
Anomaly Detection by Generative Adversarial Networks with AdaBoost
Ensemble Learning

Mingjing Xua, Piero Baraldia,∗, Xuefei Lub, Enrico Zioa,c,d

aEnergy Department, Politecnico di Milano, Via La Masa 34, 20156 Milan, Italy
bUniversity of Edinburgh Business School, 29 Buccleuch Place, Edinburgh, EH8 9JS, UK

cMINES ParisTech, PSL Research University, CRC, Sophia Antipolis, France
dAramis Srl, Via pergolesi 5, Milano, Italy

Abstract

Due to the scarcity of abnormal condition data in industrial applications, one-class classification models
trained using only normal condition data are typically considered for anomaly detection. The development of
these models for practical use is challenged by the complexity of the distribution of the normal condition data,
which is typically non-smooth, multidimensional and characterized by long-term temporal dependencies.
Inspired by the idea of Generative Adversarial Networks (GANs), this work develops an anomaly detection
model based on the use of an Auto-Encoder (AE) formed by the generator of a GAN and an auxiliary
encoder. The reconstruction error of the AE is, then, used as anomaly score to detect anomalies. The
addition of an adaptive noise to the data and the development of an AdaBoost-based ensemble learning
scheme to detect anomalies in small time slices of multivariate time series are the main methodological
novelties proposed in this work. Also, the AE-GAN model hyperparameters are optimized without the need
of performing trial and error approaches on test data, by defining a lower bound of the Jensen-Shannon
divergence between generator and normal data distributions. Extensive experiments on synthetic and real
industrial datasets show that the proposed ensembled AE-GAN model outperforms other state-of-the-art
anomaly detection methods.

Keywords: Anomaly Detection, One-Class Classification, Long-term Multivariate Time Series, Auto
Encoder, Generative Adversarial Networks, AdaBoost Ensemble Learning

1. Introduction

Anomaly detection aims at identifying novel and unexpected patterns within the data collected [1, 2]. It
plays a critical role in several industrial domains, such as network intrusion detection [3, 4], transportation
monitoring [5, 6], video anomalous behavior recognition [7] and component fault diagnostics [2, 8, 9, 10]. This
latter application is made possible by the fact that industrial components are equipped with sensors that
measure a variety of signals for the control of their operation and the monitoring of their behavior: signal
observations which deviate from regular observations can indicate a shift in the behavior of the component,
caused by the occurrence of anomalous conditions, e.g. deterioration or damage [11, 12, 13, 14, 15].

Anomaly detection approaches are typically categorized as supervised, unsupervised and one-class clas-
sification [16]. Supervised methods require the availability of a sufficient number of signal measurements
labelled with the information on the component health state, i.e. normal or anomalous. However, this is
rare in practice and supervised methods are often impractical in many industrial applications [17]. Un-
supervised methods do not need labelled data, but they typically assume that i) a sufficient number of
patterns collected in both normal and anomalous conditions is available, ii) anomalous condition patterns

∗Corresponding author
Email address: piero.baraldi@polimi.it (Piero Baraldi)

Preprint submitted to Journal of LATEX Templates February 15, 2024

are sufficiently dissimilar to normal condition patterns to allow discriminating them [18]. However, on
the contrary, in many industrial applications anomalous conditions are rare and changes in operating and
environmental conditions can cause variations of the measured signals that are larger than the variations
caused by the onset of a degradation or the damage of a component, at least at the early stages after its
occurrence. For this reason, in this work we consider one-class classification methods [19, 20], which are
trained on a dataset containing only normal condition patterns. Among them, Support Vector Machines
(SVMs) [2], nearest neighbor-based methods [8], statistical models [21] and Deep Learning (DL) [22] based
approaches are the most employed.

One-Class SVM (OC-SVM) defines a kernel to identify the region that fits the distribution of the normal
condition data. Then, if a test pattern falls out of the learned region, it is declared as anomalous. A hybrid
model combining OC-SVM and deep learning has been developed to detect anomalies in high-dimensional
and large-scale settings in [23]. A model combining OC-SVM with a Self-Organized Feature Map (SOFM)
has been developed for detecting cyberattacks such as worms and spy-wares [24]. Nearest neighbors-based
methods use properly defined measures of dissimilarity among patterns and assume that normal condition
data are located in dense neighborhoods, whereas anomalies are far from their closest neighbors [25]. For
example, the Auto Associative Kernel Regression (AAKR) method has been used to detect anomalous
conditions in an energy production plant in [26]. The method is based on the reconstruction of the test
pattern as a weighted sum of normal condition patterns, where the weights are proportional to the patterns
similarity to the test pattern. Two similarity measures based on the Euclidean distance have been introduced
in [26] and [27], respectively. Then, if the reconstruction error exceeds an alarm threshold, the test pattern is
identified as abnormal. The Sequential Hausdorff Nearest-Neighbor Conformal Anomaly Detector (SHNN-
CAD) has been proposed and investigated for online learning and sequential anomaly detection in signal
trajectories [28]. Statistical model-based methods such as Gaussian Mixture Models (GMMs) and Markov
statistics construct probabilistic models describing the normal condition patterns: test patterns are, then,
detected as anomalous if their likelihood of occurrence based on the probabilistic model of the normal
condition data is low [21]. Markov statistics has been applied with success to anomaly detection in fast
streaming temporal data [29]. A deep generative model stacked with multipleGMM -layers has been proposed
to detect abnormal events in video surveillance in [30]. Deep learning-based anomaly detection methods have
recently gained a lot of attention due to their ability of effectively learning the characteristics of complex
data, such as multivariate time series. For instance, a Multi-Scale Convolutional Recurrent Encoder-Decoder
(MSCRED) model has been proposed to perform anomaly detection in power plants [31]. A smoothness-
inducing sequential Variational Auto-Encoder (VAE) model, combined with Recurrent Neural Networks
(RNNs) to capture latent temporal structures in time series, has been developed for anomaly detection in
multivariate time series [32]. These deep learning-based methods assume that small reconstruction errors are
achieved for normal condition data, whereas large reconstruction errors are obtained for anomalous condition
patterns [33]. However, detecting anomalies using conventional deep learning methods like RNNs, Auto-
Encoders and hybrid DNNs can be challenging due to the long-term time dependency and cross correlation
among time series [34].

Generative Adversarial Network (GAN) is a deep learning method which consists of a generator and a
discriminator, where the generator is trained to reproduce the training data distribution and the discrim-
inator provides the probability of a new pattern coming from the same training [35]. GAN is capable
of learning complex distributions, for instance, a low dimensional manifold embedded in high-dimensional
space [36]. GAN -based anomaly detection techniques were first proposed in [37, 38] for medical image
analysis. In the transport field, a data augmentation method has been proposed for synthesizing anomalies
of the minority classes in lane detection. The method uses GAN to learn the distribution of anomalous
condition patterns, and the synthesized anomalies are then used to train a supervised anomaly detection
model [6]. However, similarly to the other data augmentation methods, the model cannot be used when
abnormal condition patterns are completely missing. A deep End-to-End One-Class Classifier applying the
adversarial training technique like GAN has been proposed [33], in which the model is composed of an
Auto-Encoder and a Discriminator which are trained in an adversarial way: the Auto-Encoder can recon-
struct well the normal condition patterns but not the abnormal (unseen) patterns; then, anomalies can be
detected by the Discriminator [33].

2

The objective of this work is to develop a methodology for detecting anomalies in components behaviour
using measurements collected from components in normal conditions.

We propose an Auto-Encoder aided GAN (AE-GAN) to associate an anomaly score to each (small)
time slice in the synchronized multidimensional signal time series; then, an ensembled anomaly detector
is developed by adapting the AdaBoost ensemble learning scheme to output the final anomaly detection
result. More specifically, AE-GAN is composed of an encoder network and a GAN. Firstly, the GAN is
trained to obtain a generator which reproduces the distribution of normal condition patterns, i.e. time slices
of multivariate time series. Then, the encoder and the trained generator form an Auto-Encoder, which is
trained to minimize the reconstruction errors of normal condition patterns (note that the parameters of the
generator are fixed during the Auto-Encoder training). The test pattern is declared as anomalous if the
Auto-Encoder reconstruction error is larger than a certain threshold. Two AE-GANs variants are developed
in this work: variant a) sets up an individual AE-GAN for every time slice, whereas variant b) sets up a
universal AE-GAN for all time slices, which means that the universal AE-GAN reconstructs all time slices
and obtains their reconstruction errors.

A synthetic case study is worked out to verify the performance of the AE-GAN, and a real-world industrial
case study is performed to verify the feasibility of the ensembled AE-GAN developed by using AdaBoost-
based ensemble learning scheme. The synthetic case study considers three complex distributions of normal
condition patterns, e.g. Cone, Two-Gaussian Ball and Bowl Manifold distributions, to simulate the realistic
difficulties encountered in industry. The real-world industrial case considers automatic doors in high speed
trains: data collected during doors opening and closing are used to detect whether the doors are working
in normal or anomalous conditions. The proposed method shows superior performance in comparison with
state-of-the-art anomaly detection techniques, e.g., OC-SVM, AAKR, GMM and Auto-Encoder.

The contributions of this work are:

1) An AE-GAN is originally developed to detect anomalies in data characterized by manifold distributions;
2) A lower bound of Jensen-Shannon divergence between real data and generator distributions based on

GAN is defined and used to guide the search for the AE-GAN model hyper-parameters;
3) The proposed addition of adaptive noise to the data solves anomaly detection problems for data distri-

butions with non-smooth density;
4) The proposed AdaBoost-based learning scheme not only outputs the overall anomaly detection result

of long-term time series, but also learns the weights for the time slices which contribute to anomaly
detection.

The remaining of the paper is organized as follows: Section 2 states the problem and illustrates the
work objectives; Section 3 introduces the background and preliminaries of the proposed methodology and
Section 4 specializes the proposed methodology of anomaly detection for long-term multivariate time series;
Section 5 introduces the numerical synthetic case study with three complex distributions and the real-world
industrial case study of the automatic doors in high speed trains, and then discusses the results obtained;
finally, some conclusions and remarks are given in Section 6.

2. Problem Statement

We consider Nnormal components operating in normal conditions. For each component, Nf features
related to its health condition are measured. The Nf × L matrix, Xr, r = 1, . . . , Nnormal, contains the
feature time series data of length L collected during operation in normal conditions. The aim of this work
is to build a detection model to identify the normal/abnormal health state of a test component given the
measurements Xtest. The model is developed using the normal condition data Xr, r = 1, . . . , Nnormal.

3. Preliminary and Background

3.1. Generative Adversarial Networks

A GAN consists of a generator and a discriminator, where the generator is a multilayer perceptron
aiming at regenerating patterns from the data distribution of the training set and the discriminator is a

3

multilayer perceptron aiming at providing the probability that a generated pattern comes from the same
data distribution [35]. The GAN architecture is shown in Figure 1.

x E G D True
Fake

G(E(x; θ*E); θ*G)zoptimal =
E(x; θ*E)

Large

Anomaly Score

= x−G(E(x; θ*E); θ*G) 2

True Data Generated
Distribution

Abnormal

Data

Reconstructed

Data

G D True
Fake

xTrue Data

G(z)
pz(z)

z
Gaussian

Noise Generator Discriminator

or

Figure 1: The GAN architecture.

