

Y POLITECNICO DI MILANO

Availability of Systems

Prof. Enrico Zio

Politecnico di Milano Dipartimento di Energia

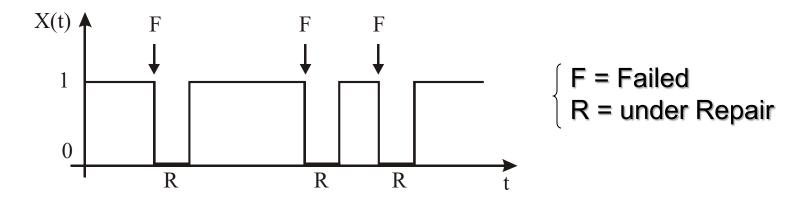
Introduction: reliability and availability

Reliability and availability: important performance
parameters of a system, with respect to its ability to fulfill the
required mission in a given period of time

- Systems which must satisfy a specified mission within an assigned period of time: reliability quantifies the ability to achieve the desired objective without failures
- Systems maintained: availability quantifies the ability to fulfill the assigned mission at any specific moment of the life time

Availability definition (1)

Availability is a concept that applies to situations in which failures are repaired.


Availability is a measure of the degree to which an item is in an operable state when called upon to perform.

Availability is expressed as a probability.

Availability definition (2)

- X(t) = indicator variable such that:
 - \succ X(t) = 1, system is operating at time t
 - \succ X(t) = 0, system is failed at time t

Instantaneous availability p(t) and unavailability q(t)

$$p(t) = P[X(t) = 1] = E[X(t)]$$
 $q(t) = P[X(t) = 0] = 1 - p(t)$

Contributions to Unavailability

Unrevealed failure

A stand-by component fails unnoticed. The system goes on without noticing the component failure until a test on the component is made or the component is demanded to function

Testing / preventive maintenance

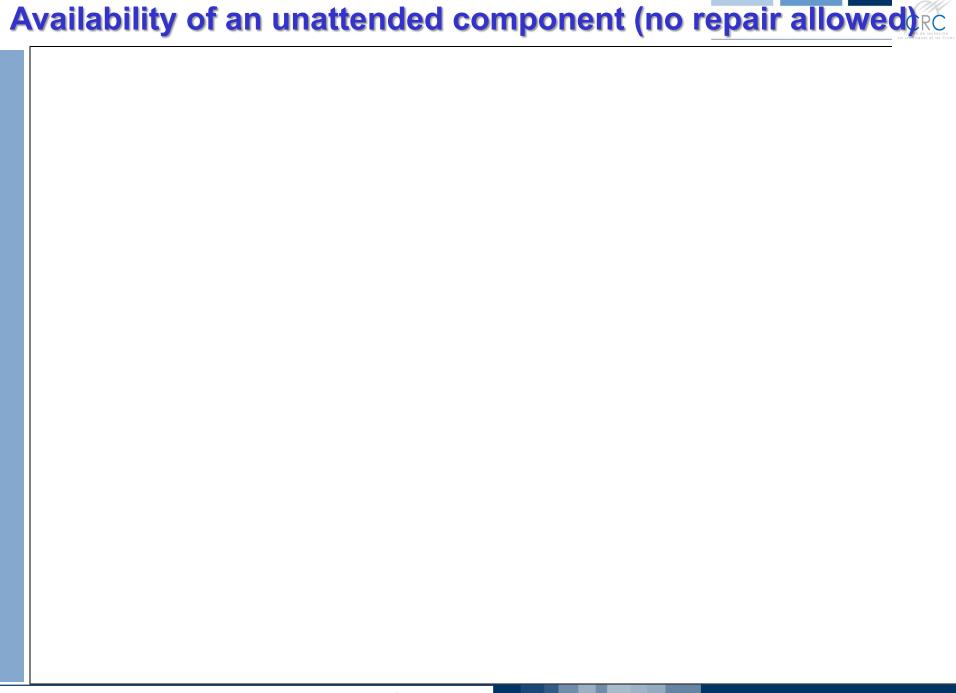
A component is removed from the system because it has to be tested or must undergo preventive maintenance

Repair

A component is unavailable because under repair

Average availability descriptors

How to compare different maintenance strategies?

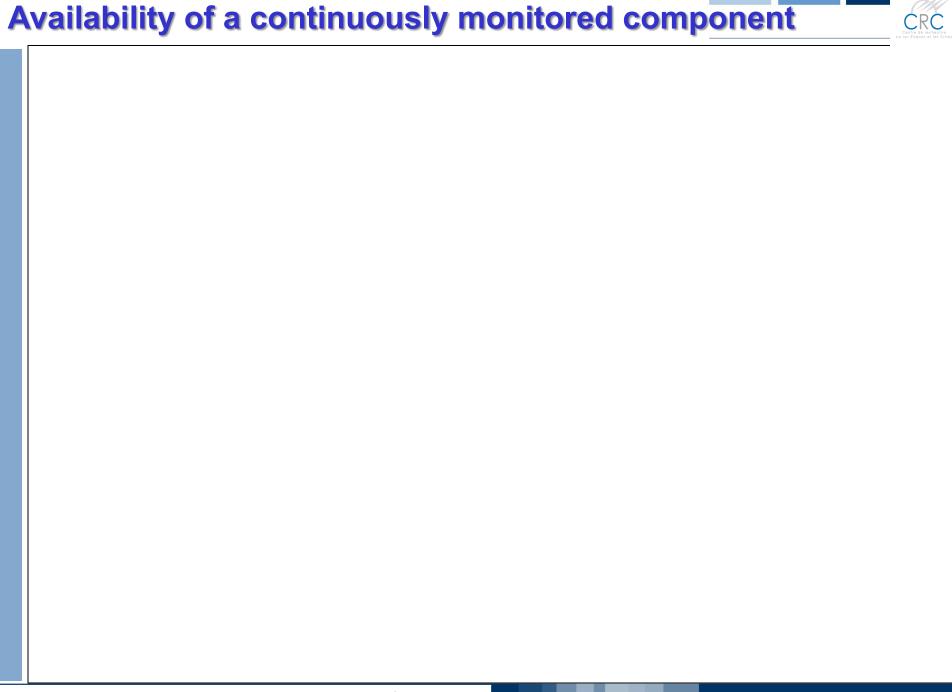

- We need to define quantities for an average description of its probabilistic behavior:
 - Components under corrective maintenance (stochastic repair time):

$$p = \lim_{t \to \infty} p(t)$$

Components under periodic maintenance:

$$p_{T} = \frac{1}{T} \int_{0}^{T} p(t)dt = \frac{\overline{UPtime}}{T} = \frac{\overline{T_{U}}}{T}$$

