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Abstract

Deep learning methods of fault diagnostics require the availability of a large amount of

labeled data for training, i.e., signal values corresponding to known degradation and fault states.

Furthermore, the distribution of the training data should be similar to that of the (test) data col-

lected in the field. Since these conditions are typically not satisfied in most industrial applications,

this work develops a deep multi-adversarial conditional domain adaptation network. The main

original contribution lies in a novel method to align, class by class, the weighted marginal data

distributions using multiple domain discriminators. The network allows overtaking the classifica-

tion underperformance caused by the problem of negative transfer, which is typically encountered

when only few training data of some of the classes are available. The proposed method is shown

to outperform other state-of-the-art methods on two cross-domain fault diagnostic case studies,

verified by applying Friedman and Holm post-hoc tests.
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I. INTRODUCTION

Within Prognostics and Health Management (PHM), fault diagnostics is the task of identifying

the degradation or fault state of an industrial component using related signal measurements taken

from the monitoring system [1]. Analytics based on Artificial Intelligence (AI) techniques have

shown great potential in extracting component condition information from massive monitoring

data [2]. Conventional AI algorithms, such as Artificial Neural Network (ANN), Support Vector

Machine (SVM) and K-Nearest Neighbor (KNN), typically require knowledge on signal pro-

cessing and expertise on component degradation to manually extract and select features for the

specific diagnostic task [3]. Differently, deep learning-based algorithms, such as Deep Belief

Network (DBN) [4], Sparse Auto-Encoder (SAE) [5] and Convolutional Neural Network (CNN)

[6], automatically extract degradation features from large-scale raw data, given their capability

of mining hierarchical representations and, therefore, of self-adaptive feature learning [7]. For

example, Shao et al. [4] developed a method based on Particle Swarm Optimization (PSO) to

optimize the architecture and the hyper-parameters of a DBN employed for fault diagnostics

of rolling bearings. Sun et al. [5] developed a deep neural network to classify induction motor

faults, in which SAEs are used to learn feature representations from raw data. Wen et al. [6]

developed a Two-Dimensional (2D) CNN which converts raw time-series signals into 2D images,

and applied it to fault diagnostics of motor bearings and pumps.

Training deep learning models for fault diagnostics requires the availability of a large amount

of data representative of the system behavior, i.e., signal values measured during operation in

correspondence of known degradation states and types of faults. Also, the distribution of the data

used to train the model should, ideally, be the same of the (test) data which the model is applied

to in the field, for successful fault diagnostics in practice [8]. However, in practical engineering,

the ground-truth degradation and fault state of in-service components is typically not known,

and only few data labeled with the degradation and fault type are available for training [2].
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An additional challenge of deep learning-based fault diagnostic models comes from the di-

vergence between the distributions of the training and test data, which can be caused by:

a) the occurrence of concept drifts due to unpredictable modifications of the working conditions

caused by various possible factors, such as seasonality effects, sensor or component aging,

and changes of operating conditions [9].

b) the fact that the data for training the fault diagnostic model are obtained by performing

lab experiments or generated by simulation, and not from the in-service components and

systems operating in the field; this is typical of the situation when there is lack of fault data

from the field, e.g., for safety-critical, high-value or new-design components and systems.

c) the use of data collected by monitoring components to train the model which is, then, applied

to data from another component of the same or similar type, but which could very well

behave (degrade and fail) differently because the fact that experiencing different operating

conditions and maintenance during its life. This situation typically occurs for components

used in a fleet of machines.

The consequence of the divergence of the training and test data distributions is that the fault

diagnostic model developed using the training data characteristic of a certain context (source

domain) and characterized by a given (source) distribution may provide unsatisfactory results

when applied to test data from another context (target domain) characterized by a different

(target) distribution.