The generator G (z; θG) : Z → X with associated parameters θG maps the latent variable z from the
latent space Z ⊆ RNz to the data space of patterns X ⊆ RNx . We denote the data pattern as x,x ∈ X ,
which follows the probability distribution pdata; we denote the latent variable as z, z ∈ Z; entries of vector
z are independent with each other and are usually assumed to follow a standard Gaussian distribution
N (0, 1). The discriminator D (x; θD) : X → [0, 1], with associated parameters θD, discriminates whether
the input pattern x is true or is a generated pattern, by estimating the probability that x comes from the
true data distribution pdata. The generator G is trained to approximate pdata, whereas the discriminator D
is trained to distinguish the training patterns from the patterns generated by G. Mathematically, the GAN
is trained by conducting a minmax optimization with loss function F(θD, θG):

min
θG

max
θD
F(θD, θG) = Ex∼pdata

[logD (x;θD)] +

Ez∼pz
[log(1−D(G (z;θG) ; θD))]

(1)

where pz (z) is the prior probability distribution function of latent variable z.
For any given generator parameter θG, the optimal discriminator is (Proposition 1 in [35]):

D (x; θ∗D(θG)) =
pdata(x)

pdata (x) + pG(x)
. (2)

Where pG(x) is the data distribution of generated patterns. Notice that the optimal discriminator parameter
θ∗D(θG) depends on θG; then, θD in Equation (1) is substituted with the optimal discriminator parameter
θ∗D(θG) and the minmax optimization with loss function F(θD, θG) becomes [35]:

min
θG

max
θD
F(θD, θG) = min

θG
F (θ∗D (θG) , θG)

= min
θG

[−log (4)+

KL(pdata ∥
pdata + pG

2
) +KL(pG ∥

pdata + pG
2

)]

= min
θG

[−log (4) + 2 · JSD(pdata ∥ pG)]

= −log (4) + 2 ·min
θG

JSD(pdata ∥ pG)

(3)

where KL(· ∥ ·) is the Kullback–Leibler (K-L) divergence and JSD(· ∥ ·) is the Jensen–Shannon (J-S)

4

divergence, which measure the dissimilarity between two probability distributions. Given the log base e in
Equation (1), the J-S divergence is bounded in the range [0, ln(2)] and a J-S divergence equal to 0 indicates
that the two distributions are identical.

In practice, the generator is trained by minimizing JSD(pdata ∥ pG). However, using GAN to generate
long-term multi-variate time series is still a challenge [39].

3.2. Auto-Encoder

An Auto-Encoder is a neural network composed of an encoder and a generator, trained to replicate
its input data [40]. The encoder maps the data space X into the latent space Z, whereas the generator
reconstructs the input data from the latent variable z.

A typical form of an encoder E is a composition of a nonlinear activation function f and an affine
transformation:

E (x; θE) = f(WEx+ bE) (4)

where θE = {WE , bE} is the set of encoder parameters, with WE being the Nz × Nx weight matrix and
bE the offset vector of dimension Nz.

In the generator G, the resulting latent variable z is, then, mapped back to a reconstructed Nx-
dimensional vector x̂, whose typical form is similar to E:

G (z; θG) = fG(WGz + bG) (5)

where θG = {WG, bG} is the set of generator parameters, with WG being the Nx ×Nz weight matrix and
bG the offset vector of dimension Nx; fG is the nonlinear activation function, e.g. tanh(·).

The Auto-Encoder is trained by minimizing the reconstruction error Lrec, which quantifies the expected
distance between the input vector x and its reconstruction x̂:

Lrec = Ex∈X ∥x− x̂∥2 = Ex∈X ∥x−G(E(x))∥2 (6)

where ‘∥·∥’ denotes the L2 norm.

3.3. AdaBoost Ensemble learning

AdaBoost is an ensemble learning algorithm which constructs a boosted classifier as linear combination
of several weak classifiers [41, 42]. In practice, the output of the boosted classifier is the weighted sum of
the outputs of the weak classifiers. AdaBoost is adaptive in the sense that subsequent weak learners are
tweaked in favor of those instances misclassified by previous classifiers.

For a two-class classification task, suppose that there are N training patterns x1,. . . ,xi,. . . ,xN with
target labels l1, . . . , li, . . . lN , li ∈ {−1, 1}. The AdaBoost algorithm builds an ensembled classifier H : x→
{−1, 1} by linearly combining the base classifiers ht : x→ {−1, 1}:

H (x) = sgn

(
T∑

t=1

αtht (x)

)
(7)

where ht denotes the t-th base classifier, αt denotes the weight assigned to ht and T is the number of base
classifiers.

3.4. Adam Optimization

The Adam optimization algorithm is an extension to stochastic gradient descent that has recently seen
broad adoption for deep learning applications in computer vision and natural language processing [43]. Adam
optimization combines the advantages of two other extensions of stochastic gradient descent, specifically:

• Adaptive Gradient Algorithm (AdaGrad) that maintains a per-parameter learning rate that
improves performance on problems with sparse gradients.

5

• Root Mean Square Propagation (RMSProp) that also maintains per-parameter learning rates
that are adapted based on the average of recent magnitudes of the gradients for the weight (e.g. how
quickly it is changing); this means that the algorithm does well on non-stationary problems.

The Adam algorithm that realizes the benefits of both AdaGrad and RMSProp is illustrated in Algorithm 1,
below.

Algorithm 1: Adam Optimization

Require: Objective function f(x; θ) is F(x; θD, θG) for GAN and Lrec(x; θE , θG) for AE, initial
parameters θ0 = {θD, θG} for GAN and θ0 = {θE , θG} for AE, learning rate η,
exponential decay rates β1, β2 for moment estimates, tolerance parameter ϵ=10−8 for
numerical stability, and decision rule for declaring convergence of θt.

1 m0, v0, t← [0, 0, 0] // Initialize moment estimates

2 while θt has not converged do
3 t← t+ 1 // Update iteration step

4 gt ← ∇θf(x; θt−1) // Compute gradient of objective

5 mt ← β1 ·mt−1 + (1− β1) · gt // Update first moment estimate

6 vt ← β2 · vt−1 + (1− β2) · g2t // Update second moment estimate

7 m̂t ← mt/(1− βt
1) // Compute bias-corrected first moment estimate

8 v̂t ← vt/(1− βt
2) // Compute bias-corrected second raw moment estimate

9 Adam (∇θf (x; θt−1) ;β1, β2) = m̂t/(
√
v̂t + ϵ) // Obtain updating term

10 θt ← θt−1 − η ·Adam(∇θf (x; θt−1) ;β1, β2) // Update objective parameters

Return: θt // Resulting parameter

4. The Proposed Anomaly Detection Methodology

4.1. Base Anomaly Detector with Auto Encoder aided Generative Adversarial Networks (AE-GAN)

The proposed base anomaly detector utilizes a deep learning model based on GAN to reconstruct the
patterns and measure the reconstruction error to discriminate the abnormal pattern. The proposed approach
includes two main steps: 1) training GAN on normal condition patterns and 2) query the latent variable
of patterns and reconstruct patterns.

In step 1), the GAN is trained to minimize JSD(pG ∥ pXnormal
), where Xnormal denotes the normal

patterns set and pXnormal
the probability distribution of the normal patterns. Notice that if the generator

in GAN is perfectly trained, then JSD(pG ∥ pXnormal
) converges to 0 [44]. Let θG = {WG, bG} denote the

generator parameter and θD = {WD, bD} denote the discriminator parameter. For brevity, the generator
in GAN can be formulated as the same of AutoEncoder in Section 3.2, Equation (5). Discriminator D is
formulated as:

D (x; θD) = fD(WDx+ bD) (8)

where WD is a Nz ×Nx weight matrix, bD is an offset vector of dimensionality Nz and fD is the nonlinear
activation function, e.g. fD = sigmoid(·). For brevity, a single-layer neural network for G and D is
illustrated, whereas multiple-layers neural networks are employed in the case study. For the purpose of
anomaly detection, in the GAN loss function (Equation (1)), we set pdata = pXnormal

and pz as a Gaussian
distribution of N (0, 1). Then, the GAN loss function F becomes:

min
θG

max
θD
F (θD, θG) = Ex∼pXnormal

[logD (x;θD)] +

Ez∼N (0,1)[log(1−D(G (z;θG) ; θD))]
(9)

6

Note that the components of vector z are independent of each other. Before the optimization of generator
parameter θG, the discriminator parameter for a given generator, θ∗D(θG), is obtained firstly by a gradient
optimization method based on Adam (Section 3.4):

θ
(k+1)
D = θ

(k)
D + η ·Adam

(
∇θDF(θ

(k)
D , θG);β1, β2

)
, (10)

θ∗D (θG) = lim
k→∞

θ
(k)
D , (11)

where the updating term Adam
(
∇θDF(θ

(k)
D , θG);β1, β2

)
is determined by ∇θDF(θ

(k)
D , θG), the gradient of

the loss function F with respect to θD, and β1, β2 are the control parameters of Adam [43], η is the learning

rate, θ
(k)
D is the optimization result at the previous k -th gradient descent iteration step and θ

(0)
D = θD. The

generator parameter is also optimized by the Adam (Section 3.4):

θG = θG − η ·Adam
(
∇θGF(θ

(k)
D , θG);β1, β2

)
. (12)

where the updating term Adam
(
∇θGF(θ

(k)
D , θG);β1, β2

)
is determined by ∇θGF(θ

(k)
D , θG), the gradient of

the loss function F with respect to θG. Note that for each updating step of θG (Equation (12)), there are k

updating steps of θ
(k)
D (Equation (10)), because θ

(k)
D depends on θG.

In step 2), in order to obtain the reconstruction x̂ of data x, it is necessary to first query its latent
variable z ∈ Z and, then, map z into the data space X by generator, x̂ = G(z). For the anomaly detection
problem, it is usually assumed that the probability distribution of abnormal data is significantly different
from that of normal data [45]: thus, for an optimal generator G, given an optimal query zoptimal of a normal

condition pattern x, the reconstruction error ∥x−G(zoptimal)∥2 should be zero, whereas, on the contrary,
given an abnormal condition pattern, the reconstruction error is large because the generator always maps
its query z into a normal data. The literature work [37] regards the search of zoptimal as an optimization

task, minz ∥x−G(z; θ∗G)∥
2
. However, this optimization may suffer from issues such as high computational

complexity caused by the need to perform an optimization of z for each pattern x [46]. Therefore, this
work proposes to use an encoder E as an auxiliary network for searching zoptimal w.r.t. data x [47]. Unlike
the direct optimization of z, the auxiliary encoder E and the generator G form an auto-encoder to train a
querying model. In the auxiliary auto-encoder, only the encoder E is optimized, wherein the optimization
process is achieved by minimizing the reconstruction error:

Lrec (x; θE , θ
∗
G) = Ex∈Xnormal

∥x−G(E (x; θE) ; θ
∗
G)∥

2
,

θ∗E = argmin
θE

Lrec (x; θE , θ
∗
G) ,

(13)

zoptimal = E (x; θ∗E) , (14)

where θ∗E is the optimal parameter for encoder E. The encoder parameter θE is optimized by Adam
(Section 3.4):

θE = θE − η ·Adam (∇θELrec (x; θE , θ
∗
G) ;β1, β2) . (15)

where the updating term Adam (∇θELrec (x; θE , θ
∗
G) ;β1, β2) is determined by ∇θELrec (x; θE , θ

∗
G), the gra-

dient of the loss function Lrec with respect to θE . The above gradient-based optimization is typically applied
using a small learning rate and multiple iteration steps, which leads to a large number of epochs Nepoch [43].

