
Firma convenzione 

Politecnico di Milano e Veneranda Fabbrica 

del Duomo di Milano

Aula Magna – Rettorato

Mercoledì 27 maggio 2015

Markov Reliability and Availability Analysis



General Framework

2



3

General Framework

SYSTEM

Component 1 Component 2 Component Nc

Failed

Operating

Hot standby

Degraded

…

Failed

Operating

Degraded

Partially failed

…

Failed

Operating

Hot standby

Maintenance

…



4

General Framework

SYSTEM

Component 1 Component 2 Component Nc

Failed

Operating

Hot standby

Degraded

…

Failed

Operating

Degraded

Partially failed

…

Failed

Operating

Hot standby

Maintenance

…
Random transition

at t = t1

Random transition

at t = t2

System evolution = Stochastic process



5

General Framework
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MARKOV PROCESS

Under specified conditions:

System evolution = Stochastic process

=



Markov Processes:

Basic Elements
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Markov Processes: the System States (1) 

7

• The system can occupy a finite or countably infinite number N+1 of states

0

1

2

j
… …

3

System functioning

System failed

System

under maintenance
System in 

cold standby

System degraded

N

Set of possible states U = {0, 1, 2, …, N}

= 

State-space of the random process 
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• The States are:

o Mutually Exclusive:

(the system can be only in one state at each time)

o Exhaustive: 𝑃 𝑈 = 𝑃 𝑖=1ڂ
𝑁 State = 𝑖 = σ𝑖=1

𝑁 𝑃 State = 𝑖 = 1

(the system must be in one state at all times

• Example:

Set of possible states U = {0, 1, 2, 3}

0

1 2

3

U

( ) jijiP === if,0StateState

Markov Processes: the System States (2)

( ) ( )

( ) ( ) ( ) ( ) 13State2State1State0State

3State2State1State0State

==+=+=+==

=====

PPPP

PUP
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• Transitions from one state to another occur stochastically (i.e., randomly

in time and in final transition state)

0

1

2

j
… …

3

N

Random transition at time t = t1

Random transition at time t = t2 > t1

Random transition at time t = t3 > t2

Markov Processes: Transitions between states



10

• The system state in time can be described by an integer random

variable X(t)

• The stochastic process may be observed at:

• Discrete times

• Continuously

( ) 5=tX → the system occupies the state labelled by number 5 at time t

t10 t2 tn Tm

0 Tm

t

t

→ DISCRETE-TIME DISCRETE-STATE MARKOV PROCESS

→ CONTINUOUS-TIME DISCRETE-STATE MARKOV PROCESS

Markov Processes: Mathematical Representation



Discrete-Time 

Markov Processes

11



The Conceptual Model: Discrete Observation Times
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• The stochastic process is observed at discrete times

t10 t2 t3 t4 tn Tm

t

𝑡𝑛 = 𝑡𝑛−1 + Δ𝑡 𝑛

( ) 122 ttt −= ( ) 344 ttt −=

… …tn-1

Δ𝑡 𝑛



• The stochastic process is observed at discrete times

• Hypotheses:

• The time interval Δt(n) is small enough such that only one event 

(i.e., stochastic transition) can occur within it

• For simplicity, Δt(n) = Δt = constant

The Conceptual Model: Discrete Observation Times

13

t10 t2 t3 t4 tn Tm

t

( )nttt nn += −1

( ) 122 ttt −= ( ) 344 ttt −=

… …

0 tn Tm
𝑡1 𝑡2

∆𝑡 2∆𝑡

𝑡3

3∆𝑡 𝑛∆𝑡
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• The random process of system transition in time is described by an 

integer random variable X(∙)

• 𝑋 𝑛 ≔ system state at time 𝑡𝑛 = 𝑛Δ𝑡
• 𝑋 3 = 5: the system occupies state 5 at time 𝑡3

The Conceptual Model: Mathematical Representation
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• The random process of system transition in time is described by an 

integer random variable X(∙)

• 𝑋 𝑛 ≔ system state at time 𝑡𝑛 = 𝑛Δ𝑡
• 𝑋 3 = 5: the system occupies state 5 at time 𝑡3

OBJECTIVE:

Compute the probability that the system is in a given state

at a given time, for all possible states and times

( )  NjNnjnXP time ...,,1,0,...,,2,1, ===

The Conceptual Model: Objective
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( )  NjNnjnXP time ...,,1,0,...,,2,1, ===

What do we need?