Average time the system is functioning (UP) within T_M


Availability of an unattended component (no repair allowed)

 The probability q(t) that at time t the component is not functioning is equal to the probability that it failed before t

$$q(t) \equiv F(t)$$

$$p(t) = 1 - q(t) \equiv R(t)$$

where F(t) is the cumulative failure probability and R(t) is the reliability

Availability of a continuously monitored component (1)

Objective:

Computation of the availability p(t)

Hypotheses:

- \triangleright N = number of identical components at time t = 0
- Restoration starts immediately after the component failure
- Probability density function of the random time duration T_R of the repair process = g(t)

Balance equation between time *t* and time *t*+*∆t*

Availability of a continuously monitored component (2)

$$N \cdot p(t + \Delta t) = N \cdot p(t) - N \cdot p(t) \cdot \lambda \cdot \Delta t + \int_{0}^{t} N \cdot p(\tau) \cdot \lambda \cdot \Delta \tau \cdot g(t - \tau) \cdot \Delta t$$
(1) (2) (3)

- 1) Number of items UP at time *t*+∆*t*
- 2) Number of items UP at time t
- 3) Number of items failing during the interval Δt
- 4) Number of items that had failed in $(\tau, \tau + \Delta \tau)$ and whose restoration terminates in $(t, t + \Delta t)$;

Availability of a continuously monitored component (3)

The integral-differential form of the balance

$$\frac{dp(t)}{dt} = -\lambda \cdot p(t) + \int_{0}^{t} \lambda \cdot p(\tau) \cdot g(t - \tau) \cdot d\tau \qquad p(0) = 1$$

The solution can be obtained introducing the Laplace transforms

$$f(x) \rightarrow L[f(x)] = \widetilde{f}(s) = \int_{0}^{\infty} e^{-s \cdot x} f(x) dx$$

$$\frac{df(x)}{dx} \rightarrow L\left[\frac{df(x)}{dx}\right] = s \cdot \widetilde{f}(s) - f(0)$$

Availability of a continuously monitored component (4)

Applying the Laplace transform we obtain:

$$s \cdot \widetilde{p}(s) - 1 = -\lambda \cdot \widetilde{p}(s) + \lambda \cdot \widetilde{p}(s) \cdot \widetilde{g}(s)$$

which yields:

$$\widetilde{p}(s) = \frac{1}{s + \lambda \cdot (1 - \widetilde{g}(s))}$$

- **Inverse** Laplace transform $\rightarrow p(t)$
- Limiting availability:

$$p_{\infty} = \lim_{t \to \infty} p(t) = \lim_{s \to 0} \left[s \cdot \widetilde{p}(s) \right] = \lim_{s \to 0} \left[\frac{s}{s + \lambda \cdot (1 - \widetilde{g}(s))} \right]$$

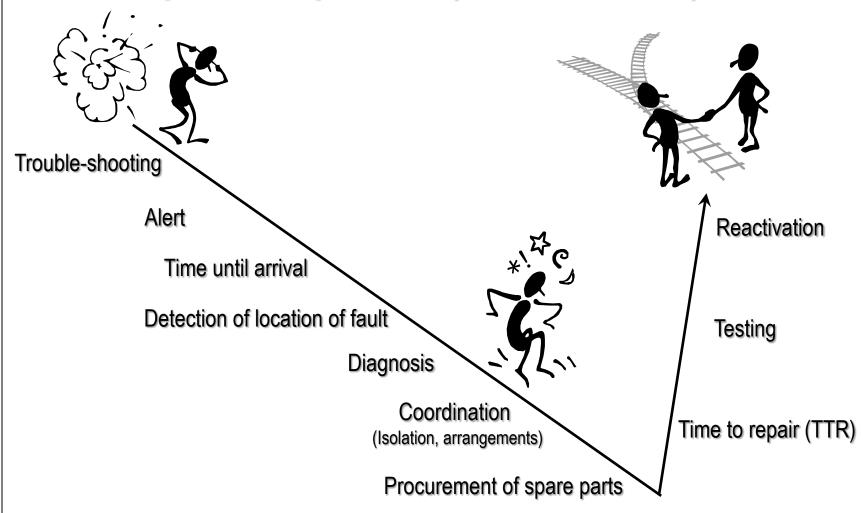
Availability of a continuously monitored component (5)

• As $s \to 0$, the first order approximation of $\widetilde{g}(s)$ is the following:

$$\widetilde{g}(s) = \int_{0}^{\infty} e^{-s\tau} g(\tau) d\tau = \int_{0}^{\infty} (1 - s \cdot \tau + \dots) g(\tau) d\tau \cong 1 - s \cdot \int_{0}^{\infty} \tau g(\tau) d\tau = 1 - s \cdot \overline{\tau}_{R}$$

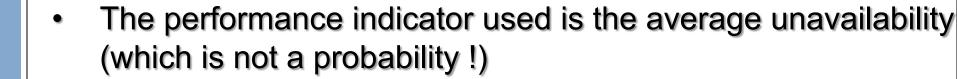
$$\overline{\tau}_{R} = E_{g} \big[T_{R} \big]$$

 $\mathsf{MTTF} {\longrightarrow} \mathsf{MTBF}$


$$p_{\infty} = \lim_{s \to 0} \frac{s}{s + \lambda \cdot s \cdot \overline{\tau}_{R}} = \frac{1}{1 + \lambda \cdot \overline{\tau}_{R}} = \frac{1/\lambda}{1/\lambda + \overline{\tau}_{R}} = \frac{MTTF}{MTTF + MTTR} = \frac{average time the component is UP}{average time of a failure/repair "cycle"}$$

General result!