The anomaly score function of pattern x is:

A(x) = ∥x− x̂∥2 = ∥x−G(E (x; θ∗E) ; θ
∗
G)∥

2
(16)

7

If A(x) is larger than a threshold value, Athreshold, set considering normal condition data:

Athreshold = max
x∈Xnormal

A(x) (17)

then x is declared as anomalous, otherwise, x is normal. The anomaly detection mechanism is illustrated in
Figure 2. If an abnormal data is input into the AE-GAN model, the reconstruction of it will locate in the
region of normal data distribution, so the reconstruction error will be large and the pattern will be declared
as anomalous.

x E G D True
Fake

G(E(x; θ*E); θ*G)zoptimal =
E(x; θ*E)

Large

Anomaly Score

= x−G(E(x; θ*E); θ*G) 2

True Data Generated
Distribution

Abnormal

Data

Reconstructed

Data

G D True
Fake

xTrue Data

G(z)
pz(z)

z
Gaussian

Noise Generator Discriminator

or

Figure 2: The mechanism of anomaly detection by using AE-GAN.

4.2. AE-GAN hyper-parameter optimization

The setting of GAN hyperparameters has a major impact on the convergence efficiency and stability
of GAN training [48]. Although JSD(pG ∥ pXnormal

) can be used as an actual objective to optimize the
GAN architecture, its true value cannot be obtained during GAN training [49]. Inspired by [50], this work
derives a lower bound of J-S divergence between pG and pXnormal

, denoted as JSDLB(pG ∥ pXnormal
) which

can be computed during training and, therefore, used for the setting of the hyperparameters. Such as,
number of hidden neurons, number of hidden layers, size of latent space in generator, Nz, iteration steps of
discriminator per each iteration of generator, k, and number of epochs, Nepoch.

The optimization objective for the generator satisfies:

F
(
θ
(k)
D , θG

)
< max

θD
F (θD, θG) = F (θ∗D(θG), θG) (18)

Then, according to Equation (3), we obtain:

F
(
θ
(k)
D , θG

)
< −log4 + 2 · JSD(pG ∥ pXnormal

)

equivalent⇐⇒ F
(
θ
(k)
D , θG

)
/2 + log2︸ ︷︷ ︸

JSDLB(pG ∥ pXnormal
)

< JSD(pG ∥ pXnormal
) (19)

8

where F
(
θ
(k)
D , θG

)
/2 + log2 is defined as JSDLB(pG ∥ pXnormal

). Notice that the encoder module of the

AE-GAN shares the same network architecture with the discriminator module, and encoder, generator and
discriminator are all multiple layers perceptrons with the same number of hidden layers, and each hidden
layer has the same number of hidden neurons.

4.3. Ensembled Anomaly Detector by AdaBoost Algorithm

This section details the proposed ensembled anomaly detection method based on AE-GAN. The illus-
tration of the methodology is shown in Figure 3. There are two issues in real industrial applications which
cause difficulties for anomaly detection with AE-GAN : 1) the densities of data distributions are not smooth
and 2) the curse of dimensionality.

X̃(1 + (m − 1)Lw : mLw)

Time

Feature

k = 1

k = 2

… …

k = Nf

Normalized
Measurement X̃

The Component
Measurement

X X̃k(i)

data of m-th window

Normalization

x(m) = vec (X̃(1 + (m − 1)Lw : mLw)) x′ (m) = [1 + (m − 1)Lw

L
; vec (X̃(1 + (m − 1)Lw : mLw))]

m = 1,...,Nm

Normalized time index

AE-GAN variant a AE-GAN variant b

A = [A1, A2, . . . , ANm] Anomaly Score
Vector

Ensemble Anomaly Detector

H(A) = sgn (
Nm

∑
m=1

αm ⋅ hm(A))
-1 : Normal
1 : Abnormal

variant a variant b

Figure 3: The flowchart of the ensembled anomaly detection method based on AE-GAN with variants a) and b).

With respect to 1), non-smooth data distribution occur in many industrial applications [51], including
switching of equipment operational conditions, such as equipment turning on and off [52]. In our work, we
have found that trainingGAN on distributions whose densities are not smooth prevents JSDLB(pG ∥ pXnormal

)
from converging (see Figure 4), which results in the impossibility of obtaining the optimal generator and
detecting anomalies using the base AE-GAN anomaly detector.

According to [53], if the probability distributions pG and pXnormal
are disjoint manifolds, then the optimal

discriminator D (x;θ∗D(θG)) = 1 for any true data x ∈ Xnormal, but on the other hand, it is 0 for any gener-

9

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

5

10

15

20

25

𝒙𝒙0 − 𝐺𝐺(𝑧𝑧) 2

𝑧𝑧

Local minimum
Global minimum

Iteration

𝐽𝐽𝐽𝐽𝐷𝐷𝐿𝐿𝐿𝐿 𝑝𝑝𝐺𝐺 �𝑝𝑝𝒳𝒳𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

𝐽𝐽𝐽𝐽𝐷𝐷𝐿𝐿𝐿𝐿 𝑝𝑝𝐺𝐺 �𝑝𝑝𝒳𝒳𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

Iteration

(a) (b)

Figure 4: a) example of distribution with non-smooth density in an industrial case; b) the plot of JSDLB(pG ∥ pXnormal
) vs.

iteration number for generator.

ated data G(z), and thus GAN loss F(θ∗D(θG), θG) will be zero. As a result, the value of JSD(pG ∥ pXnormal
)

is equal to ln(2) ≈ 0.69. Figure 4b illustrates a situation in which the distributions pXnormal
, whose density

is not smooth, and pG are disjoint. According to [53], when a Gaussian noise N (0, σ2) is added on the
data distribution pXnormal

, this latter will be converted into a distribution with continuous density. As a
consequence, the gradient of JSD(pG ∥ pXnormal

) over θG will not vanish during the training of GAN, and
JSD(pG ∥ pXnormal

) will converge.
Therefore, this work defines a normally distributed random variable ϵk(i), which represents an adap-

tive noise added on the data Xr
k(i), denoting the k-th feature at the i-th time stamp from r-th healthy

components. The data with adaptive noise X ′r
k(i), then, becomes:

X ′r
k (i) = Xr

k (i) + ϵk (i) ,

ϵk (i) ∼ N
(
0, σk (i)

2
)
, k = 1, . . . , Nf , i = 1, . . . , L

(20)

σk(i) = γ · std
(
{Xr

k(i)}r=1,...,Nnormal

)
+ δ (21)

where the standard deviation σk(i) is a variable that changes according to the standard deviation of
{Xr

k(i)}r=1,...,Nnormal
, γ ∈ (0,+∞) is a scaling factor and δ ∈ (0,+∞) is a bias term to ensure that

σk(i) > 0, because Xr
k(i) can be a constant for r = 1, . . . , Nnormal.

With respect to 2), if the data dimensionality Nx is much larger than the number of the patterns,
it is usually considered as high dimensionality which could make computation infeasible or computation
complexity increasing exponentially. The typical situation of industrial application is long-term multivariate
time series, with a large number of features Nf and long sequence length L, which makes it become a high-
dimensional problem. As shown in Figure 5, which reports the evolution of JSDLB(pG ∥ pXnormal

) over
iteration number of training GAN in a real industrial application characterized by a large number of features
and long sequence length, JSDLB(pG ∥ pXnormal

) tends to the constant ln(2) during the GAN training.
To reduce the dimensionality of long-term multivariate time series, this work proposes to use non-

overlapped sliding time windows to split multivariate time series and treat each time window as a separate
pattern for anomaly detection; then, AdaBoost algorithm is adopted to aggregate the anomaly detection
results for each time window. Particularly, this work has developed two variants: variant a) trains individual
AE-GANs for each time window and variant b) trains one general AE-GAN for all time windows.

Before the training of AE-GANs and testing for anomaly detection, the training normal data and testing

data are normalized in the range [−1, 1]. Let X̃k(i) be the general notation of the k-th feature at the i-th time
stamp for the normalized training/test data. In the training phase, data is added with the adaptive noise,

10

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

5

10

15

20

25

𝒙𝒙0 − 𝐺𝐺(𝑧𝑧) 2

𝑧𝑧

Local minimum
Global minimum

Iteration

𝐽𝐽𝐽𝐽𝐷𝐷𝐿𝐿𝐿𝐿 𝑝𝑝𝐺𝐺 �𝑝𝑝𝒳𝒳𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

𝐽𝐽𝐽𝐽𝐷𝐷𝐿𝐿𝐿𝐿 𝑝𝑝𝐺𝐺 �𝑝𝑝𝒳𝒳𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

Iteration

(a) (b)

Figure 5: the plot of the JSDLB(pG ∥ pXnormal
) of an industrial application example w.r.t iteration number for generator.

whereas in the testing phase, there is no need to add adaptive noise to the data. Thus, the normalization
methods for the training and testing phases are as follows:

X ′max
k (i) = max

{
X ′r

k (i)
}
r=1,...,Nnormal

X ′min
k (i) = min

{
X ′r

k (i)
}
r=1,...,Nnormal

X̃k(i) = 2 · Xk (i) + ϵk (i)−X ′min
k (i)

X ′max
k (i)−X ′min

k (i)
− 1 (for training phase)

X̃k(i) = 2 · Xk (i)−X ′min
k (i)

X ′max
k (i)−X ′min

k (i)
− 1 (for testing phase)

(22)

Variant a). Let x(m) denote generic data in the m-th time window, LW the size of the time window
and Nm = ceil(L

LW
) the number of time windows; this work assigns x(m) with the normalized data in the

m-th window:

x (m) = vec
(
X̃ (1 + (m− 1)LW : mLW)

)
, m = 1, . . . , Nm (23)

where vec(·) denotes the matrix vectorization operation, which stacks the columns of the matrix on top of
one another. Note that the time index interval for the m-th window is 1 + (m− 1)LW : mLW . This work
constructs a data set of all normal condition patterns in window m:

Xnormal,m =
{
x1 (m) , . . . ,xr (m) , . . . ,xNnormal (m)

}
,

m = 1, . . . , Nm

(24)

where xr (m) denotes data in the m-th time window collected from healthy components r = 1, . . . ,Nnormal.
The proposed AE-GAN is trained on the data set Xnormal,m for each m-th time window by applying
Equations (9)(10)(12)(13); then, the optimal generator G

(
z; θ∗Gm

)
and encoder E

(
x; θ∗Em

)
for the m-th

time window can be obtained. Finally, the anomaly score function of the m-th time window is obtained:

11

Aa (x (m) ;m) =
∥∥x (m)−G

(
E
(
x (m) ;θ∗Em

)
; θ∗Gm

)∥∥2 ,
m = 1, . . . , Nm

(25)

The AE-GAN anomaly detector with variant a) is illustrated in Figure 6, where Am and Am+1 denote the
anomaly score of the m-th window and m+1 -th window, respectively.

AE-GAN variant a AE-GAN variant b

x(m) Em Gm Dm

𝒜a (x(m); m) Am

x(m + 1) Em+1 Gm+1 Dm+1

𝒜a (x(m + 1); m + 1) Am+1

m-th GAN
m-th

Encoder

m+1-th GAN
 m+1-th
Encoder

x′(m) E G D

𝒜b (x′(m)) Am

universal GAN
universal
Encoder

…
…

…
…

…
…

…
…

…

Figure 6: The AE-GAN anomaly detector with variant a).