Objective:
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( )  NjNnjnXP time ...,,1,0,...,,2,1, ===

What do we need?

Objective:

Transition Probabilities!
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• Transition probability: conditional probability that the system moves to 

state j at time tn given that it is in state i at current time tm and given the 

previous system history

The Conceptual Model: the Transition Probabilities

𝑃 𝑋 𝑛 = 𝑗|𝑋 0 = 𝑥0, 𝑋 1 = 𝑥1, 𝑋 2 = 𝑥2, … , 𝑋(𝑚)  = 𝑥𝑚 = 𝑖
∀𝑗 = 0,1, … , 𝑁

i j

tntmt10 t2
Tm

t
… …

𝑥1𝑥0 𝑥2state

Present 
Time



𝑃 𝑋 𝑛 = 𝑗|𝑋 0 = 𝑥0, 𝑋 1 = 𝑥1, 𝑋 2 = 𝑥2, … , 𝑋𝑚 = 𝑥𝑚 = 𝑖

The Conceptual Model: the Markov Assumption

19

In general, for stochastic processes: 

• the probability of a transition to a future state depends on its entire life 

history

In Markov Processes: 

• the probability of a transition to a future state only depends on its present 

state

=

THE PROCESS HAS “NO MEMORY”

𝑃 𝑋 𝑛 = 𝑗|𝑋 0 = 𝑥0, 𝑋 1 = 𝑥1, 𝑋 2 = 𝑥2, … , 𝑋(𝑚)  = 𝑥𝑚 = 𝑖
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The Conceptual Model: the Markov Assumption - Notation

𝑝𝑖𝑗 𝑚, 𝑛 = 𝑃 𝑋 𝑛 = 𝑗|𝑋(𝑚)  = 𝑖  𝑛 > 𝑚 ≥ 0
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1. Transition probabilities pij(m, n) are larger than or equal to 0

( ) 0,0,  mnnmpij

2. Transition probabilities must sum to 1

( ) ( ) 0,1,,
0

==
=

mnnmpnmp
N

j

ij

jall

ij

(definition of probability)

(the set of states is exhaustive)

0

i=1 2

3

U

Starting from i = 1, the system either remains in i = 1 or 

it goes somewhere else, i.e., to j = 0 or 2 or 3

( ) 0,1,
3

0

1 =
=

mnnmp
j

j

i = 0,1, 2, …, N, j = 0, 1, 2, …, N

i = 0,1, 2, …, N

The Conceptual Model: Properties of the Transition Probabilities (1)



The Chapman-Kolmogorov Equation 
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The conceptual model: properties of the transition probabilities (2)

3. ( ) ( ) ( )=
k

kjikij nrprmpnmp ,,,

( ) ( )  ( ) ( ) ( )  ======
k

imXkrXjnXpimXjnXp ,,,

( ) ( ) ( )  ( ) ( )  ======
k

imXkrXPimXkrXjnXp ,,|

( ) ( )  ( ) ( )  =====
k

imXkrXPkrXjnXp ,|

( ) ( ) ( ) 
( ) ( ) 

( ) imXP

imXjnXP
imXjnXPnmpij

=

==
====

,
|,

( ) ( ) 
( ) ( ) 

( ) 
=

==
===

k imXP

imXkrXP
krXjnXp

,
|

( ) ( )  ( ) ( )  ( ) ( ) ======
k

ikkj

k

rmpnrpimXkrXPkrXjnXP ,,||

(theorem of total probability)

↓ conditional probability

↓ Markov assumption

(conditional probability)

↓ formula above

↓ conditional probability

i = 0,1, 2, …, N, j = 0, 1, 2, …, N



The Conceptual Model: Stationary Transition Probabilities
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• If the transition probability pij(m, n) depends on the interval (tn – tm) and 

not on the individual times tm and tn, (transition probabilities are stationary)

• the Markov process is called “homogeneous in time”

i j

mk0 n=m+k
t

i j

pij(0,k) pij(m,n)



The Conceptual Model: Stationary Transition Probabilities- Notation

25

• If the transition probability pij(m, n) depends on the interval (tn – tm) and 

not on the individual time tm then:

( ) ( )( ) ( ) ( ) ( ) 