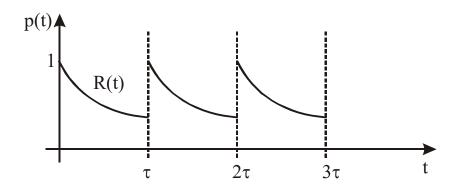
Availability of a continuously monitored component (5)



Interruption of Operation (Down Time, DT)

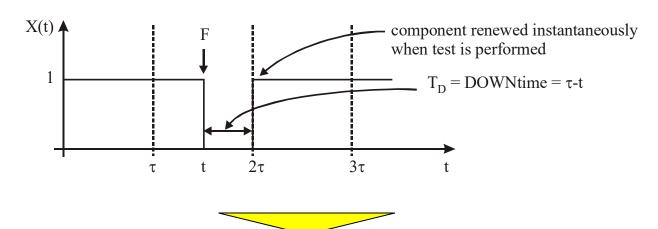
Availability of a component under periodic maintenance (1)crc

- Safety systems are generally in standby until accident and their components must be periodically tested
- The instantaneous unavailability is a periodic function of time


$$q_{T} = \frac{1}{T} \cdot \int_{0}^{T} q(t)dt = \frac{\overline{DOWNtime}}{T} = \frac{\overline{T_{D}}}{T}$$

Availability of a component under periodic maintenance (2)crc

- Suppose the unavailability is due to unrevealed random failures, e.g. with constant rate λ
- Assume also instantaneous and perfect testing and maintenance procedures



 The instantaneous availability within a period τ coincides with the reliability

Availability of a component under periodic maintenance (3)

Objective: computation of the average unavailability

• The average unavailability within one period τ is:

$$q_{\tau} = \frac{mean \ DOWNtime}{\tau} = \frac{\overline{T}_{D}}{\tau}$$

$$\overline{T}_{D} = \int_{0}^{\tau} (\tau - t) f_{T}(t) dt = \int_{0}^{\tau} (\tau - t) dF_{T} =$$

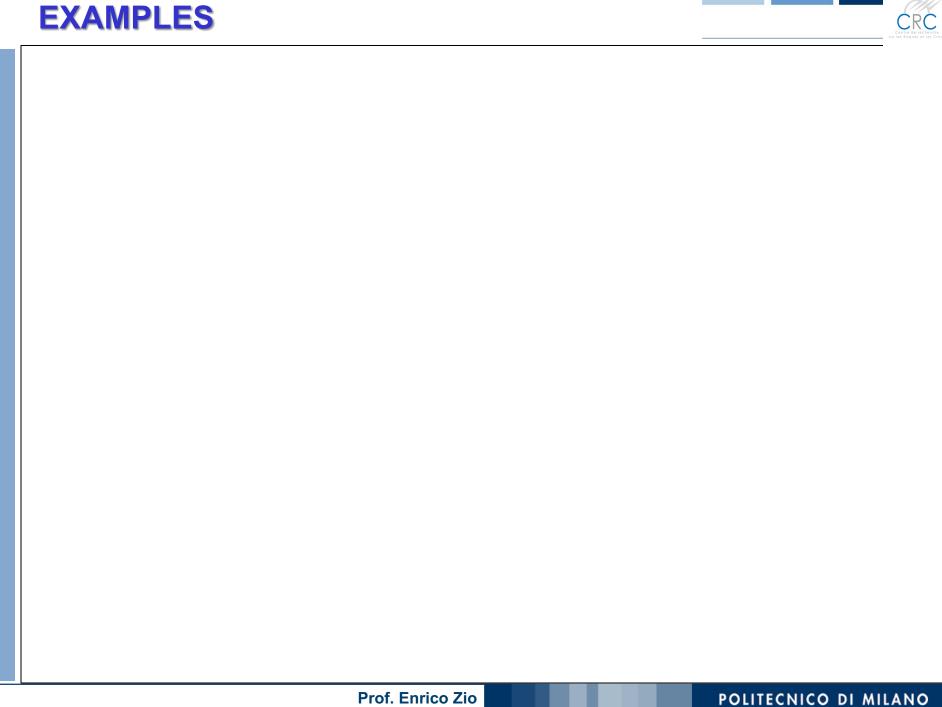
$$= \left(\tau - t\right) F_{T}(t) \Big|_{0}^{\tau} + \int_{0}^{\tau} F_{T}(t) dt = \int_{0}^{\tau} F_{T}(t) dt$$

Availability of a component under periodic maintenance (4)crc

The average unavailability and availability are then:

$$q_{\tau} = \frac{\overline{T}_{D}}{\tau} = \frac{\int_{0}^{\tau} F_{T}(t)dt}{\tau} \qquad p_{\tau} = \frac{\overline{T}_{U}}{\tau} = \frac{\int_{0}^{\tau} R(t)dt}{\tau}$$

For different systems, we can compute p_{τ} e q_{τ} by first computing their failure probability distribution $F_{T}(t)$ and reliability R(t) and then applying the above expressions


Availability of a component under periodic maintenance (5)crc

- Assume a finite repair time τ_R
- The average unavailability and availability over the complete maintenance cycle period τ+τ_R are:

$$\overline{q}_{\tau+\tau_R} = \frac{\tau_R + \int_0^{\tau} F_T(t)dt}{\tau + \tau_R} \approx \left[\tau_R << \tau\right] \approx \frac{\tau_R + \int_0^{\tau} F_T(t)dt}{\tau}$$