Variant b). Let x′ (m) denote the concatenation of the normalized time index in the range [0, 1] and the
generic data of the m-th time window:

x′ (m) =

[
1 + (m− 1) · LW

L
; vec

(
X̃ (1 + (m− 1)LW : mLW)

)]
,

m = 1, . . . , Nm

(26)

where symbol ‘;’ represents the vertical concatenation. Note that the dimension of column vector x′ (m) is
Nf · LW + 1. This work constructs the data set of normal condition patterns for all time windows:

X ′
normal =


x′1 (1) , . . . ,x′1 (m) , . . . ,x′1 (Nm) , . . . ,
x′r (1) , . . . ,x′r (m) , . . . ,x′r (Nm) , . . . ,

x′Nnormal (1) , . . . ,x′Nnormal (m) , . . . ,x′Nnormal (Nm)

 (27)

where x′r (m) denotes the data from healthy components r = 1, . . . , Nnormal. The proposed AE-GAN is
trained on the data distribution X ′

normal by applying Equations (9)(10)(12)(13); note that the size of set
X ′

normal is Nnormal × Nm. Then, the universal optimal generator G (z; θ∗G) and encoder E (x; θ∗E) for all
time windows can be obtained. Finally, the universal anomaly score function Ab (x

′ (m)) is obtained:

12

Ab (x
′ (m)) = ∥x′ (m)−G (E (x′ (m) ;θ∗E) ; θ

∗
G)∥

2
,

m = 1, . . . , Nm

(28)

The AE-GAN anomaly detector with variant b) is illustrated in Figure 7, where Am denotes the anomaly
score of the m-th window.

AE-GAN variant a AE-GAN variant b

x(m) Em Gm Dm

𝒜a (x(m); m) Am

x(m + 1) Em+1 Gm+1 Dm+1

𝒜a (x(m + 1); m + 1) Am+1

 m-th GAN
 m-th

Encoder

 m+1-th GAN
 m+1-th
Encoder

x′ (m) E G D

𝒜b (x′ (m)) Am

 universal GAN
 universal
Encoder

…
…

…
…

…
…

…
…

…

Figure 7: The AE-GAN anomaly detector with variant b).

The details of obtaining anomaly scores using AE-GAN with variant a) are contained in Algorithm 2 and
uisng AE-GAN with variant b) in Algorithm 3. Furthermore, to learn an ensembled anomaly detector based
on anomaly scores for time windows, this work adapts the AdaBoost algorithm to the one-class classification.
Let function h : A → {−1, 1} denote the base anomaly detector, where A = [A1, . . . , Am, . . . , ANm]

T
and

Am is the generic anomaly score at the m-th time window by using AE-GAN with variant a) or b), and −1
represents normal and 1 represents abnormal. Before applying AdaBoost ensemble learning, a validation nor-

mal condition dataset {Xv}v=1,...,Nv
is required and the anomaly score Av =

[
Av

1, . . . , A
v
m, . . . , Av

Nm

]T
, v =

1, . . . , Nv needs to be calculated for obtaining the anomaly score threshold [16]. The adapted AdaBoost
algorithm is showed in Algorithm 4, where o(m) = [0, . . . , 1(m− th), . . . , 0]T is a one-hot vector of dimension
Nm, in which the m-th element is 1 whereas all others are 0, Percentilec{·} represents the number in the
set that has a probability c larger than the other numbers: if c= 1, Percentilec{·} is the maximum in the
set, else if c= 0, it is the minimum in the set. In general, tuning percentile c can trade off between missed
alarms and false alarms: a higher value of c decreases missed alarms, whereas a lower value of c decreases
false alarms. λ ∼ N (0, 10−10) is a small noise term to keep stability in the AdaBoost Ensemble learning, in
particular, avoiding hm (A) = 0.

5. Case Study

5.1. Protocol and Setting

Performance Metrics. For simplicity, the normal condition pattern is noted as positive and the abnormal
condition pattern is noted as negative: true positive (tp) represents correctly classified normal condition
patterns, true negative (tn) represents correctly classified abnormal condition patterns, false positive (fp)
represents abnormal condition patterns but misclassified as normal, false negative (fn) represents normal
condition patterns but misclassified as abnormal. The following performance metrics are used to evaluate
the anomaly detection results:

• Accuracy, the fraction of correctly classified normal or abnormal condition patterns among all patterns,
which is defined by the ratio of the sum of tp and tn to the total number of tested patterns (tp+ tn+

13

Algorithm 2: Training AE-GAN for Computing Anomaly Score: variant a)

Input: Normal condition data {Xr}r=1,...,Nnormal
.

Output: Anomaly score Ar=
[
Ar

1,. . .,A
r
m,. . .,Ar

Nm

]T
for r=1,. . .,Nnormal and anomaly score

function Aa(x (m) ;m) for m=1,. . .,Nm.
Initialize: Scaling factor γ and bias term δ for adaptive noise, time window size LW .

1 Add adaptive noise and obtain X ′r by using Equations (20) (21) for r = 1, . . . , Nnormal

2 Normalize X ′r into X̃
r
in the range [−1, 1] by using Equation (22) for r = 1, . . . , Nnormal

/* Train AE-GAN model for each m-th time window */

3 for m = 1, . . . , Nm do
4 Obtain xr (m) by using Equation (23) for r = 1, . . . , Nnormal.
5 Construct set Xnormal,m by using Equation (24) and assign to Xnormal.
6 Initialize θD, θG, θE by Xavier Uniform initialization method [54].
7 for epoch = 1, . . . , Nepoch do
8 for k = 1, . . . ,K do

9 Update θ
(k)
D by Equation (10).

10 Update θG by Equation (12).

11 for epoch = 1, . . . , Nepoch do
12 Update θE by Equation (15).

13 Assign θ∗Gm
← optimized θG, θ

∗
Em
← optimized θE and obtain Aa(x (m) ;m) in Equation (25).

/* Compute Anomaly Scores */

14 for r = 1, . . . , Nnormal do
15 for m = 1, . . . , Nm do
16 Compute Anomaly Score Ar

m = Aa(x
r (m) ;m) by Equation (25).

14

Algorithm 3: Training AE-GAN for Computing Anomaly Score: variant b)

Input: Normal condition data {Xr}r=1,...,Nnormal
.

Output: Anomaly score Ar=
[
Ar

1,. . .,A
r
m,. . .,Ar

Nm

]T
for r=1,. . .,Nnormal and anomaly score

function Ab(x
′ (m) ;m) for m=1,. . .,Nm.

Initialize: Scaling factor γ and bias term δ for adaptive noise, time window size LW .

1 Add adaptive noise and obtain X ′r by using Equations (20) (21) for r = 1, . . . , Nnormal

2 Normalize X ′r into X̃
r
in the range [−1, 1] by using Equation (22) for r = 1, . . . , Nnormal

3 Obtain x′r (m) by using Equation (26) for m = 1, . . . , Nm, r = 1, . . . , Nnormal.
4 Construct set X ′

normalby using Equation (27) and assign to Xnormal.
5 Initialize θD, θG, θE by Xavier Uniform initialization method [54].
/* Train AE-GAN model */

6 for epoch = 1, . . . , Nepoch do
7 for k = 1, . . . ,K do

8 Update θ
(k)
D by Equation (10).

9 Update θG by Equation (12).

10 for epoch = 1, . . . , Nepoch do
11 Update θE by Equation (15).

12 Assign θ∗G ← optimized θG, θ
∗
E ← optimized θE and obtain Ab(x

′ (m)) in Equation (28).
/* Compute Anomaly Scores */

13 for r = 1, . . . , Nnormal do
14 for m = 1, . . . , Nm do
15 Compute Anomaly Score Ar

m = Ab(x
′r (m)) by Equation (28).

Algorithm 4: AdaBoost Ensemble Learning for Anomaly Detection

Input: Anomaly score validation set, V = {Av}v=1,...,Nv
, weak classifier h : A→ {−1, 1},

percentile number c.

Output: Ensembled classifier H (A)=sgn
(∑Nm

m=1 αm · hm (A)
)

Initialize: Weights of validation set V anomaly scores w
(1)
1 , w

(1)
2 ,. . .,w

(1)
Nv

set to 1
Nv

, initial error rate

ϵm,m=1,. . .,Nm set as 1
2 .

/* Train AdaBoost Ensemble model */

1 for m = 1, . . . , Nm do

2 Athreshold,m = Percentilec

{
(Av)

T · o(m)
}
v=1,...,Nv

.

3 Obtain classifier hm (A) = sgn(AT · o(m) −Athreshold,m + λ), with λ sampled from N (0, 10−10).

4 Obtain error rate ϵm =
∑

v,1=hm(Av) w
(m)
v , v = 1, . . . , Nv.

5 Obtain weights of classifier hm, αm = 1
2 ln(

1−ϵm
ϵm

) .

6 Update weights w
(m+1)
v = w

(m)
v eαm·hm(Av), v = 1, . . . , Nv.

7 Normalize weights w
(m+1)
v =

w(m+1)
v∑Nv

v=1 w
(m+1)
v

, v = 1, . . . , Nv.

15

fp+ fn).

Accuracy =
tp+ tn

tp+ tn+ fp+ fn

• Precision, the fraction of correctly classified normal condition patterns among patterns that are clas-
sified as normal, which is defined by the ratio of tp to the sum of tp and fp.

Precision =
tp

tp+ fp

• Recall, the fraction of correctly classified normal condition patterns among true normal condition
patterns, which is defined by the ratio of tp to the sum of tp and fn.

Recall =
tp

tp+ fn

• F-score, a score that is the harmonic mean of Precision and Recall ; this work uses the balanced F-score.

F − score =
2

1
Precision + 1

Recall

• Receiver Operating Characteristic (ROC) curve, the ROC curve is equal to the probability that a
classifier will rank a randomly chosen positive instance higher than a randomly chosen negative one,
and it is created by plotting the true normal rate (TPR) against the false positive rate (FPR) at
various threshold settings.

TPR = Recall, FPR =
fp

fp+ tn

• Area Under the ROC Curve (AUC), calculated by using an average of a number of trapezoidal ap-
proximations [55].

The range of the performance metrics Accuracy, Precision, Recall, F-score and AUC for anomaly detec-
tion is [0, 1], and larger value means better performance.

Methods considered for the results comparison. This work compares the base anomaly detector with AE-
GAN and an AdaBoost ensembled AE-GAN with other state-of-the-art anomaly detection methods, such
as OC-SVM, AAKR, GMM, AE and AnoGAN. Firstly, base anomaly detector with AE-GAN is compared
with OC-SVM, AAKR, GMM, AE and AnoGAN on the synthetic dataset for verifying the effectiveness.
Secondly, AdaBoost ensembled AE-GAN with variants a) and b) is compared with OC-SVM, AAKR, GMM
and AE, and also, compared with four ensembled approaches based on OC-SVM, AAKR, GMM and AE
respectively, in which each ensembled approach uses the adapted AdaBoost algorithm (Algorithm 4) to learn
an ensembled anomaly detector for each time window.

OC-SVM for anomaly detection [56] is formulated to estimate the support of a high-dimensional distri-
bution, based on which it can find the margin of normal data distribution and conduct anomaly detection
tasks. OC-SVM generates a score function, f (x; θOC−SVM) = 0.5

∑
j α̂jG(x,xj) to evaluate patterns,

where θOC−SVM = {α̂j}j denotes the OC-SVM parameters set, G denotes the gram matrix [20]. According

to the theory of OC-SVM [57], a smaller score indicates that the pattern is more likely abnormal. This
work defines AOC−SVM (x) = −f (x; θOC−SVM) as the anomaly score function of OC-SVM.