( ) ( ) 
( ) 0,

0|

|,,,

=

===

==+=+=−+=

kkp

iXjkXP

imXjkmXPkmmpmnmmpnmp

ij

ijijij

k time steps

i j

mk0 n=m+k
t

i jpij(k) pij(k)

i = 0,1, 2, …, N, j = 0, 1, 2, …, N



The Chapman-Kolmogorov equation for homogeneous systems

26



The Conceptual Model: Problem Setting

• We know:

▪ The one-step transition probabilities:

▪ The state probabilities at time 𝑛 =0 (initial condition):

𝑐𝑗 = 𝑃 𝑋 0 = 𝑗

• Objective: 

▪ Compute the probability that the system is in a given state j at a 

given time 𝑡𝑛, for all possible states and times

27

(i = 0,1, 2, …, N, j = 0, 1, 2, …, N)

( ) ijij pp =1

( )  ( ) NjNnnPjnXP timej ...,,1,0,...,,2,1, ====



𝑃𝑗 𝑛 = 𝑃 𝑋 𝑛 = 𝑗 = ෍

𝑖=0

𝑁

𝑃[𝑋 0 = 𝑖] ∙ 𝑃[𝑋 𝑛 = 𝑗|𝑋 0 = 𝑖]

= ෍

𝑖=0

𝑁

𝑐𝑖 ∙ 𝑝𝑖𝑗(𝑛)

28

The Conceptual Model: Computation of the Unconditional

State Probabilities

↓ Th. of Total Probability

↓ homogeneous process



Theorem of Total Probability (from Lecture 2) 

• Let us consider a partition of the sample space  into n mutually 
exclusive and exhaustive events. In terms of Boolean events:

• Given any event A in , 

𝐴 = ራ

𝑗=1

𝑛

𝐴 ∩ 𝐸𝑗

𝑃 𝐴 = σ𝑗=1
𝑛 𝑃 𝐴 ∩ 𝐸𝑗 = σ𝑗=1

𝑛 𝑃 𝐴|𝐸𝑗 𝑃(𝐸𝑗)


n

j

jji EjiEE
1

0
=

==



𝐸1 𝐸2 𝐸3

𝐸4 𝐸5 𝐸6

A



𝑃𝑗 𝑛 = 𝑃 𝑋 𝑛 = 𝑗 = ෍

𝑖=0

𝑁

𝑃[𝑋 0 = 𝑖] ∙ 𝑃[𝑋 𝑛 = 𝑗|𝑋 0 = 𝑖]

= ෍

𝑖=0

𝑁

𝑐𝑖 ∙ 𝑝𝑖𝑗(𝑛)

30

The Conceptual Model: Computation of the Unconditional

State Probabilities

↓ Th. of Total Probability

… from Chapman-Kolmogorov equation using 𝑝𝑖𝑗

↓ homogeneous process



𝑃𝑗 1 = 𝑃 𝑋 1 = 𝑗 = ෍

𝑖=0

𝑁

𝑃[𝑋 0 = 𝑖] ∙ 𝑃[𝑋 1 = 𝑗|𝑋 0 = 𝑖]

= ෍

𝑖=0

𝑁

𝑐𝑖 ∙ 𝑝𝑖𝑗 = 𝑐0, … , 𝑐𝑖 , … 𝑐𝑁 ∙

𝑝0𝑗

…
𝑝𝑖𝑗

…
𝑝𝑁𝑗

31

Computation of the Unconditional State Probabilities at time 1



Unconditional State Probabilities: Matrix Notation
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• Introduce the row vectors:

𝑃 𝑛 = 𝑃0 𝑛 , 𝑃1 𝑛 , … , 𝑃𝑖 𝑛 , 𝑃𝑁 𝑛

initial condition

probabilities of the system being in 

state 0, 1, 2, …, N at the n-th time step

𝑃 0 = 𝐶 = 𝑐0, 𝑐1, … , 𝑐𝑖 , … , 𝑐𝑁

𝑃𝑗 1 = ෍

𝑖=0

𝑁

𝑐𝑖 ∙ 𝑝𝑖𝑗 = 𝑐0, … , 𝑐𝑖 , … 𝑐𝑁 ∙

𝑝0𝑗

…
𝑝𝑖𝑗

…
𝑝𝑁𝑗 

𝑃 1 = 𝑐0, … , 𝑐𝑖 , … 𝑐𝑁 ∙

𝑝00

…
𝑝𝑖0

…
𝑝𝑁0 

…
…
…
…
… 

𝑝0𝑗

…
𝑝𝑖𝑗

…
𝑝𝑁𝑗 

…
…
…
…
… 

𝑝0𝑁

…
𝑝𝑖𝑁

…
𝑝𝑁𝑁 

= 𝐶 ∙ 𝐴



The Conceptual Model: Notation - the Transition Probability

Matrix
33

00 01 0

10 11 1

0 1

0 1 ...