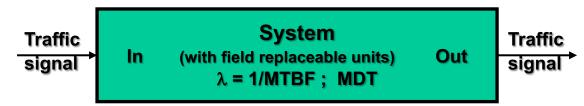
$$\int_{\overline{p}_{\tau+\tau_R}}^{\tau} R(t)dt \qquad \int_{\tau+\tau_R}^{\tau} R(t)dt$$

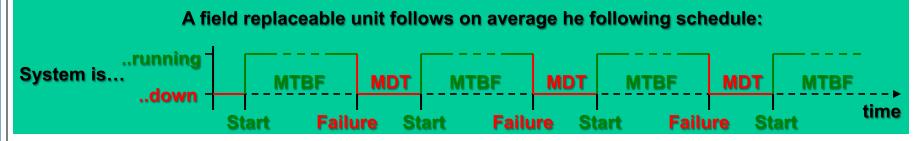
$$\overline{p}_{\tau+\tau_R} = \frac{0}{\tau+\tau_R} \approx \left[\tau_R \ll \tau\right] \approx \frac{0}{\tau}$$

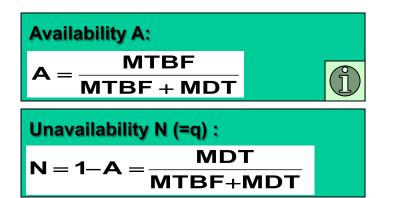
Availability of a continuously monitored component

 Find instantaneous and limiting availability for an exponential component whose restoration probability density is

$$g(t) = \mu \cdot e^{-\mu \cdot t}$$


The Laplace transform of the restoration density is


$$\widetilde{g}(s) = L[g(t)] = \frac{\mu}{s + \mu}$$


$$\widetilde{p}(s) = \frac{1}{s + \lambda \cdot \frac{s}{s + \mu}} = \frac{s + \mu}{s \cdot (s + \mu + \lambda)} \qquad \longrightarrow \begin{cases} p(t) = L^{-1} \left[\widetilde{p}(s) \right] = \frac{\mu}{\mu + \lambda} + \frac{\lambda}{\mu + \lambda} \cdot e^{-(\mu + \lambda) \cdot t} \\ p_{\infty} = \frac{\mu}{\mu + \lambda} \end{cases}$$

Traffic signalling by a system with field replaceable units:

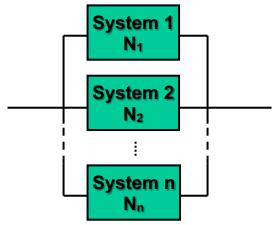
MTBF: Mean Time between Failure

MDT: Mean Down Time (~MTTR)
MDT-figures includes
travelling-, administrative-,
fault detection- + active repair times (MTTR),

assuming 24h/d readiness of maintenance staff and availability of sufficient spares.

Repair or replace of	MDT (i~MTTR)
Unit	4 h
Subrack	6 8 h

Unavailability of Series Systems N_s (=q_s)

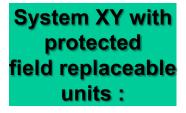

$$N_s \approx N_1 + N_2 + \dots + N_n = \sum_{i=1}^n N_i$$

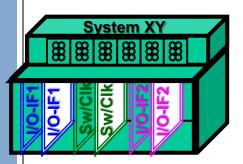
Example: System 1 = System 2 MTBF = 10yrs = 87 600h; MDT = 4h :

$$N_{1/2} = \frac{MDT}{MTBF + MDT} = \frac{4h}{87600h + 4h} \approx 4.6 \cdot 10^{-5}$$

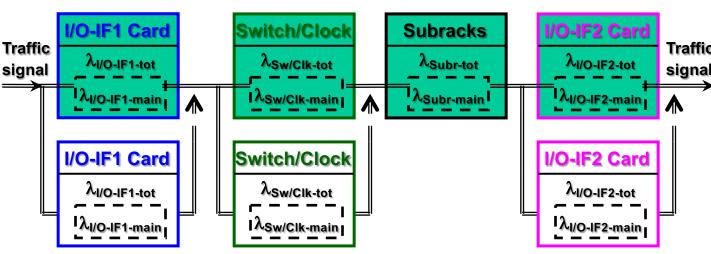
$$N_{s \text{ tot}} = N_1 + N_2 = 2 \cdot N_{1/2} = 9.2 \cdot 10^{-5} \approx 10^{-4}$$

Unavailability of Parallel Systems N_p (= q_p)


$$\mathbf{N}_{p} = \mathbf{N}_{1} \bullet \mathbf{N}_{2} \bullet \cdots \bullet \mathbf{N}_{n} = \prod_{i=1}^{n} \mathbf{N}_{i}$$


Example: System 1 = System 2 MTBF = 5yrs = 43 800h; MDT = 5h:

$$N_{1/2} = \frac{MDT}{MTBF + MDT} = \frac{5h}{43800h + 4h} \approx 1.14 \cdot 10^{-4}$$


$$N_{\text{tot}} = N_1 \cdot N_2 = N_{1/2}^2 = 1.3 \cdot 10^{-8}$$

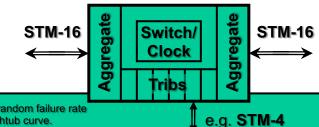
Traffic signal through systems XY:

Unit In Operation

Unit In Stand-by Mode

Unavailability of a system with unprotected units only:

$$N_{unprot} = N_{I/O-IF1} + N_{Sw/CIk} + N_{Subr} + N_{I/O-IF2}$$


Unavailability of a system with possible protected units:

$$N_{\text{prot}} = N_{\text{I/O-IF1}}^2 + N_{\text{Sw/Clk1}}^2 + N_{\text{Subr}} + N_{\text{I/O-IF2}}^2 \approx N_{\text{Subr}}$$

Example: Availability Calculation for traffic signal of a transport system

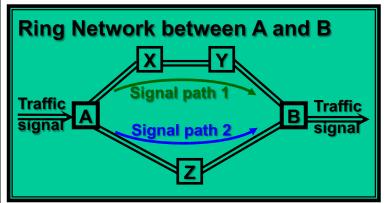
with List of Material (LoM) (no current values):

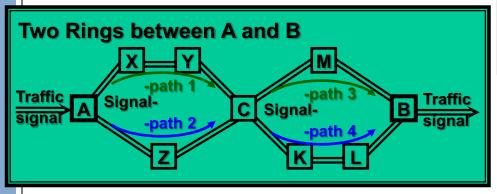
SIEMENS

The FIT-values are statistical values and based only upon the random failure rate corresponding to the "flat" component of the typical bathtub curve.