AAKR for anomaly detection [27] is a reconstruction model, in which the reconstruction x̂AAKR is
the weighted sum of normal condition patterns and the weight is measured by a radial basis similarity
function between test pattern and each normal condition pattern. According to the basic assumption of
reconstruction-based anomaly detection [16], abnormal condition patterns have larger reconstruction error

than normal condition patterns. This work defines AAAKR (x) = ∥x− x̂AAKR∥2 as the anomaly score
function of AAKR.

16

GMM for anomaly detection [58] models the normal condition patterns distribution and the likelihood
function can be used to distinguish the abnormal condition patterns, because a small likelihood indicates that
the pattern sampled from GMM has a smaller probability, which means this pattern is more likely abnormal.
Let p(x; θGMM) =

∑k
i=1 ϕiN (x;µi,Σi) denote the likelihood function, where θGMM = {ϕi, µi,Σi}i=1,...,k

denotes the GMM parameters set, ϕi the component weight, µi the mean and Σi the covariance. This work
defines AGMM (x) = −p(x; θGMM) as the anomaly score function of GMM. The number of components k
is set to 1 for all case studies.

AE for anomaly detection [59] has been illustrated in Section 3.2 and it is trained on normal data

and the reconstruction error ∥x− x̂∥2 is used for detecting anomalies according to the basic assumption of

reconstruction-based anomaly detection [45, 16]. This work defines AAE (x) = ∥x− x̂∥2 as the anomaly
score function of AE. It should be noted that the encoder in AE and AE-GAN have the same model
architecture, and also the generator in AE and the generator in AE-GAN have the same model architecture.
In addition, the Adam optimizer is used to optimize the AE loss function, where the two coefficients contained
β1, β2 are used for computing running averages of the gradient and its square. The batch size is noted as
Lbatch. The parameter settings used in AE, for example, Adam coefficient β1, β2, batch size Lbatch, learning
rate η, number of epoch Nepoch, are the same as in AE-GAN.

AnoGAN for anomaly detection [37], obtains optimal latent variable zoptimal of a pattern x by mini-

mizing the reconstruction error w.r.t. z; then, ∥x−G(zoptimal)∥2 is used for distinguishing the abnormal
condition patterns which have larger reconstruction error than the normal condition patterns, according to
the assumption in Section 4.1. This work defines AAnoGAN (x) = ∥x−G(zoptimal)∥2 as the anomaly score
function of AnoGAN. It should be noted that AnoGAN shares the same trained GAN module with the
proposed AE-GAN ; the parameter settings used in optimizing latent variable zoptimal, for example, Adam
coefficient β1, β2, learning rate η, number of epochs Nepoch, are the same as those for AE-GAN training.

5.2. Synthetic Case

Synthetic Datasets. This section introduces three synthetic datasets to verify the anomaly detection
performance of the proposed base anomaly detector with AE-GAN (Section 4.1). Normal condition pattern
with different shapes are examined: Cone, Two Gaussian Ball and Bowl Manifold (Figure 8). For all
three synthetic datasets, the abnormal condition patterns are uniformly distributed in the space outside the
normal condition pattern distribution but inside a 3-D cube with a range of [−10, 10] for each dimension.
For all three datasets, we use normal condition patterns in training set of size 3000, test normal patterns of
size 643 and test abnormal condition patterns of size 642.

• Cone. The normal condition patterns are obtained by using a cone with bottom radius 2 and height
3 to truncate patterns of a 3-D Gaussian distribution with mean [4, 0, 0] and variance diag(1, 1, 1), in
which all patterns inside the Cone are normal.

• Two Gaussian Ball. The normal condition patterns are obtained by using two 3-D spheres, whose
centers are located at [±4, 0, 0] and the radius is 2, to truncate patterns in two 3-D Gaussian distri-
butions with mean [±4, 0, 0] variance diag(1, 1, 1), in which all patterns inside these two spheres are
normal.

• Bowl Manifold. The normal condition patterns are obtained by generating a hemisphere with radius
6 and center point [0, 0, 0] and randomly sampling points on this hemisphere. The abnormal patterns
are not located on this Bowl Manifold surface.

Implementation details. The AE-GAN contains three sub-networks, namely generator, discriminator
and encoder, and each sub-network is implemented by a Multiple Layer Perceptron (MLP) neural network
with two hidden layers. The GAN module is composed by discriminator and generator. The iteration steps
of discriminator for each iteration step of generator are set to k = 5, according to [53, 50]. The AE-GAN
model architecture is listed in Table 1, where the Latent Space Layer acts as both the output layer of the
encoder and the input layer of the generator, and the number of neurons in the Latent Space Layer is

17

(a) (b) (c)

Normal Sample Abnormal Sample

Figure 8: The three synthetic datasets mimic the complicated and challenging datasets in real industrial applications. Blue
points are normal condition patterns and red points are abnormal condition patterns. (a) is Cone dataset, (b) is Two Gaussian
Ball dataset and (c) is Bowl Manifold dataset.

determined by the specific cases: the number of neurons is set to 2 for Bowl Manifold, and 3 for Cone and
Two Gaussian. Because the generator can produce the manifold distribution if the input dimension of the
generator is smaller than the output dimension, in particular, when the dimension is 2, the generator can
reproduce the Bowl Manifold distribution best (Figure 8c). However, for ‘volumes’ distribution in 3-D space,
e.g. Cone and Two Gaussian distribution, the generator can reproduce the distribution best if the input
dimension is 3. The Adam optimizer is used to optimize GAN (Generator and Discriminator modules) and
AE (Encoder and Generator), where the learning rate η = 0.0002, the coefficients β1 = 0.9, β2 = 0.999, the
batch size Lbatch = 100 and the number of epochs Nepoch = 1000. Referring to Equation (17), thresholds
in comparing anomaly detection methods, e.g. OC-SVM, GMM, AAKR, AE, AnoGAN, are set as the
maximum of anomaly scores among normal condition patterns in training set. Each dimension of the data
is set into [−1, 1].

Table 1: AE-GAN model architecture. Both Encoder and Generator activate their hidden layers by Rectified Linear Unit
(ReLU) [60], whereas Discriminator uses Leaky ReLU [61] as activation function and the leaky rate is set as 0.2.

Table 1. AE-GAN model architecture. Both Encoder and Generator activate their hidden layers by Rectified

Linear Unit (ReLU) (Glorot et al., 2011), while Discriminator uses Leaky ReLU (Maas et al., 2013) as activation

function and the leaky rate is set as 0.2.

Module Layer # of Neurons Activation Function

Encoder
Input Layer 3
Hidden Layer #1 50 ReLU
Hidden Layer #2 50 ReLU

 Latent Space Layer 2 or 3

Generator
Hidden Layer #1 50 ReLU
Hidden Layer #2 50 ReLU
Output Layer 3 Tanh

Discriminator

Input Layer 3
Hidden Layer #1 50 Leaky ReLU(0.2)
Hidden Layer #2 50 Leaky ReLU(0.2)
Output Layer 1 Sigmoid

In Figure 9, we can see that the GAN nearly perfectly reconstructs the distribution of normal condition

patterns for very complex distributions such as Cone, Two Gaussian Ball and Bowl Manifold.
According to the anomaly detection results showed in Figure 10 and Table 2, AE-GAN has the highest

accuracy and F-score in all three synthetic datasets. Although AAKR has highest precision score 1, which
means zero missed alarms, for all the synthetic datasets, AAKR also has the highest false alarm rate. In
particular, for Cone dataset, the proposed AE-GAN achieves zero false alarms and zero missed alarms, which
outperforms all compared methods. Note that although recall score of OC-SVM, GMM and AnoGAN are

18

(a) (b) (c)

Training Normal Sample Generated Sample by GAN

Figure 9: Normal patterns in training set and generated patterns by GAN w.r.t. three complex distributions. a) is Cone
distribution, b) is Two Gaussian Ball distribution and c) is Bowl Manifold distribution.

N 643 8 N 587 0 N 643 10 N 625 6 N 643 6 N 643 0

A 0 634 A 56 642 A 0 632 A 18 636 A 0 636 A 0 642

N A N A N A N A N A N A

OC-SVM AAKR GMM AE AnoGAN

Cone

Two
Gaussian

Ball

Bowl
Manifold

AE-GAN (proposed)

True
Predicted

True
Predicted

True
Predicted

True
Predicted

True
Predicted

True
Predicted

N 643 4 N 473 0 N 643 6 N 635 4 N 603 16 N 642 3

A 0 638 A 170 642 A 0 636 A 8 638 A 40 626 A 1 639

N A N A N A N A N A N ATrue
Predicted

True
Predicted

True
Predicted

True
Predicted

True
Predicted

True
Predicted

N 639 64 N 545 0 N 638 122 N 627 32 N 639 230 N 631 23

A 4 578 A 98 642 A 5 520 A 16 610 A 4 412 A 12 619

N A N A N A N A N A N ATrue
Predicted

True
Predicted

True
Predicted

True
Predicted

True
Predicted

True
Predicted

N: Normal Sample A: Abnormal Sample

Figure 10: Confusion matrix of anomaly detection result w.r.t. Cone, Two Gaussian Ball and Bowl Manifold datasets.

Table 2: Anomaly detection performance w.r.t. Cone, Two Gaussian Ball and Bowl Manifold datasets.
Table 1. Anomaly detection performance w.r.t. Cone, Two Gaussian Ball and Bowl Manifold datasets.

Dataset Metric OC-SVM AAKR GMM AE AnoGAN AE-GAN

(proposed)
Cone Accuracy 0.9938 0.9564 0.9922 0.9813 0.9977 1

Precision 0.9877 1 0.9847 0.9905 0.9954 1
Recall 1 0.9129 1 0.9720 1 1
F-score 0.9938 0.9545 0.9923 0.9812 0.9977 1

Two
Gaussian
Ball

Accuracy 0.9969 0.8677 0.9953 0.9907 0.9564 0.9969
Precision 0.9938 1 0.9908 0.9937 0.9742 0.9953
Recall 1 0.7356 1 0.9876 0.9378 0.9984
F-score 0.9968 0.8477 0.9954 0.9906 0.9556 0.9969

Bowl
Manifold

Accuracy 0.9471 0.9237 0.9012 0.9626 0.8179 0.9728
Precision 0.909 1 0.8395 0.9514 0.7353 0.9648
Recall 0.9938 0.8476 0.9922 0.9751 0.9938 0.9813
F-score 0.9495 0.9175 0.9095 0.9631 0.8452 0.9730

1, they have relatively high missed alarm rates and this would be unacceptable for risk-critical industrial
applications. For Two Gaussian Ball dataset, although OC-SVM and GMM have the highest recall score 1,
they have more missed alarm than AE-GAN. AE-GAN also achieves the competitive top-2 highest precision
and recall scores. For Bowl Manifold dataset, OC-SVM and AnoGAN have the highest recall score but they
cause many more missed alarms than AE-GAN. AE-GAN achieves competitive scores on precision (top 2)

19

and recall (top 3).
In summary, the proposed base anomaly detector with AE-GAN has the best anomaly detection per-

formance on the Cone dataset. Also, on the Two Gaussian Ball and Bowl Manifold Datasets, although
AE-GAN cannot achieve the lowest false alarm and missed alarm, it still has the highest accuracy and F-
score, simultaneously, the nearly top-2 precision and recall score, and this means that AE-GAN has the best
trade-off between false alarms and missed alarms, which is a critical capability for risk-critical applications.
Overall, the proposed AE-GAN has the best comprehensive anomaly detection performance.