...0

...1

... ... ... ......

...

N

N

N N NN

i j N

p p p

A p p p

p p pN

 
 

=  
 
 
 

Properties:

(all elements are probabilities)

( ) ( ) ( )11dim ++=• NNA

 Njipij ...,,2,1,0,,10 •



The Conceptual Model: Notation - the Transition Probability

Matrix
34

00 01 0

10 11 1

0 1

0 1 ...

...0

...1

... ... ... ......

...

N

N

N N NN

i j N

p p p

A p p p

p p pN

 
 

=  
 
 
 

Properties:

Nip
N

j

ij ...,,2,1,0,1
0

==•
=

(all elements are probabilities)

(the set of states is exhaustive)

only (N+1)xN elements need to be known

is a Stochastic MatrixA

( ) ( ) ( )11dim ++=• NNA

 Njipij ...,,2,1,0,,10 •

σ                                                       =1
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• At the second time step n = 2:

( ) ( )

( ) ( ) ( )

( )

( ) ( ) ( ) ( )

0

0

0 0 1 1 2 2

2 2

2 1 1

1

1 1 1 ... 1 ,

0,1,2,...,

j

N

k

N

kj k

k

j j j N Nj

P P X j

P X j X k P X k

p p

P p P p P p P p

with j N

=

=

=  =  

 = = =   =   

= 

=  +  +  + + 

=





( ) ( ) ( ) 2
2 1P P A CA A CA=  = =

( ) ( ) nn
ACAPnP == 0

Proceeding in the same 

recursive way…

FUNDAMENTAL EQUATION

OF THE HOMOGENEOUS

DISCRETE-TIME DISCRETE-STATE

MARKOV PROCESS

↓ theorem of total probability + Markov assumption

Computation of the Unconditional State Probabilities (2)

= ෍

𝑘=0

𝑁

𝑝𝑘𝑗 ∙ 𝑃𝑘 1  

↓ homogeneous process

=

= 𝑃1 0 , … , 𝑃1 𝑖 , … , 𝑃1 𝑁 ∙

𝑝0𝑗

…
𝑝𝑖𝑗

…
𝑝𝑁𝑗  



• We know:

▪ The one-step transition probabilities:

▪ The initial condition 𝑐𝑗 = 𝑃 𝑋 0 = 𝑗

• Objective: 

▪ Compute the probability that the system is in a given state j at a 

given time 𝑡𝑛, for all possible states and times: 𝑃 𝑛

▪ Solution:

Problem Setting & Found Solution

36

𝑝𝑖𝑗

𝑃 𝑛 = 𝑃 0 ⋅ 𝐴𝑛 = 𝐶 ⋅ 𝐴𝑛

FUNDAMENTAL EQUATION



Multi-step Transition Probabilities: Interpretation

37

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

00 01 0

10 11 1

0 1

...

...

... ... ... ...

...

N

Nn

N N NN

p n p n p n

p n p n p n
A

p n p n p n

 
 
 =
 
  
 

( ) ( ) nn
ACAPnP == 0

n-th step 

transition probability matrix

𝑝𝑖𝑗 𝑛 ???

FUNDAMENTAL EQUATION



Multi-step Transition Probabilities: Interpretation

38

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

00 01 0

10 11 1

0 1

...

...

... ... ... ...

...

N

Nn

N N NN

p n p n p n

p n p n p n
A

p n p n p n

 
 
 =
 
  
 

( ) ( ) nn
ACAPnP == 0

n-th step 

transition probability matrix

𝑝𝑖𝑗 𝑛 = 𝑃 𝑋 𝑛 = 𝑗|𝑋 0 = 𝑖

probability of arriving in state j after n steps 

given that the initial state was i

FUNDAMENTAL EQUATION
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EXAMPLE WITH N = 2 STATES AND n = 2 time steps









=

1110

0100

pp

pp
A (i = 0,1, j = 0, 1)










++

++
=
















=

1111011010110010

1101010010010000

1110

0100

1110

01002

pppppppp

pppppppp

pp

pp

pp

pp
A

WHAT IS THE “PHYSICAL” MEANING?