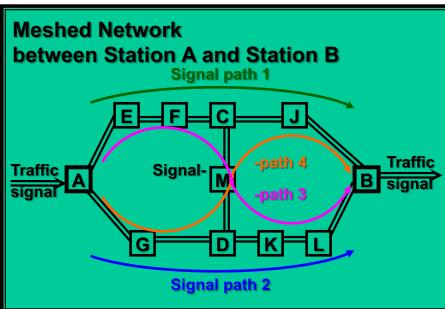
The calculation method is in acc.with IEC 61709!


Main path Quantity of items STM-16 and given ports: total a) unprotected b) Trib-+Aggreg-+Switch-prot. λ_{main} MTBF_{main}MDT: Nonλ_{tot} MTBF_{tot} STM1e: Item-No Total STM1e: STM4: STM16 **Total** STM4: STM16 Name :Availab SM10-1.11 : Subrack SM10-1.12 : SCOH 4.694: 24.3 0 infinite 0 2.024 56.4 3.10E-6 1+1 1+1 SM10-5.1 SM10-8.1 SWITCH FABRIC VC-2.302 1+1 1+1 35.2 1.30E-5 1+1 STM-16 BOARD 5.133 22.2 3.242 2 1+1 1+1 500 228.3 2.00E-6 1+1 STM-4 BOARD 1.685 67.7 6.74E-6 SM10-23.11: STM-4 MODULE L-4.2/3 500 228.3 2.00E-6 49.9 1+1 9,15E-6 SM10-6.1 4.014 28.4 1.61E-5 SWITCH FABRIC VC-12 37.565 66,102 Failure rates in FIT (1FIT=1Failure/109h) **Total** MTBF in years **Total** 3.04 1.73 Failure rates in FIT (1FIT=1Failure/10⁹h) Main path 540 540 MTBF in years Main path 9.24 211.4 10.48 10.58 211.4 Main path Non-availability Failure intensity in failures per year Main path 22.91 22.69 25.96 1,14 1,14 Non-availability in min/year Main path 0.095 0.095 : 0.108 0.005 0.005 0.005 Availability in % Main path 99,996 99,996 99,995 99,9998 99,9998 99,9998

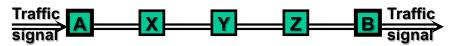

Availability/Reliability Table


Page 1 - 1

Availability of a continuously monitored network systemcre


Traffic signal transmission from station A to station B for several types of Networks

Which signal paths are possible to come from A to B?


Traffic signal can be e.g.

PDH/SDH-signal and/or fibre channel

A Station A

Availability of a continuously monitored network systemced

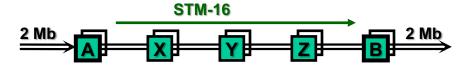
Link from Station A to Station B

The stations contain the transport system only

What about cables between the stations?

The cable is a very important function block in the consideration of system availability

Table: Failure rates of several cable types (approx. values)										
Types of (duct-)cable	Failure/100km/year	Failure rate / km	MTBF * km	MDT ×) (incl. MTTR,etc.)						
Terrestrial cable City	10 25	11.500 28.600 FIT/km	4 10 yr*km	12 14 h						
Terrestrial cable Country	0,1 0,6	115 700 FIT/km	160 1.000 yr*km	12 14 h						
Sea cable in depth of < 1.000 km	0,2 0,4	230 450 FIT/km	250 500 yr*km	10 30 d						
Sea cable in depth of > 1.000 km	0,1 0,2	115 230 FIT/km	500 230 yr*km	10 30 d						


 fault detection- + active repair times (MTTR), assuming 24h/d readiness of maintenance staff

——— (Duct-) Cable 🔼 Station A

Availability of a continuously monitored network systemcec

Example: Availability of a simple link:

(no current values)

SIEMENS

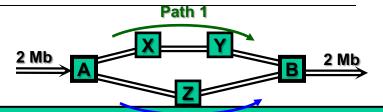
The FIT-values are statistical values and based only upon the random failure rate corresponding to the "flat" component of the typical bathtub curve.

The calculation method is in acc.with IEC 61709!

		Quantity of items for following items:						
		STM-16 Link from A to B						
Item-No Name		λ _{main} MTBF _{main} M			n Path) Non-	with unprotected parts		
Itelli-NO	Name	FIT	(year)	(h)	Availab.	with unprotected parts	with protected parts	
SM10-1.11	Subrack	540	211,4	4	2,16E-6	5	5	
SM10-1.12	SCOH	0	infinite	4	0			
SM10-5.1	CLU	2.024	56,4	4	8,10E-6	5	1+1	
SM10-8.1	SWITCH FABRIC VC-4	2.302	49,6	4	9,21E-6	5	1+1	
SM10-20.1	STM-16 BOARD	3,242	35,2	4	1,30E-5	5	1+1	
SM10-20.32	STM-16 MODULE L-16.2/3	500	228,3	4	2,00E-6	8	1+1	
SM10-6.1	SWITCH FABRIC VC-12	4.014	28,4	4	1,61E-5	5	1+1	
SM10-25.2	IF2M CARD 63*E1 120ohm)	1.894	161,9	4	2,82E-6	<u>2</u>	1:n	
SM10-25,12	LSU CARD 63*E1 120ohm)	705	228,3	4	6,74E-6	2	2	
0,3 Failure i	ntensity of fibre (failures(100k	m/year):						
	Fibre per km	342	333,3	12	4,11E-6	200 km	200 km	
	Failure rates in FIT (1FIT=1Fai	138.301	72.603					
	MTBF in years		Main p	oath		0,83	1,57	
	Non-availability of unprotect	ed parts				1,10E-3	8,38E-4	
	Non-availability of paths 1 &	2						
	Non-availability of 1+1 protect							
	Total Non-availability	1,10E-3	8,38E-4					
	Total Non-availability in min/	578,76	440,64					
	Total Availability in %	99,8899	99,9162					
Computation	on rules. The signal flow through	aguinman	tic marked by	the figure	e in the releva	nt columne		