5.3. Anomaly Detection for Automatic Door in High-Speed Train

Real Industrial Dataset. The real industrial dataset is collected from the automatic door components
of high-speed trains. There is a current sensor (recording tractive force) and a decoder sensor (recording
position) to record the state during the door opening and closing processes. Due to the different time of
duration to operate the door, the sensor records for a fixed time of duration, 855 time units, to ensure that
the entire operation process is covered. This real industrial dataset contains 138 components operated on
normal condition, and 22 components on fault type A and 33 components on fault type B. The statistics
of the dataset are shown in Table 3. This work uses the signals during both the door opening and closing
processes to detect whether the component is normal or abnormal; so, the start time of door opening and
closing needs to be synchronized to derive a multivariate time series. Figure 11 shows the example signals
of normal components, where a) is feature #1: open door, current signal, (b) is feature #2: open door,
decoder signal, (c) is feature #3: close door, current signal and (d) is feature #4: close door, decoder signal.

Table 3: The automatic door dataset.
Type Number
Training normal components 100
Validation normal components 20
Test normal components 18
Test components with fault A 22
Test components with fault B 33

This section investigates the effect of the size of the non-overlapped sliding time windows and the effect
of adaptive noise.

• The effect of window size. This paragraph experiments the effect of different window sizes on the
convergence of JSDLB(pG ∥ pXnormal

). In the experiment, the window size LW is set to 1, 3, 5, 50
time steps, and the normal components signals at the time window with a starting time of 400 is
used to train the GAN (see details in Equations (23)(24)); the size of latent space in GAN is set
to 4 × LW . During the GAN training process, J-S divergence at each iteration of the generator
optimization is recorded (see Figure 12). It is found that when the window size gradually shrinks to
1, the JSDLB(pG ∥ pXnormal

) gradually converges approximately to 0, which further proves that the
generator cannot reproduce the high-dimensional distribution when a small set of data is given.

• The effect of adaptive noise. This paragraph experiments the effect of adaptive noise on the convergence
of JSDLB(pG ∥ pXnormal

). In the experiment, the normal components signal at time 460 is used to
train the GAN (see Figure 13b) and the parameters of the adaptive noise that is added to the data
are set as γ = 0.02, δ = 0.001 (see Equations (20)(21)), and the size of latent space in GAN is set
to 4 dimensions. During the GAN training process, the JSDLB(pG ∥ pXnormal

) at each iteration of
the generator optimization is recorded (see Figure 13a). This experiment verifies that after adding
adaptive noise to the data distribution with non-smooth density, the original distribution is converted
to a smooth distribution, so that JSDLB(pG ∥ pXnormal

) converges to 0 according to Section 4.3.

Notice that the AE-GAN activation function is ReLU and the batch size Lbatch is set to 20 in all cases.

20

Normal

(a) (b)

(c) (d)

Fault type A Fault type B

Feature #1 Feature #2

Feature #4Feature #3

Figure 11: Example signals of normal components with fault type A and fault type B in a real industrial dataset.

Generated dataTrue data

𝐽𝐽𝐽𝐽𝐷𝐷𝐿𝐿𝐿𝐿 𝑝𝑝𝐺𝐺 �𝑝𝑝𝒳𝒳𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝐽𝐽𝐽𝐽𝐷𝐷𝐿𝐿𝐿𝐿 𝑝𝑝𝐺𝐺 �𝑝𝑝𝒳𝒳𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝐽𝐽𝐽𝐽𝐷𝐷𝐿𝐿𝐿𝐿 𝑝𝑝𝐺𝐺 �𝑝𝑝𝒳𝒳𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
𝐽𝐽𝐽𝐽𝐷𝐷𝐿𝐿𝐿𝐿 𝑝𝑝𝐺𝐺 �𝑝𝑝𝒳𝒳𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

Iteration Iteration Iteration Iteration

Time window size=50 Time window size=5 Time window size=3 Time window size=1

JS
Divergence

Generated
Data

Figure 12: The effect of time window size on the convergence of J-S divergence and the generated data.

Figure 14 shows the optimization results of the AE-GAN hyper-parameters (the default initial AE-GAN
hyper-parameters are indicated by the solid blackline): Nepoch = 1000, iteration steps of discriminator for
each iteration step of generator, k = 5, latent space size Nz = 4, number of hidden layers= 2 and number of

21

JS
Divergence

𝐽𝐽𝐽𝐽𝐷𝐷𝐿𝐿𝐿𝐿 𝑝𝑝𝐺𝐺 �𝑝𝑝𝒳𝒳𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝐽𝐽𝐽𝐽𝐷𝐷𝐿𝐿𝐿𝐿 𝑝𝑝𝐺𝐺 �𝑝𝑝𝒳𝒳𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

Iteration Iteration

Data with No
Noise

Data added
Adaptive Noise

(a) (b)

Feature #1

Feature #2

Feature #3

Feature #4

Feature #1 Feature #1 Feature #1

Feature #2 Feature #2

Feature #3

Fe
at

ur
e

#2

Fe
at

ur
e

#3
Fe

at
ur

e
#3

Fe
at

ur
e

#4
Fe

at
ur

e
#4

Fe
at

ur
e

#4

Figure 13: a) The effect of adaptive noise on the convergence of J-S divergence, b) the normal component data whose
distribution has non-smooth density at time 460.

hidden neurons= 200. The normal components signal at time 400 have been used to train AE-GAN. Due to
the limited computing power, the successive greedy search is used to do the optimization and the order of
search is epochs number, iteration steps of discriminator for each iteration step of generator, latent space size,
number of hidden layers and hidden neurons number. The optimization objective is JSDLB(pG ∥ pXnormal

)
(Section 4.2), After training of AE-GAN with the optimal hyper-parameters, an example of the generator
distribution is shown in Figure 15. We see that the true data distribution can be nearly perfectly reproduced,
which satisfies the basic prerequisite of GAN -based anomaly detection methods, as explained in Section 4.1.

This work compares the proposed AE-GAN with OC-SVM, AAKR, GMM and AE. AnoGAN is not
compared because it is very computationally intensive when finding optimal latent variable zoptimal w.r.t.
each training and test samples. As for the compared methods, this work uses two strategies. The first is
to treat the multivariate time series as the input data sample and obtain the anomaly score (Section 5.1);
then, the threshold is set to the maximum value of the anomaly scores among the training normal samples
(Equation (17)). The second strategy is similar to the proposed ensembled anomaly detector with AE-GAN,
which uses non-overlapped sliding time windows (size set to 1) to split multivariate time series and treat each
time window as a separate data sample for anomaly detection and obtain the anomaly score (Section 5.1);
then, it uses the proposed Algorithm 4 (see Section 4.3) to obtain the ensembled anomaly detection result.
The ensembled compared methods are noted as OC-SVM (Ens), AAKR (Ens), GMM (Ens) and AE (Ens).

Table 4: F-score of the proposed AE-GAN with variants a) and (b), and comparison methods for the automatic door dataset.
Table 1. F-score of the proposed AE-GAN with variant (a) and (b) and compared methods for toilet door dataset.

 Compared Methods Proposed Method

Percentile
OC-SVM

OC-SVM
AAKR

AAKR
GMM

GMM
AE

AE AE-GAN AE-GAN

𝑐𝑐 (Ens) (Ens) (Ens) (Ens) （a） (b)

100% 0.5952 0.6207 0.4727 0.6452 N/A 0.6333 0.5391 0.6230 0.7312 0.7312

95% N/A 0.6207 N/A 0.6452 N/A 0.6333 N/A 0.6230 0.7174 0.7312

90% N/A 0.5965 N/A 0.6452 N/A 0.6333 N/A 0.6230 0.7253 0.7312

85% N/A 0.5965 N/A 0.6557 N/A 0.6333 N/A 0.6230 0.7191 0.7312

80% N/A 0.5965 N/A 0.6557 N/A 0.6333 N/A 0.6452 0.7273 0.7527

75% N/A 0.5965 N/A 0.6557 N/A 0.6102 N/A 0.5763 0.7750 0.7692

70% N/A 0.5283 N/A 0.6555 N/A 0.6332 N/A 0.5574 0.7692 0.6750

65% N/A 0.4906 N/A 0.6333 N/A 0.5614 N/A 0.5246 0.6761 0.5854

60% N/A 0.5091 N/A 0.6102 N/A 0.6000 N/A 0.5246 0.6364 0.5500

22

௅஻ܦܵܬ ீ݌ ቛࣲ݌೙೚ೝ೘ೌ೗ ௅஻ܦܵܬ ீ݌ ቛࣲ݌೙೚ೝ೘ೌ೗

Iteration Iteration

Epoch number=1k Epoch number=5k

JS
Divergence

௅஻ܦܵܬ ீ݌ ቛࣲ݌೙೚ೝ೘ೌ೗

Iteration

D() iteration k=1

JS
Divergence

௅஻ܦܵܬ ீ݌ ቛࣲ݌೙೚ೝ೘ೌ೗

Iteration

D() iteration k=5

௅஻ܦܵܬ ீ݌ ቛࣲ݌೙೚ೝ೘ೌ೗

Iteration

D() iteration k=10

௅஻ܦܵܬ ீ݌ ቛࣲ݌೙೚ೝ೘ೌ೗

Iteration

D() iteration k=20

௅஻ܦܵܬ ீ݌ ቛࣲ݌೙೚ೝ೘ೌ೗

Iteration

Latent space size=1

JS
Divergence

௅஻ܦܵܬ ீ݌ ቛࣲ݌೙೚ೝ೘ೌ೗

Iteration

Latent space size=2

௅஻ܦܵܬ ீ݌ ቛࣲ݌೙೚ೝ೘ೌ೗

Iteration

Latent space size=3

௅஻ܦܵܬ ீ݌ ቛࣲ݌೙೚ೝ೘ೌ೗

Iteration

Latent space size=4

௅஻ܦܵܬ ீ݌ ቛࣲ݌೙೚ೝ೘ೌ೗

Iteration

of hidden layer=1

JS
Divergence

௅஻ܦܵܬ ீ݌ ቛࣲ݌೙೚ೝ೘ೌ೗

Iteration

of hidden layer=2

௅஻ܦܵܬ ீ݌ ቛࣲ݌೙೚ೝ೘ೌ೗

Iteration

of hidden layer=3

௅஻ܦܵܬ ீ݌ ቛࣲ݌೙೚ೝ೘ೌ೗

Iteration

hidden neurons=50

JS
Divergence

௅஻ܦܵܬ ீ݌ ቛࣲ݌೙೚ೝ೘ೌ೗

Iteration

hidden neurons=100

௅஻ܦܵܬ ீ݌ ቛࣲ݌೙೚ೝ೘ೌ೗

Iteration

hidden neurons=200

Optimal Epoch
number=1k

Optimal D()
iteration k=5

Optimal
Latent space

size=4

Optimal # of
hidden layer=2

Optimal
hidden

neurons=200

1000 5000

1000

Discriminator: D()

of

Figure 14: Results of the AE-GAN hyper-parameters optimization.