Multi-step transition probabilities (2)
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( ) ( ) ( ) iXjnXPnpij === 0|

00p
01p

01p
11p

( ) 1101010001 2 ppppp +=

, pij(n) is the sum of the probabilities of all trajectories with length n 

which originate in state i and end in state j

0 1

Multi-step Transition Probabilities (3)

( ) 1001000000 2 ppppp +=

01p

10p

0 1

00p

00p



Exercise 1: wet and dry days in a town

41

• Stochastic process of raining in a town (transitions between wet and dry days)

0.8 0.2

0.5 0.5

dry wet

A dry

wet

=  
 
 

TRANSITION MATRIXDISCRETE STATES

State 0: dry day

State 1: wet day

DISCRETE TIME

Time step = 1 day

You are required to:

1) Draw the Markov diagram

2) If today the weather is dry, what is the probability that it will be dry two days from 

now?



Open Problems

• We provided an analytical framework for computing the state 

probabilities

• Still open issues:

1. Estimate the transition matrix 𝐴 → Problem of parameter

identification from data or expert knowledge

2. Solve for a generic time 𝑛, i.e. find 𝑃𝑗(𝑛) as a function of 𝑛, 

without the need of multiplying 𝑛 times the matrix 𝐴

42



Solution to the fundamental

equation

43



Ergodic Markov Process

A Markov process is called ergodic if it is possible to eventually get 

from every state to every other state with positive probability

Ergodic Non Ergodic

A Markov process is said to be regular if some power of the stochastic 

matrix A has all positive entries (i.e. strictly greater than zero). 

44

𝐴 =
0.8 0.2

0.50 0.5
𝐴 =

0.8 0.2
0 1

𝐴 =
0 1
1 0

 𝐴2 = 𝐴4 = ⋯ =
1 0
0 1

𝐴3 = 𝐴5 = ⋯ =
0 1
1 0

Ergodic – Non Regular



Solution to the Fundamental Equation (1)

45

( ) ( )
( )




=

=

CP

APnP
n

0

0

i) Set the eigenvalue problem V A V = 

ii) Write the homogeneous form ( ) 0V A I −  =

iii) Find non-trivial solutions by setting ( )det 0A I−  =

iv) From                                 compute the eigenvalues Njj ...,,1,0, =

v) Set the N+1 eigenvalue problems j j jV A V =  Nj ...,,1,0=

vi) From                           compute the eigenvectors NjV j ...,,1,0, =

SOLVE THE EIGENVALUE PROBLEM ASSOCIATED TO MATRIX A

( )det 0A I−  =

j j jV A V = 



Eigenvalues of a Stocastic Matrix

• 𝐴 is a stocastic matrix

• The Markov process is regular and Ergodic

46

𝜔0 = 1 and 𝜔𝑗 < 1, 𝑗 = 1,2, . . . , 𝑁



Solution to the fundamental equation (2)

47

0

( )
N

j j

j

P n V
=

= 
0

N

j j

j

C c V
=

=  AND

WE NEED TO FIND THE COEFFICIENTS j Njc j ...,,1,0, =AND

The eigenvectors Vj span the (N + 1)-dimensional space 

and can be used as a basis to write any (N + 1)-dimensional vector 

as a linear combination of them



Solution to the fundamental equation (3)

0

N

j j

j

C c V
=

= 

SOLVE THE ASSOCIATED ADJOINT  EIGENVALUE  PROBLEM

++++
= VAV 

+++
= VAV

T


i) Set the adjoint eigenvalue problem

ii) Since for real valued matrices                   then:
T

AA =
+

iii) Since the eigenvalues Njj ,...,1,0, =+ depend only on ( ) ( )AA
T

detdet =

Njjj ,...,1,0, ==+ 

FIND THE COEFFICIENTS Njc j ...,,1,0, = FOR

++++
= VAV 
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Solution to the fundamental equation (4)

v) Adjoint problem

0
, T

j i j i

if i j
V V V V

k otherwise

+ +


    = 


iv) From                                                       compute the adjoint eigenvectors
+

jV

NjVAV jjj ,...,1,0, ==
+++



Nj ,...,1,0, =
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jj

j

jjjj

N

i

ijij

VV

CV
cVVcVVcCV

,

,
,,,

0
+

+

+

=

++
=→==

Solution of the fundamental equation (4)

v) By definition of the adjoint problem and since  
+

jV and jV

are orthogonal 0
, T

j i j i

if i j
V V V V

k otherwise

+ +


    = 


vi) Multiply the left-hand sides of   
0

N

i i

i

C c V
=

= by 
+

jV

(orthogonality)

iv) From                                                       compute the adjoint eigenvectors
+

jV

NjVAV jjj ,...,1,0, ==
+++



Nj ,...,1,0, =
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Solution to the fundamental equation (5)