In this respect, Transfer Learning (TL) is a promising approach to address cross-domain

learning problems by leveraging knowledge from the source domain to improve the performance

of the model in the target domain [10]. Here, we focus on Domain Adaptation (DA), a special case

of TL in which the learning tasks in the source and target domains are the same [10]. A literature

review of DA methods and their application to PHM is reported in Subsection I-A. Most of the

existing works about cross-domain fault diagnostics consider the case in which the discrepancies

between the source and target domains are caused by modifications of the operating conditions

of a same machine. The applications usually concern components of rotating machinery, such

as bearings and gearboxes [8]. Few studies focus on negative transfer, i.e., a misalignment

of the class-conditional data distributions, which reduces the accuracy of the classifier in the

target domain [10]. This problem is common in fault diagnostic applications characterized by
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imbalanced and multimodal datasets [11].

We propose a novel cross-domain fault diagnostic method based on deep TL. A deep multi-

adversarial conditional DA network is developed for fault diagnostics of a fleet of machines.

We realistically assume that signal values are available and the corresponding degradation and

fault labels are known for a machine of a fleet (source domain), but unknown for other similar

machines of the same fleet (target domain). The shared feature representations between the source

and target domains are extracted from the temporal signals by a CNN. Then, a task-specific clas-

sifier of the degradation state is trained to minimize the classification loss on the source domain

using the known degradation labels. Jointly, an ensemble of domain discriminators is adversarially

trained over the feature extractor to minimize the divergence between the distributions of the

source and target domain patterns of each class in the space of the extracted features. As a

result, a feature representation common to the source and target domains is obtained. Differently

from the traditional adversarial learning approach, which employs a domain discriminator based

on a single network [12], we use an ensemble of domain discriminators to reduce the effect of

negative transfer. Since each discriminator is responsible for the alignment of the conditional

distributions of a specific class, the divergence among the distributions is expected to reduce.

The main contributions that stand out from the work are:

1) a novel cross-domain fault diagnostic method for the classification of the degradation and

fault states of identical components used in a fleet of machines. Specifically, a domain-

invariant feature representation across different components is extracted resorting to an

adversarial learning process between a CNN-based feature extractor and an ensemble of

domain discriminators.

2) an effective solution for the negative transfer problem based on the use of an ensemble of

domain discriminators.

The proposed method is verified on two cross-domain fault diagnostic case studies from

different industrial sectors. The former considers two bearing datasets collected from different

experimental platforms, whereas the latter considers signals recorded from automatic doors used

in a fleet of high-speed trains.

The rest of the paper is organized as follows. Subsection I-A reviews the main approaches to

DA and discusses their application in the PHM field. Section II presents the problem statement

and Section III its formulation. The proposed cross-domain fault diagnostic method is described
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in Section IV. Section V shows the applications of the proposed method for the cross-domain

fault diagnostics of bearings of rotating machinery (case study 1) and of automatic doors used

in railway industry (case study 2). Finally, conclusions are drawn in Section VI.

A. DA approaches and their application to PHM

Early approaches for DA were based on instance-transfer strategies, which reweigh or sub-

sample groups of instances from the source domain to match the distribution of the data in the

target domain [13]. Other methods seek a transformation of the feature space for mapping the

source distribution into the target one [14]. Discrepancy-based methods aim at learning a domain-

invariant feature representation by minimizing pre-defined metrics of the distance between the

distributions of the two domains. Maximum Mean Discrepancy (MMD) [15] and Wasserstein

distance [16] have been used to this purpose. Deep TL methods combine deep learning to extract

features for an abstract, high-level representation of raw data with TL to perform a learning

task on different, but related, data distributions. The Deep Domain Confusion (DDC) method

for cross-domain classification introduces a MMD-based adaptation layer into a CNN [15].

Recently, inspired by Generative Adversarial Networks (GANs), a Domain-adversarial Neural

Network (DANN) has been proposed, which builds a set of features characterized by similar data

distributions in the source and target domains via an adversarial learning process [12]. Instead of

minimizing the Kullback-Leibler (KL) or the Jensen-Shannon (JS) divergence metrics between

source and target domains, as typically done in adversarial adaptation, the Wasserstein distance

is estimated by a domain critic and, then, minimized by updating a feature extractor [16].