Table 4 reports the comparison of anomaly detection results. Different anomaly detection results are
obtained by adjusting the percentile c in Algorithm 4, and the proposed AE-GAN with both variants a) and
b) achieves the best result for a variety of percentile values c. For variant a), best F-score 0.7750 is obtained
when c is 75%, for variant b), best F-score 0.7527 is obtained when c is 85%. Overall, variant a) is better
than b), because variant b) introduces discrete time into the data space (see Equation (26)), which makes it
difficult for the generator, which has a continuous data space, to fit the data space containing discrete times.
Note that OC-SVM, AAKR, AE have results only when c = 100%, since a certain anomaly score threshold is
set, and GMM has no results because the high dimensionality of data makes matrix computation infeasible.

By using the proposed improved AdaBoost ensemble learning (Algorithm 4), the F-score and AUC is
boosted for nearly all the compared methods. Another advantage of Algorithm 4 is that it can automatically
filter the task-related features in data by assigning different weights to the base anomaly detector (see

23

Generated dataTrue data

Figure 15: An example of true data distribution and the generated data distribution produced by the optimal AE-GAN. The
true data comes from the normal components signal at time 400.

Figure 16). This can be confirmed by the findings in Figure 16, as we observe that the weights of the base
anomaly detectors suddenly drop at time 500, when, interestingly, the value of the original signal (Figure 11)
becomes a constant, which means that the signal after time 500 is irrelevant to component health monitoring.0.6811 0.7146 0.7601 0.7301 N/A 0.7182 0.5041 0.6981 0.8289 0.7244

ROC
Curve

AUC

OC-SVM OC-SVM
(Ens) AAKR AAKR

(Ens) GMM GMM
(Ens) AE AE

(Ens)
AE-GAN

(a)
AE-GAN

(b)

N/A

Time step

𝛼𝛼𝑚𝑚 -weights of base anomaly detector ℎ𝑚𝑚()

0 100 200 300 400 500 600 700 800

0

2

4

6

8

10

12

-2

Compared Methods

Metric

Proposed Method

Figure 16: Example of base anomaly detectors weight αm of, e.g. AE-GAN variant a), at each time step.

In order to obtain the comprehensive anomaly detection performance, we look at the ROC curve adjusting

24

0.6811 0.7146 0.7601 0.7301 N/A 0.7182 0.5041 0.6981 0.8289 0.7244

ROC
Curve

AUC

OC-SVM OC-SVM
(Ens) AAKR AAKR

(Ens) GMM GMM
(Ens) AE AE

(Ens)
AE-GAN
(a)

AE-GAN
(b)

N/A

Time step

௠ߙ -weights of base anomaly detector ݄௠()

0 100 200 300 400 500 600 700 800

0

2

4

6

8

10

12

-2

Compared Methods

Metric

Proposed Method

Figure 17: ROC curve and AUC of the proposed AE-GAN with variants a) and b), and compared methods for real industrial
dataset. Note that x axis denotes false positive rate, y axis denotes true positive rate.

the percentile c and obtaining the AUC (Figure 17), which shows that the proposed AE-GAN variant a)
outperforms any other compared methods. The interpretation of this result is that the real industrial data
is very complex: similar to the investigation of the synthetic case study, it contains a distribution with
non-smooth density, manifold distribution, which will make the compared methods unable to model the real
industrial data distribution.

Table 5: Number of components in Test Set 1 and Test Set 2.
Table 1. The statistics of Test Set 1 and Test Set 2

Test Set 1 Test Set 2

#Test normal
components

#Test
components
with fault A

#Test normal
components

#Test
components
with fault B

18 22 18 33

0.6811 0.7146 0.7601 0.7301 N/A 0.7182 0.5041 0.6981 0.8289 0.7244

ROC
Curve

AUC

OC-SVM OC-SVM
(Ens) AAKR AAKR

(Ens) GMM GMM
(Ens) AE AE

(Ens)
AE-GAN
(a)

AE-GAN
(b)

N/A

Time step

௠ߙ -weights of base anomaly detector ݄௠()

0 100 200 300 400 500 600 700 800

0

2

4

6

8

10

12

-2

Compared Methods

Metric

Proposed Method

0.6304 0.5407 0.9474 0.8469

ROC
Curve

AUC

AE-GAN
(a)

AE-GAN
(b)

Test Set 1

Metric

Test Set 2
AE-GAN
(a)

AE-GAN
(b)

Figure 18: ROC curve and AUC of the proposed AE-GAN with variants a) and b) for Test Sets 1 and 2. Note that x axis
denotes false positive rate, y axis denotes true positive rate.

To deeply analyze the performance of the proposed method, we construct two test sets from the industrial
dataset. Test Set 1 contains normal condition patterns and only anomalous patterns of fault class A and
Test Set 2 contains normal condition patterns and anomalous patterns of only fault class B, as reported in
Table 5. The ROC curve and AUC on Test Sets 1 and 2 show that the proposed method can better detect
the anomalies of fault class B than A. The reason is that, according to the original data, data distribution
of fault type A is almost the same with the distribution of normal data, whereas the data distribution of
fault type B is clearly distinguishable with normal data.

25

6. Conclusion

In this paper, an AdaBoost ensembled AE-GAN anomaly detection method based on the use of GAN
and AdaBoost ensemble learning has been proposed for the industrial case where abnormal data is not
available. For obtaining the anomaly score, e.g. reconstruction error, the latent variable corresponding to
the data pattern in GAN needs to be queried and we propose to embed an auxiliary encoder in front of the
generator to avoid local optimal solutions for data with manifold distribution. Furthermore, we derive the
lower bound of Jensen-Shannon divergence between generator distribution and normal data distribution to
optimize the AE-GAN hyperparameters. To overcome real industrial challenges, like 1) the densities of data
distributions are not smooth and 2) the curse of dimensionality, we propose to add adaptive noise on data
and adapt the AdaBoost algorithm to integrate AE-GAN base anomaly detectors which treat each time
window separately for anomaly detection. Extensive experiments are conducted on both synthetic and real
industrial data sets, which demonstrate that the proposed ensembled AE-GAN anomaly detection method
outperforms state-of-the-art anomaly detection methods for long-term multivariate time series.

Acknowledgment

This project has received funding from the Shift2Rail Joint Undertaking under the European Union’s
Horizon 2020 research and innovation programme under grant agreement No 101015423. The information
in this document is provided “as is”, and no guarantee or warranty is given that the information is fit for
any particular purpose. The content of this document reflects only the author’s view – the Shift2Rail Joint
Undertaking is not responsible for any use that may be made of the information it contains. The users use
the information at their sole risk and liability. Mingjing Xu gratefully acknowledges the financial support
from the China Scholarship Council (No. 201606420061).

References

[1] A. Cook, G. Misirli, Z. Fan, Anomaly Detection for IoT Time-Series Data: A Survey, IEEE Internet of Things Journal
(2020). doi:10.1109/jiot.2019.2958185.

[2] C. M. Rocco S., E. Zio, A support vector machine integrated system for the classification of operation anomalies in nuclear
components and systems, Reliability Engineering and System Safety (2007). doi:10.1016/j.ress.2006.02.003.

[3] P. Garćıa-Teodoro, J. Dı́az-Verdejo, G. Maciá-Fernández, E. Vázquez, Anomaly-based network intrusion detection: Tech-
niques, systems and challenges, Computers and Security (2009). doi:10.1016/j.cose.2008.08.003.

[4] B. B. Zarpelão, R. S. Miani, C. T. Kawakani, S. C. de Alvarenga, A survey of intrusion detection in Internet of Things
(2017). doi:10.1016/j.jnca.2017.02.009.

[5] T. Fuse, K. Kamiya, Statistical Anomaly Detection in Human Dynamics Monitoring Using a Hierarchical Dirichlet Pro-
cess Hidden Markov Model, IEEE Transactions on Intelligent Transportation Systems (2017). doi:10.1109/TITS.2017.

2674684.
[6] H. Kim, J. Park, K. Min, K. Huh, Anomaly Monitoring Framework in Lane Detection With a Generative Adversarial

Network, IEEE Transactions on Intelligent Transportation Systems 1 (c) (2020) 1–13. doi:10.1109/tits.2020.2973398.
[7] W. Luo, W. Liu, D. Lian, J. Tang, L. Duan, X. Peng, S. Gao, Video Anomaly Detection With Sparse Coding Inspired

Deep Neural Networks, IEEE Transactions on Pattern Analysis and Machine Intelligence (2019). doi:10.1109/tpami.

2019.2944377.
[8] H. Sarmadi, A. Karamodin, A novel anomaly detection method based on adaptive Mahalanobis-squared distance and one-

class kNN rule for structural health monitoring under environmental effects, Mechanical Systems and Signal Processing
(2020). doi:10.1016/j.ymssp.2019.106495.

[9] Z. Shi, A. Chehade, A dual-lstm framework combining change point detection and remaining useful life prediction, Relia-
bility Engineering & System Safety 205 (2021) 107257.

[10] S. Tolo, X. Tian, N. Bausch, V. Becerra, T. Santhosh, G. Vinod, E. Patelli, Robust on-line diagnosis tool for the early
accident detection in nuclear power plants, Reliability Engineering & System Safety 186 (2019) 110–119.

[11] D. M. Hawkins, Identification of Outliers, 1980. doi:10.1007/978-94-015-3994-4.
[12] H. Jeong, B. Park, S. Park, H. Min, S. Lee, Fault detection and identification method using observer-based residuals,

Reliability Engineering & System Safety 184 (2019) 27–40.
[13] L. Zhang, J. Lin, R. Karim, An angle-based subspace anomaly detection approach to high-dimensional data: With an

application to industrial fault detection, Reliability Engineering & System Safety 142 (2015) 482–497.
[14] A. A. Jimenez, C. Q. G. Muñoz, F. P. G. Márquez, Dirt and mud detection and diagnosis on a wind turbine blade

employing guided waves and supervised learning classifiers, Reliability Engineering & System Safety 184 (2019) 2–12.

26

https://doi.org/10.1109/jiot.2019.2958185
https://doi.org/10.1016/j.ress.2006.02.003
https://doi.org/10.1016/j.cose.2008.08.003
https://doi.org/10.1016/j.jnca.2017.02.009
https://doi.org/10.1109/TITS.2017.2674684
https://doi.org/10.1109/TITS.2017.2674684
https://doi.org/10.1109/tits.2020.2973398
https://doi.org/10.1109/tpami.2019.2944377
https://doi.org/10.1109/tpami.2019.2944377
https://doi.org/10.1016/j.ymssp.2019.106495
https://doi.org/10.1007/978-94-015-3994-4

[15] C. Duan, V. Makis, C. Deng, A two-level bayesian early fault detection for mechanical equipment subject to dependent
failure modes, Reliability Engineering & System Safety 193 (2020) 106676.

[16] D. Kwon, H. Kim, J. Kim, S. C. Suh, I. Kim, K. J. Kim, A survey of deep learning-based network anomaly detection,
Cluster Computing (2019) 1–13.

[17] P. Baraldi, F. Di Maio, M. Rigamonti, E. Zio, R. Seraoui, Unsupervised clustering of vibration signals for identifying
anomalous conditions in a nuclear turbine, Journal of Intelligent & Fuzzy Systems 28 (4) (2015) 1723–1731.

[18] Z. Ghafoori, S. M. Erfani, J. C. Bezdek, S. Karunasekera, C. Leckie, LN-SNE: Log-Normal Distributed Stochastic Neighbor
Embedding for Anomaly Detection, IEEE Transactions on Knowledge and Data Engineering (2020). doi:10.1109/TKDE.
2019.2934450.