0

( )
N

j j

j

P n V
=

= 
0

N

j j

j

C c V
=

=  ( ) n
ACnP =

FIND THE COEFFICIENTS Njj ...,,1,0, = FOR
0

( )
N

j j

j

P n V
=

= 

USE , AND
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Solution to the fundamental equation (5)

i) Substitute

0

( )
N

j j

j

P n V
=

= 

0

N

j j

j

C c V
=

=  into ( ) n
ACnP = to obtain ( ) n

N

j

jj AVcnP 












= 

=0

ii) Set n
N

j

jj

n
AVcAC 













== 

=0

0

( )
N

j j

j

P n V
=

= 
0

N

j j

j

C c V
=

=  ( ) n
ACnP =

FIND THE COEFFICIENTS Njj ...,,1,0, = FOR
0

( )
N

j j

j

P n V
=

= 

USE , AND
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Solution to the fundamental equation (6)

iii) Multiply j j jV A V =  to obtain AVAAV jjj = 

Since

by A

j j jV A V =  then
jjjjjj VVAV == 22



…

j

n

j

n

j VAV = 

iv) Substitute j

n

j

n

j VAV =  into

0 0

N N
n

j j j j j

j j

V c V 
= =

 =   
n

j j jc = 

(proceeding in the same recursive way)

0

( )
N

j j

j

P n V
=

= 
n

N

j

jj

n
AVcAC 

=

==
0
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Exercise 1: wet and dry days in a town

54

• Stochastic process of raining in a town (transitions between wet and dry days)

0.8 0.2

0.5 0.5

dry wet

A dry

wet

=  
 
 

TRANSITION MATRIXDISCRETE STATES

State 0: dry day

State 1: wet day

DISCRETE TIME

Time step = 1 day

You are required to:

1) Estimate the probability that it will be dry n days from now?

Today the weather is dry



Some Definitions
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Quantity of Interest

56



Steady State Probabilities

57

Is it possible to make long-term predictions 

(𝑛 → +∞) of a Markov process? 

It is possible to show that if the Markov 

process is regular then:

∃ lim
𝑛→+∞

𝑃 𝑛 = Π Steady state probabilities



Steady State Probabilities

58

• Steady state probabilities 𝝅𝒋: probability of the system being in state j asymptotically

1) Since Njj ,...,2,1,1and10 == 

( ) 0 0

0 0

lim lim lim
N N

n

j j j j j
n n n

j j

P n V c V c V 
→ → →

= =

=  =   = = AT STEADY STATE:

• TWO ALTERNATIVE APPROACHES:



Steady state probabilities

59

• Steady state probabilities 𝝅𝒋: probability of the system being in state j asymptotically

1) Since Njj ,...,2,1,1and10 == 

( ) 0 0

0 0

lim lim lim
N N

n

j j j j j
n n n

j j

P n V c V c V 
→ → →

= =

=  =   = = AT STEADY STATE:

2) Use the recursive equation ( ) ( ) AnPnP −= 1

AT STEADY STATE: ( ) ( ) =−= 1nPnP

A= subject to
0

1
N

j

j=

 =

• TWO ALTERNATIVE APPROACHES:

SOLVE



Exercise 1: wet and dry days in a town (continue)

60

0.8 0.2

0.5 0.5

dry wet

A dry

wet

=  
 
 

 01=C

• Question: what is the probability that one year from now the day will be dry?