Computation rules: The signal flow through equipment is marked by the figures in the relevant columns. Remark: The results for the main transmission path are related to one bi-directional signal/channel.

Availability/Reliability Table


Page 1 - 1

ICN CN S M EP2/Eberlin/12.05.2004/ 2004 A&Btel MTBF-Spares.xls

Availability of a continuously monitored network systemers

Example: Availability of a Ring network:

(no current values)

SIEMENS

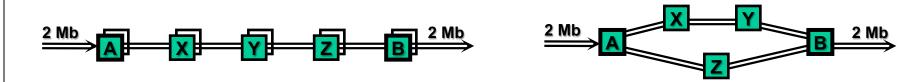
The FIT-values are statistical values and based only upon the random failure rate corresponding to the "flat" component of the typical bathtub curve.

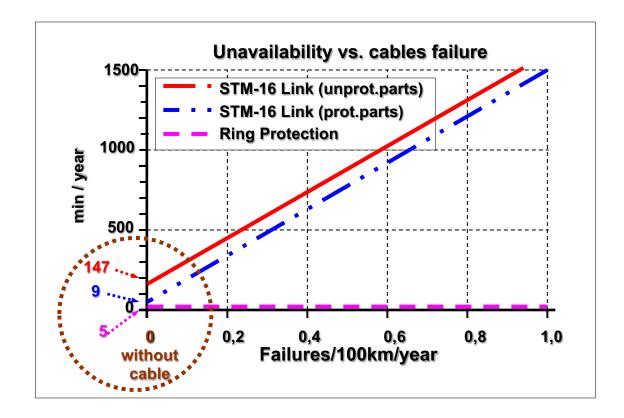
The calculation method is in acc.with IEC 61709!

Path 2

		Quantity of items for following items:							
	,	Ring-Protection from A to B							
Item-No	Name	λ_{main}	MTBF _{main}	MDT	Non-	unprotected	STM-16 Ring		
Item-140	Name	FIT	(year)	(h)	Availab.	parts	Path 1	Path 2	
SM10-1.11	Subrack	540	211,4	4	2,16E-6	2	2	1	
SM10-1.12	SCOH	0	infinite	4	0				
SM10-5.1	CLU	2.024	56,4	4	8,10E-6	1+1	1+1	1+1	
SM10-8.1	SWITCH FABRIC VC-4	2.302	49,6	4	9,21E-6	1+1	1+1	1+1	
SM10-20.1	STM-16 BOARD	3,242	35,2	4	1,30E-5		4	3	
SM10-20.32	STM-16 MODULE L-16.2/3	500	228,3	4	2,00E-6		6	4	
SM10-6.1	SWITCH FABRIC VC-12	4.014	28,4	4	1,61E-5	1+1			
SM10-25.2	IF2M CARD 63*E1 120ohm)	1.894	161,9	4	2,82E-6	1+n			
SM10-25.12	: LSU CARD 63*E1 120ohm)	70 <u>5</u>	228,3	4	6,74E-6	2			
0,3 Failure in	ntensity of fibre (failures(100k	m/year):							
	Fibre per km	342	333,3	12	4,11E-6	0 km	150 km	100 km	
F	Failure rates in FIT (1FIT=1Fail	ure/10 ⁹ h)	Main pa	ith		2.490	68.418	45.513	
	MTBF in years		Main pa	ıth		45,85	1,67	2,45	
	Non-availability of unprotected	ed parts				9,96E-6			
	Non-availability of paths 1 & 2		6,85E-4	4,60E-4					
	Non-availability of 1+1 protect	: 3,15E-7							
	Total Non-availability	1,03E-5							
	Total Non-availability in min/y	5,40							
	Total Availability in %	99,9990							

Computation rules: The signal flow through equipment is marked by the figures in the relevant columns Remark: The results for the main transmission path are related to one bi-directional signal/channel.

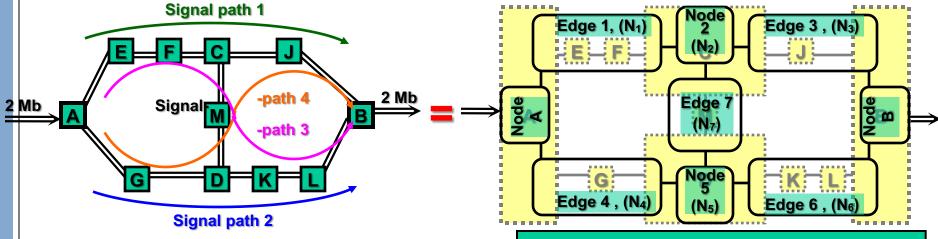

Availability/Reliability Table


Page 1 - 1

ICN CN S M EP2/Eberlin/12.05.2004/ 2004 A&Btel MTBF-Spares.xls

Availability of a continuously monitored network systemcec

Unavailability Diagram for Link- and Ring Network



Availability of a continuously monitored network systemced

Meshed Network Structure

Unavailability Calculation for a meshed network:

Theorem of total probability (addition rule):

 $Prob\{a \cup b\} = Prob\{a\} + Prob\{b\} - Prob\{a \cap b\}$

Possible paths from A to B

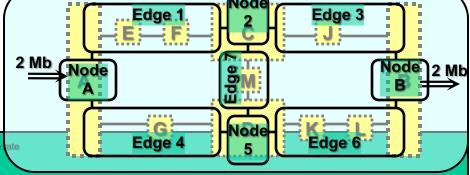
Path 1: Edge1+Node2+Edge3

Path 2: Edge4+Node5+Edge6

Path 3: Edge1+Node2+Edge7+Node5+Edge6

Path 4: Edge4+Node5+Edge7+Node2+Edge3

Unavailability N_{tot} for this meshed network, for $N_i \ll 1$:


$$\begin{split} \mathbf{N}_{\text{tot}} &\approx \mathbf{N}_{\text{A+B}} + \mathbf{N}_{1} \big[\mathbf{N}_{4} \big(1 - \mathbf{N}_{2} \big) + \mathbf{N}_{5} \big(1 - \mathbf{N}_{2} - \mathbf{N}_{3} - \mathbf{N}_{4} \big) + \big(\mathbf{N}_{6} \cdot \mathbf{N}_{7} \big) \big] \\ &+ \mathbf{N}_{2} \big[\mathbf{N}_{4} \big(1 - \mathbf{N}_{6} \big) + \mathbf{N}_{5} \big(1 - \mathbf{N}_{3} - \mathbf{N}_{4} - \mathbf{N}_{6} \big) + \mathbf{N}_{6} \big(1 - \mathbf{N}_{3} \big) \big] \\ &+ \mathbf{N}_{3} \big[\mathbf{N}_{5} + \mathbf{N}_{6} + \mathbf{N}_{4} \cdot \mathbf{N}_{7} - \mathbf{N}_{5} \cdot \mathbf{N}_{6} \big] \end{split}$$

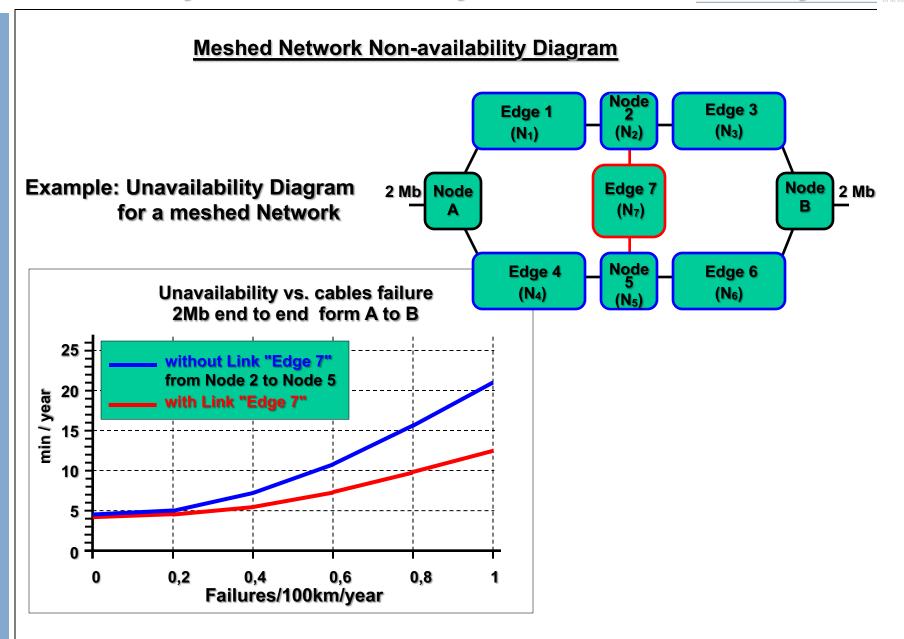
Availability of a continuously monitored network systemerc

Example: Availability for a meshed network

(no current values)

SIEMENS

The FIT-values are statistical values and based only upon the random failure ate corresponding to the "flat" component of the typical bathtub curve. The calculation method is in acc. with IEC 61709!

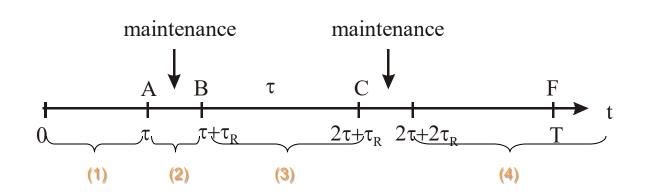

Main transmission path (Main Path)						Quantity of items for following items:							
Itom No	Name	λ _{main}	MTBF _{mai}	MDT	Non-	Unprotect	Edge 1	Node 2	Edge 3	Edge 4	Node 5	Edge 6	Edge 7
Item-No	Name	FIT	(year)	(h)	Availab.	Parts A.B.	A,E,F,C	С	C,J,B	A,G,D	D	D,K,L,B	C,M,D
SM10-1.21	Subrack DC	268	466,0	4	1,07E-6	2	2	1	1	1	1	2	2
SM10-5.1	CLU	2.024	56,4	4	8,10E-6	1+1	1+1	1+1	1+1	1+1	1+1	1+1	1+1
SM10-8.1	SWITCH FABRIC VC-4	2.302	49,6	4	9,21E-6	1+1	1+1	1+1	1+1	1+1	1+1	1+1	1+1
SM10-20.1	STM-16 BOARD	3,242	35,2	4	1,30E-5		4		3	3		4	3
SM10-20.32	STM-16 MODULE L-16.2/3	500	228,3	4	2,00E-6		6		4	4		6	4
SM10-6.1	SWITCH FABRIC VC-12	4.014	28,4	4	1,61E-5	1+1	1+1	1+1	1+1	1+1	1+1	1+1	1+1
SM10-25.2	IF2M CARD 63*E1 120ohm)	1.894	161,9	4	2,82E-6	1+1							
SM10-25.12	LSU CARD 63*E1 120ohm)	705	228,3	4	6,74E-6	2							
0,3 Failure	intensity of fibre (failures(1	00km/yea	ır):										
	Fibre per km	342	333,3	12	4,11E-6		249 km		161 km	174 km		231 km	157 km
Non-availa	ability of unprotected parts a	t Node A	and Node	в		7,78E-6							
	ability of each Edges/Nodes						1,09E-3	1,07E-6	7,10E-4	7,63E-4	1,07E-6	1,02E-3	6,93E-4
Non-availa	ability over all Edges/Nodes	1 7								1,55E	≟-6		Edge 7
Total Non-availability related to 2Mb end to end									9,341	E-6	1,0	94E-5	
Total Non-availability in min/year related to 2Mb end to end										4,90	9	5,	750
Total Availability in % related to 2Mb end to end						99,999066 : 99,998906						98906 .	
Computation rules: The signal flow through equipment is marked by the figures in the relevant columns.													

