation (5)

FIND THE cOEFFICIENTS @, ] =0,1,..,N  FOR P(M)=> a;-V,

USE P(n)= Za v, i V. anp  P(n)=CA’

j=0 j=0 —

N N
i) Substitute C=>c,-V, into P(n)=CA" to obtain P(n):£ZCj\ijj-An
=0 - j=0 -
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Solution to the fundamental equation (6)

13>

to obtai \L

iii) Multiply V;-A=®;-V; by in V- -§=w,-

2.
oY,

- @ \i then V, -éz =, t; "V,

1>

Since \L

(proceeding in the same recursive way)

MZ
| <
Il
Ie
1>
Il
[
O
<
1>

iv) Substitute VA" =] -V, i P
o j=0

j j '
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Exercise 1: wet and dry days in a town

* Stochastic process of raining in a town (transitions between wet and dry days)

DISCRETE STATES TRANSITION MATRIX
State 0: dry day dry wet
State 1: wet d

e e ey A= dry (08 0.2
DISCRETE TIME wet |05 05

Time step = 1 day

Today the weather is dry

You are required to:
1) Estimate the probability that it will be dry n days from now?
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Some Definitions
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Quantity of Interest
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Steady State Probabilities

Is it possible to make long-term predictions
(n = +0) of a Markov process?

Regular Markov Chai

Ergodic Markov Chains

JlimP(n) =11

n—»—4+oo —
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Steady State Probabilities

S8

* Steady state probabilities 7;: probability of the system being in state j asymptotically

* TWO ALTERNATIVE APPROACHES:
) Since @, =1and |e;| <1, j=12...,N

nN—o0 nN—oo

N N
AT STEADY STATE: limP(n)=lim>]e |-V, =lim)c,-of-V, =c,V, =1
j=0 j —
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Steady state probabilities

S9

* Steady state probabilities 7;: probability of the system being in state j asymptotically

* TWO ALTERNATIVE APPROACHES:
) Since @, =1and |e;| <1, j=12...,N

N
AT STEADY STATE: limP(n )—Ilmz,a,- V; =limY e, - o]V, =cV, =1

nN—o0 n—oo 4

2) Use the recursive equation E(n) = P(n —1)-

A
AT STEADY STATE: P(n)=P(n-1)=1I

1

soLvE 11 =11- A subject to ZH =1

j=0
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Exercise 1: wet and dry days in a town (continue)

dry wet
A=dry (08 0.2 C=[l 0]
wet (05 05)

* Question: what is the probability that one year from now the day will be dry?
O Use the approximation based on the recursive equation
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First Passage Probabilities (1)

* FIRST PASSAGE PROBABILITY AFTER n TIME STEPS:

Probability that the system arrives for the first time in state j
after n steps, given that it was in state i at the initial time 0O

T
f,()=P[ X(n)=j forthe firsttime| X (0)=1]
f.(n)=P|X(n)=j,X(m)# j,0<m<n| X(0)=1]
T
NOTICE:
fij(n) # pii(n)

Di; (n) =probability that the system reaches state j
after n steps starting from state i, but not necessarily for the first time
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First Passage Probabilities: Exercise 3

Compute for the markov process in the Figure below:

© f11(1)
© fi1(n)
© fi12(n)
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i

EXAMPLE - \

2y < P

R
fu(l):pn

probability of going from state 1 to state 1 in 1 step for the first time

n—2
Ju (”)zplz "Pn Py
probability that the system, starting from state 1, will return to the same state 1 for the first time
after n steps: this is achieved by jumping in state 2 at the first step (p;,), remaining in state 2

during the successive n-2 steps ( p;‘f ) and moving back in the initial state 1 at the n-th step
(P21)-

S (”) = plnl_l " P
probability that the system will arrive for the first time in state 2 after n steps; this is equal to

the probability of remaining in state 1 for n-1 steps ( pﬂ_l ) and then jumping in state 2, at the
final step ( p,, )

POLITECNICO MILANO 1863




First Passage Probabilities (4)

« RELATIONSHIP WITH TRANSITION PROBABILITIES

pl i pl i
Probability that the system Probability that the system reaches state ;j for the
reaches state j first time at step 1 (starting from state i at 0) and
at step 2, given that it was in state i at that it remains in j at the successive step
step 0

fij(3): pij(3)_ fij(l)’ pjj(z)_ fij(z)‘ Pj;

k-1

fij (k) = pij (k)— fij (k — |)|Z)jj (l) (Renewal Equation)
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Exercise 1: wet and dry days in a town (Group Work —Part

I1I)
dry wet
A=dry (08 0.2 C=[l 0]
wet (05 05)

* Question: if today is dry, what is the probability that
1) the first wet day will be Thursday?
2) Wednesday will be wet?
3) The first wet day will be within Thursday?
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Recurrent, Transient and Absorbing States (1)

DEFINITIONS:

* First passage probability that the system goes to state j within m steps given that it
was in i at time 0O:

q,, Z f,J = sum of the probabilities of the mutually exclusive events of
reaching j for the first time aftern =1, 2, 3, ..., m steps

* Probability that the system eventually reaches state j from state i:

() = lim g; (m)

* Probability that the system eventually returns to the initial state:

fi =0 (OO)
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Recurrent, transient and absorbing states (2)

« State i 1s recurrent if the system starting at such state will surely return to it (sooner or
later), 1.e., in finite time:

fi = d; (OO) =1

» For recurrent states Il; =0
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Recurrent, transient and absorbing states (2)

« State i 1s recurrent if the system starting at such state will surely return to it sooner or
later (i.e., in finite time):

fi =a; (OO) =1
» For recurrent states Il; =0

« State i 1s transient if the system starting at such state has a finite probability of never
returning to it:

fi =0y (OO) <1 % @
» For these states, at steady state I, =0

v

we cannot have a finite Markov process in which all states are
transients because eventually it will leave them and somewhere it
must go at steady state

» State i is absorbing if the system cannot leave it once it enters: pii =1
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Exercise 2

Classify the states of the following Markov Chain
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Average Occupation Time of a State

S;= number of consecutive time steps the system remains in state i

E[S;] = ;= Average occupation time of state ;

average number of time steps before the system exits state i

* Recalling that:
p, = probability that the system “moves to” i in one time step, given that it was in i

1-p,; = probability that the system exits i in one time step, given that it was in i
v

P(S; =n) =pji(1 —pi)
v
Si~Ge0m(1 — pii)

1
l; = E[S;] = .
i
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Univariate Discrete Distributions, Geometric Distribution

p = P{Failure} FAILURE=EXxit from the STATE; p =1 — p;;

T= trail of the first experiment whose outcome is “failure” (or number of trials

between two successive occurrences of failure);
v
The probability mass function:

g(t; p)=1-p)'p

S;= number of consecutive time steps the
system remains in statei 2 S5; =T -1

9,1 —py) =p;(1 —py)Si

t=1, 2,... S$;=0,1,...
v
Expected value of T (or return period):
o0 . p 1
E[T]=> t-p)"p=pL+2(1-p)+31-p)* +..]= ==
; [1-2-p)]° p
1
ElSd = 1—pii

Piero Baraldi
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