❑ Use the approximation based on the recursive equation 



First Passage Probabilities (1)

61

• FIRST PASSAGE PROBABILITY AFTER 𝒏 TIME STEPS:

Probability that the system arrives for the first time in state j 

after n steps, given that it was in state i at the initial time 0

NOTICE: 

𝑝𝑖𝑗(𝑛) =probability that the system reaches state j 

after n steps starting from state i, but not necessarily for the first time 

𝑓𝑖𝑗 𝑛 ≠ 𝑝𝑖𝑗(𝑛)



First Passage Probabilities: Exercise 3

Compute for the markov process in the Figure below:

• 𝑓11 1

• 𝑓11 𝑛

• 𝑓12 𝑛
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64

( ) ( ) ijijij ppf == 11

( ) ( ) ( ) jjijijij pfpf −= 122

Probability that the system 

reaches state j 

at step 2, given that it was in state i at 

step 0

• RELATIONSHIP WITH TRANSITION PROBABILITIES

Probability that the system reaches state j for the

first time at step 1 (starting from state i at 0) and

that it remains in j at the successive step

( ) ( ) ( ) ( ) ( ) jjijjjijijij pfpfpf −−= 22133

…

( ) ( ) ( ) ( )
−

=

−−=
1

1

k

l

jjijijij lplkfkpkf (Renewal Equation)

First Passage Probabilities (4)



Exercise 1: wet and dry days in a town (Group Work –Part 

III)
65

0.8 0.2

0.5 0.5

dry wet

A dry

wet

=  
 
 

 01=C

• Question: if today is dry, what is the probability that

1) the first wet day will be Thursday?

2) Wednesday will be wet?

3) The first wet day will be within Thursday?



Recurrent, Transient and Absorbing States (1)

66

• First passage probability that the system goes to state j within m steps given that it 

was in i at time 0:

( ) ( )
1

m

ij ij

n

q m f n
=

= = sum of the probabilities of the mutually exclusive events of 

reaching j for the first time after n = 1, 2, 3, …, m steps

• Probability that the system eventually reaches state j from state i:

( ) ( )limij ij
m

q q m
→

 =

• Probability that the system eventually returns to the initial state:

( )ii iif q= 

DEFINITIONS:



Recurrent, transient and absorbing states (2)

67

• State i is recurrent if the system starting at such state will surely return to it (sooner or 

later), i.e., in finite time:

( ) 1ii iif q=  =

• For recurrent states 0 i



Recurrent, transient and absorbing states (2)

68

• State i is recurrent if the system starting at such state will surely return to it sooner or 

later (i.e., in finite time):

( ) 1ii iif q=  =

• For recurrent states 0 i

• State i is transient if the system starting at such state has a finite probability of never 

returning to it:

( ) 1ii iif q=  

• For these states, at steady state 0= i

• State i is absorbing if the system cannot leave it once it enters: 1=iip

we cannot have a finite Markov process in which all states are 

transients because eventually it will leave them and somewhere it 

must go at steady state



Exercise 2

Classify the states of the following Markov Chain

69



Average Occupation Time of a State

70

=iip probability that the system “moves to” i in one time step, given that it was in i

=− iip1 probability that the system exits i in one time step, given that it was in i

• Recalling  that:

P 𝑆𝑖 = 𝑛 = 𝑝𝑖𝑖
𝑛(1 − 𝑝𝑖𝑖)

𝑆𝑖~Geom(1 − 𝑝𝑖𝑖)

𝒍𝒊 = 𝑬 𝑺𝒊 =
1

1 − 𝑝𝑖𝑖

𝑬 𝑺𝒊 = 𝒍𝒊= Average occupation time of state i 

                                   =

average number of time steps before the system exits state i 

𝑆𝑖= number of consecutive time steps the system remains in state i



Piero Baraldi

Univariate Discrete Distributions, Geometric Distribution

𝑝 = P{Failure} FAILURE=Exit from the STATE; 𝑝 = 1 − 𝑝𝑖𝑖

T= trail of the first experiment whose outcome is “failure” (or number of trials 

between two successive occurrences of failure);

The probability mass function:

ppptg t 1)1();( −−=

t=1, 2,… 

Expected value of T (or return period): 

pp

p
ppppptTE t

t

1

)]1(1[
...])1(3)1(21[)1(][

2

21

1

=
−−

=+−+−+=−= −


=



𝑔 𝑆𝑖 , 1 − 𝑝𝑖𝑖 = 𝑝𝑖𝑖 1 − 𝑝𝑖𝑖
𝑆𝑖

𝑆𝑖= number of consecutive time steps the 

system remains in state i → 𝑆𝑖 = 𝑇 −1 

𝑆𝑖=0,1,…

𝑬 𝑺𝒊 =
1

1 − 𝑝𝑖𝑖
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