Given that labeled data are often unavailable in the target domain, most unsupervised DA

approaches align only the global distributions in the feature spaces of the source and target

domains (marginal DA), without considering the complex multimodal structures underlying the

data distributions [17]. As a result, a misalignment between the source and target domain data

in the space of the extracted features can cause misclassifications in the target domain. This

problem, which is referred to as negative learning [10], is more common when the number

of observations of some classes is significantly smaller than the number of observations of

other classes (imbalanced classification problem), and, therefore, the alignment of the global

distributions does not properly consider the under-represented class. In this respect, it has

been shown that fine-grained alignments of features extracted from different domains can yield
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better performance in many TL tasks [17]. Several methods attempt to eliminate the effect of

negative transfer by jointly aligning marginal and conditional distributions. Outcomes of the

classifier have been used for the conditional adaptation of the feature representations via the

multiplicative concatenation [18]. Alignments of the marginal and class-conditional distributions

have been performed by introducing a joint predictor, which learns a discriminative model of

class and domain labels [19]. A Batch Spectral Penalization (BSP) approach, which penalizes

the eigenvectors that are associated to the largest singular values in the space of the features

extracted by DANN, has been developed to enhance the feature discriminability [20].

TL methods have already been applied to PHM, especially for fault diagnostics [21]. Transfer

strategies have been introduced to improve the performance of fault diagnostic models when

applied to machinery under variable rotating speeds and loads [22]. Deep TL has been used for

fault diagnostics of motors, gearboxes and shaft bearings [21]. CNN and TL have been combined

for bearing fault diagnostics under variable working conditions [23]. In [24], the MMD between

the latent common features extracted by a three-layer SAE from source and target domains has

been minimized to achieve satisfactory fault diagnostic results on the bearing dataset of Case

Western Reserve University (CWRU). A DANN-based method for cross-domain fault diagnostics

has been developed and applied to the CWRU bearing dataset considering variations of the

working load [25].

II. PROBLEM STATEMENT

We have available nS patterns collected during the operation of a machine of a fleet. Each

pattern xiS ∈ Rm×L, iS=1, 2, ..., nS , is a multidimensional time series constituted by the values of

m signals measured during a time window of L consecutive time instants. The degradation/fault

state of the component at the time in which xiS is acquired is represented by the label yiS =

{0, 1, ..., K−1}. Label 0 indicates an healthy state, whereas the remaining labels 1, . . . , K−1

indicate degraded or fault states which, depending on the diagnostic application can differ for the

type of degradation mechanism, the amount of degradation or the failure mode. XS={xiS , iS=

1, 2, ..., nS} and YS = {yiS , iS = 1, 2, ..., nS} represent the sets of collected signal values and

corresponding classes, respectively. We assume that the time interval during which the time

series xiS is acquired is much smaller than the time scale of the degradation process, and,

therefore, the degradation state of the component is not varying during the acquisition of xiS .
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In practice, since components typically operate when they are in healthy state, the number

of data of class 0 (healthy state) is expected to be much larger than the number of data in

a degraded state, i.e., n
yiS=0

S ≫ n
yiS̸=0

S , and different degradation states typically have different

frequencies of occurrence. Then, in practical applications, {XS, YS} is typically an imbalanced

dataset, characterized by the presence of at least one class with a fraction of representative

patterns smaller than 40% of the number of patterns that belong to the majority class [26].

In this setting, the objective of the present work is to develop a method for the classification

of the degradation/fault state of a set of patterns XT ={xiT ∈ Rm×L, iT =1, 2, ..., nT} collected

from other same-type machines of the same fleet, for which the same m signals are measured

during the condition monitoring, but the true class labels YT = {yiT , iT = 1, 2, ..., nT} are not

available and, therefore, a dedicated supervised diagnostic model cannot be directly built.

Notice that the situation in which diagnostic labels are not available, is a common one in

several industrial applications, due to the cost of labeling the data and/or the difficulty/danger

of operating the machines under abnormal or degraded conditions, especially for safety-critical

or high-value systems.