Remark: The results for the main transmission path are related to one bi-directional signal/channel.

ICN CN S M EP2/Eberlin/12.05.2004/ 2004 A&Btel MTBF-Spares.xls

Prof. Enrico Zio

Availability of a continuously monitored network systemced


Availability of a component under periodic maintenance

 Objective: computation of the average unavailability over the lifetime [0, T_M]

$$\overline{q_{0T_M}} = \overline{\frac{T_D}{T_M}}$$

- Hypoteses:
 - The component is initially working: q(0) = 0; p(0) = 1
 - Failure causes:
 - 1. random failure at any time $T \sim F_T(t)$
 - on-line switching failure on demand ∼ Q₀
 - 3. maintenance disables the component $\sim \gamma_0$ (human error during inspection, testing or repair)

The probability of finding the component DOWN at the generic time t is due either to the fact that it was demanded to start but failed or to the fact that it failed unrevealed randomly before t. The average DOWNtime is:

$$q_{0A}(t) = Q_0 + (1 - Q_0)F_T(t)$$

$$\overline{T}_{D(0A)} = \int_{0}^{\tau} q_{0A}(t)dt = \int_{0}^{\tau} \left[Q_{0} + (1 - Q_{0}) \cdot F_{T}(t) \right] dt = Q_{0} \cdot \tau + (1 - Q_{0}) \cdot \int_{0}^{\tau} F_{T}(t) dt$$

2) During the maintenance period the component remains disconnected and the average DOWNtime is the whole maintenance time:

$$\overline{T}_{D(AB)} = \tau_R$$

3) The component can be found failed because, by error, it remained disabled from the previous maintenance or because it failed on demand or randomly before *t*. The average DOWNtime is:

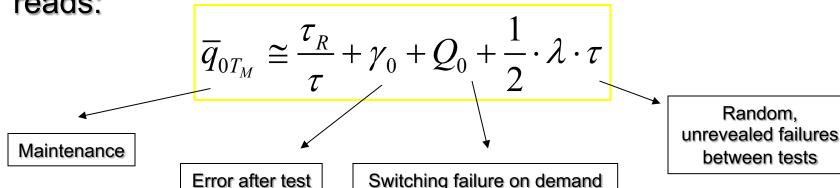
$$q_{BC}(t) = \gamma_0 + (1 - \gamma_0) \cdot [Q_0 + (1 - Q_0) \cdot F_T(t)]$$

$$\overline{T}_{D(BC)} = \int_{0}^{\tau} q_{BC}(t)dt = \gamma_{0} \cdot \tau + (1 - \gamma_{0}) \cdot \left[Q_{0} \cdot \tau + (1 - Q_{0}) \cdot \int_{0}^{\tau} F_{T}(t)dt \right]$$

4) The normal maintenance cycle is repeated throughout the component lifetime T_M . The number of repetitions, i.e. the number of AB-BC maintenance cycles, is:

$$k = \frac{T_M}{\tau + \tau_R}$$

The total expected DOWNtime is:


$$\overline{T}_{D} = Q_{0}\tau + (1 - Q_{0}) \cdot \int_{0}^{\tau} F_{T}(t)dt + \frac{T_{M}}{\tau + \tau_{R}} \cdot \left\{ \tau_{R} + \gamma_{0}\tau + (1 - \gamma_{0}) \cdot \left[Q_{0} \cdot \tau + (1 - Q_{0}) \cdot \int_{0}^{\tau} F_{T}(t)dt \right] \right\}$$

$$\overline{q}_{T_{M}} = \frac{\overline{T}_{D(0T_{M})}}{T_{M}} = \frac{Q_{0}\tau}{T_{M}} + \frac{1 - Q_{0}}{T_{M}} \cdot \int_{0}^{\tau} F_{T}(t)dt + \frac{1}{\tau + \tau_{R}} \cdot \left\{ \tau_{R} + \gamma_{0}\tau + (1 - \gamma_{0}) \cdot \left[Q_{0} \cdot \tau + (1 - Q_{0}) \cdot \int_{0}^{\tau} F_{T}(t)dt \right] \right\}$$

 Q_0 and $F_T(t)$ are generally small, and since typically $\tau_R << \tau$ and $\tau << T_M$, the average unavailability can be simplified to:

$$\overline{q}_{T_M} \cong \frac{\tau_R}{\tau} + \gamma_0 + (1 - \gamma_0) \cdot \left[Q_0 + \frac{1 - Q_0}{\tau} \cdot \int_0^{\tau} F_T(t) dt \right]$$

- Consider an exponential component with small, constant failure rate $\lambda \Rightarrow F_{\tau}(t) = 1 - e^{-\lambda \cdot t} \cong \lambda \cdot t$
- Since typically $\gamma_0 <<1$, $Q_0 <<1$, the average unavailability reads:

Prof. Enrico Zio

Random,

between tests