[19] H. J. Shin, D. H. Eom, S. S. Kim, One-class support vector machines - An application in machine fault detection and
classification, Computers and Industrial Engineering (2005). doi:10.1016/j.cie.2005.01.009.

[20] Y. Xiao, H. Wang, L. Zhang, W. Xu, Two methods of selecting gaussian kernel parameters for one-class svm and their
application to fault detection, Knowledge-Based Systems 59 (2014) 75–84.

[21] L. Li, R. J. Hansman, R. Palacios, R. Welsch, Anomaly detection via a Gaussian Mixture Model for flight operation and
safety monitoring, Transportation Research Part C: Emerging Technologies (2016). doi:10.1016/j.trc.2016.01.007.

[22] D. Kwon, H. Kim, J. Kim, S. C. Suh, I. Kim, K. J. Kim, A survey of deep learning-based network anomaly detection,
Cluster Computing 22 (1) (2019) 949–961.

[23] S. M. Erfani, S. Rajasegarar, S. Karunasekera, C. Leckie, High-dimensional and large-scale anomaly detection using a
linear one-class SVM with deep learning, Pattern Recognition (2016). doi:10.1016/j.patcog.2016.03.028.

[24] T. Shon, J. Moon, A hybrid machine learning approach to network anomaly detection, Information Sciences (2007).
doi:10.1016/j.ins.2007.03.025.

[25] V. Chandola, A. Banerjee, V. Kumar, Anomaly detection: A survey (2009). doi:10.1145/1541880.1541882.
[26] D. Yang, A. Usynin, J. W. Hines, Anomaly-based intrusion detection for scada systems, in: 5th intl. topical meeting on

nuclear plant instrumentation, control and human machine interface technologies (npic&hmit 05), 2006, pp. 12–16.
[27] P. Baraldi, F. Di Maio, P. Turati, E. Zio, Robust signal reconstruction for condition monitoring of industrial components

via a modified auto associative kernel regression method, Mechanical Systems and Signal Processing 60 (2015) 29–44.
[28] R. Laxhammar, G. Falkman, Online learning and sequential anomaly detection in trajectories, IEEE Transactions on

Pattern Analysis and Machine Intelligence (2014). doi:10.1109/TPAMI.2013.172.
[29] H. Ozkan, F. Ozkan, S. S. Kozat, Online Anomaly Detection Under Markov Statistics With Controllable Type-I Error,

IEEE Transactions on Signal Processing (2016). doi:10.1109/TSP.2015.2504345.
[30] Y. Feng, Y. Yuan, X. Lu, Learning deep event models for crowd anomaly detection, Neurocomputing (2017). doi:

10.1016/j.neucom.2016.09.063.
[31] C. Zhang, D. Song, Y. Chen, X. Feng, C. Lumezanu, W. Cheng, J. Ni, B. Zong, H. Chen, N. V. Chawla, A Deep Neural

Network for Unsupervised Anomaly Detection and Diagnosis in Multivariate Time Series Data, Proceedings of the AAAI
Conference on Artificial Intelligence (2019). arXiv:1811.08055, doi:10.1609/aaai.v33i01.33011409.

[32] Y. Li, L., Yan, J., Wang, H. and Jin, Anomaly Detection of Time Series With Smoothness-Inducing Sequential Variational
Auto-Encoder, IEEE Transactions on Neural Networks and Learning Systems (2020).

[33] E. A. Mohammad Sabokrou, Mahmood Fathy, Guoying Zhao, Deep End-to-End One-Class Classifier, IEEE Transactions
on Neural Networks and Learning Systems (2020). doi:10.1109/TNNLS.2020.2979049.

[34] M. N. Kurt, Y. Yilmaz, X. Wang, Real-Time Nonparametric Anomaly Detection in High-Dimensional Settings, IEEE
Transactions on Pattern Analysis and Machine Intelligence (2020). arXiv:1809.05250, doi:10.1109/tpami.2020.2970410.

[35] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, Y. Bengio, Generative
adversarial nets, in: Advances in neural information processing systems, 2014, pp. 2672–2680.

[36] J. Wu, Z. Zhao, C. Sun, R. Yan, X. Chen, Fault-Attention Generative Probabilistic Adversarial Autoencoder for Machine
Anomaly Detection, IEEE Transactions on Industrial Informatics (2020). doi:10.1109/tii.2020.2976752.

[37] T. Schlegl, P. Seeböck, S. M. Waldstein, U. Schmidt-Erfurth, G. Langs, Unsupervised anomaly detection with generative
adversarial networks to guide marker discovery, in: International conference on information processing in medical imaging,
Springer, 2017, pp. 146–157.

[38] T. Schlegl, P. Seeböck, S. M. Waldstein, G. Langs, U. Schmidt-Erfurth, f-AnoGAN: Fast unsupervised anomaly detection
with generative adversarial networks, Medical Image Analysis (2019). doi:10.1016/j.media.2019.01.010.

[39] D. Li, D. Chen, B. Jin, L. Shi, J. Goh, S.-K. Ng, Mad-gan: Multivariate anomaly detection for time series data with
generative adversarial networks, in: International Conference on Artificial Neural Networks, Springer, 2019, pp. 703–716.

[40] G. E. Hinton, R. R. Salakhutdinov, Reducing the dimensionality of data with neural networks, Science (2006). doi:

10.1126/science.1127647.
[41] H.-J. Xing, W.-T. Liu, Robust AdaBoost based ensemble of one-class support vector machines, Information Fusion 55 (Au-

gust 2019) (2019) 45–58. doi:10.1016/j.inffus.2019.08.002.
URL https://doi.org/10.1016/j.inffus.2019.08.002

[42] T. Hastie, S. Rosset, J. Zhu, H. Zou, Multi-class adaboost, Statistics and its Interface 2 (3) (2009) 349–360.
[43] D. P. Kingma, J. L. Ba, Adam: A method for stochastic optimization, in: 3rd International Conference on Learning

Representations, ICLR 2015 - Conference Track Proceedings, 2015. arXiv:1412.6980.
[44] S. Martin Arjovsky, L. Bottou, Wasserstein generative adversarial networks, in: Proceedings of the 34 th International

Conference on Machine Learning, Sydney, Australia, 2017.
[45] V. Chandola, A. Banerjee, V. Kumar, Anomaly detection: A survey (2009).
[46] J.-Y. Zhu, P. Krähenbühl, E. Shechtman, A. A. Efros, Generative visual manipulation on the natural image manifold, in:

European conference on computer vision, Springer, 2016, pp. 597–613.

27

https://doi.org/10.1109/TKDE.2019.2934450
https://doi.org/10.1109/TKDE.2019.2934450
https://doi.org/10.1016/j.cie.2005.01.009
https://doi.org/10.1016/j.trc.2016.01.007
https://doi.org/10.1016/j.patcog.2016.03.028
https://doi.org/10.1016/j.ins.2007.03.025
https://doi.org/10.1145/1541880.1541882
https://doi.org/10.1109/TPAMI.2013.172
https://doi.org/10.1109/TSP.2015.2504345
https://doi.org/10.1016/j.neucom.2016.09.063
https://doi.org/10.1016/j.neucom.2016.09.063
http://arxiv.org/abs/1811.08055
https://doi.org/10.1609/aaai.v33i01.33011409
https://doi.org/10.1109/TNNLS.2020.2979049
http://arxiv.org/abs/1809.05250
https://doi.org/10.1109/tpami.2020.2970410
https://doi.org/10.1109/tii.2020.2976752
https://doi.org/10.1016/j.media.2019.01.010
https://doi.org/10.1126/science.1127647
https://doi.org/10.1126/science.1127647
https://doi.org/10.1016/j.inffus.2019.08.002
https://doi.org/10.1016/j.inffus.2019.08.002
https://doi.org/10.1016/j.inffus.2019.08.002
http://arxiv.org/abs/1412.6980

[47] P. Bojanowski, A. Joulin, D. Lopez-Paz, A. Szlam, Optimizing the latent space of generative networks, arXiv preprint
arXiv:1707.05776 (2017).

[48] A. Radford, L. Metz, S. Chintala, Unsupervised representation learning with deep convolutional generative adversarial
networks, arXiv preprint arXiv:1511.06434 (2015).

[49] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, Y. Bengio, Generative
adversarial nets (2014) 2672–2680.

[50] L. Metz, B. Poole, D. Pfau, J. Sohl-Dickstein, Unrolled generative adversarial networks, arXiv preprint arXiv:1611.02163
(2016).

[51] T. D. Luu, J. Fadili, C. Chesneau, Sampling from non-smooth distributions through langevin diffusion, Methodology and
Computing in Applied Probability (2020) 1–29.

[52] R. Liu, B. Yang, E. Zio, X. Chen, Artificial intelligence for fault diagnosis of rotating machinery: A review, Mechanical
Systems and Signal Processing 108 (2018) 33–47.

[53] M. Arjovsky, L. Bottou, Towards principled methods for training generative adversarial networks, arXiv preprint
arXiv:1701.04862 (2017).

[54] X. Glorot, Y. Bengio, Understanding the difficulty of training deep feedforward neural networks, in: Proceedings of the
thirteenth international conference on artificial intelligence and statistics, 2010, pp. 249–256.

[55] P. Grzegorzewski, E. Mrówka, Trapezoidal approximations of fuzzy numbers—revisited, Fuzzy Sets and Systems 158 (7)
(2007) 757–768.

[56] R. Perdisci, G. Gu, W. Lee, Using an ensemble of one-class svm classifiers to harden payload-based anomaly detection
systems, in: Sixth International Conference on Data Mining (ICDM’06), IEEE, 2006, pp. 488–498.

[57] B. Schölkopf, R. C. Williamson, A. J. Smola, J. Shawe-Taylor, J. C. Platt, Support vector method for novelty detection,
in: Advances in neural information processing systems, 2000, pp. 582–588.

[58] A. Basharat, A. Gritai, M. Shah, Learning object motion patterns for anomaly detection and improved object detection,
in: 2008 IEEE Conference on Computer Vision and Pattern Recognition, IEEE, 2008, pp. 1–8.

[59] M. Sakurada, T. Yairi, Anomaly detection using autoencoders with nonlinear dimensionality reduction, in: Proceedings
of the MLSDA 2014 2nd Workshop on Machine Learning for Sensory Data Analysis, 2014, pp. 4–11.

[60] X. Glorot, A. Bordes, Y. Bengio, Deep sparse rectifier neural networks, in: Proceedings of the fourteenth international
conference on artificial intelligence and statistics, 2011, pp. 315–323.

[61] A. L. Maas, A. Y. Hannun, A. Y. Ng, Rectifier nonlinearities improve neural network acoustic models, in: Proc. icml,
Vol. 30, 2013, p. 3.

28

	Introduction
	Problem Statement
	Preliminary and Background
	Generative Adversarial Networks
	Auto-Encoder
	AdaBoost Ensemble learning
	Adam Optimization

	The Proposed Anomaly Detection Methodology
	Base Anomaly Detector with Auto Encoder aided Generative Adversarial Networks (AE-GAN)
	AE-GAN hyper-parameter optimization
	Ensembled Anomaly Detector by AdaBoost Algorithm

	Case Study
	Protocol and Setting
	Synthetic Case
	Anomaly Detection for Automatic Door in High-Speed Train

	Conclusion