III. PROBLEM FORMULATION

The fault diagnostic problem stated in Section II is here formulated in the context of DA. A

domain D consists of two components: a feature space X and a marginal probability distribution

P (X), from which a dataset X={xi}ni=1 ∈ X is sampled. For a given domain D={X , P (X)},

a task T is defined by a label space Y and a predictive function f(·), which can be learned from

the pairs {xi, yi}, where xi ∈ X and yi ∈ Y .

We consider the case of two domains: the source domain DS = {(xiS , yiS)}
nS
iS=1, with an

associated learning task TS , and the target domain DT = {(xiT , yiT )}
nT
iT=1, with the associated

learning task TT . TL aims to improve the learning of the target predictive function fT (·) in DT

using the knowledge in DS and TS , when DS ̸= DT or TS ̸= TT . DA is a particular case of

TL, which assumes that tasks and feature spaces in the source DS and target DT domains are

the same (TS = TT and XS = XT ), but the marginal probability distributions of the data are

different, P (XS) ̸= P (XT ) [10].

In this work, the source domain DS = {XS, YS} refers to the monitored machine for which

labeled data containing signal values and corresponding degradation/fault states are available,
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whereas the target domain DT = {XT} refers to other machines of the same fleet for which

the degradation/fault states are not known. Notice that the source-domain data, DS , and the

target-domain data, DT , share the same feature and label space, i.e., XS = XT and YS = YT .

However, since each machine is experiencing different operating and environmental conditions

and maintenance interventions during its life, it is expected that DS and DT are originated from

different marginal probability distributions, i.e., P (XS) ̸=P (XT ). The learning tasks, TS and TT ,

coincide and consist in the classification of the machine degradation/fault state.

The objective of the diagnostic work is to build a classifier for associating the signal mea-

surements collected in the target domain, xiT , to the corresponding label of the machine degra-

dation/fault state.

IV. THE PROPOSED FAULT DIAGNOSTIC METHOD

A DANN-based DA approach is here developed. Since the dataset {XS, YS} is imbalanced,

directly using a feature extractor Gf (xi), which receives in input a pattern xi and produces in

output the extracted feature representation f i = Gf (xi) [12], for the alignment of the marginal

distributions of the source and target domains can lead to the mismatch of data belonging to

different classes, and, therefore, to unsatisfactory classification performances in the target domain

(negative transfer).

To alleviate this problem, the class-conditional distributions of the extracted features are indi-

vidually aligned to obtain the feature representations such that P (Gf (XS)|YS) ≈ P (Gf (XT )|YT ).

Specifically, a deep multi-adversarial conditional DA network which uses an ensemble of K

domain discriminators is proposed for cross-domain fault diagnostics. Each discriminator is

responsible for the alignment of the conditional distributions of a specific class. The overall

architecture of the proposed network is presented in Fig. 1. It consists of three modules: a CNN-

based feature extractor, a classifier made of Fully-Connected (FC) layers, and an ensemble of

domain discriminators.

• CNN-based Feature Extractor

The feature extractor aims at seeking a latent feature space, in which the feature repre-

sentations of the source and target domains are characterized by similar distributions. It

defines the function Gf = Gf (xi;θf ) : RL → RD, with parameters θf , which maps the

L-dimensional temporal sequence xi into the D-dimensional feature representation f i. In
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Conv1

Conv2

Conv3

Feature Extractor

Classifier

…

…

Domain Discriminator  
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k
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GRL

…
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Fig. 1. The architecture of the proposed network.

this work, the feature extractor is a Convolutional Neural Network (CNN) made by three

convolutional blocks, each one formed by a convolutional layer and a pooling layer. This

configuration has been already successfully applied in [12], [25] to learn discriminative

features.

• Classifier
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It receives in input the D-dimensional feature representation f i and produces output a K-

dimensional vector ŷi = [ŷ0i , . . . , ŷ
k
i , . . . , ŷ

K−1
i ], with ŷki indicating the probability that xi

belongs to the degradation class k: Gy = Gy(Gf (xi);θy) : RD → RK . The classifier is

formed by three FC layers followed by a softmax activation function, which produces the

normalized probability distribution ŷi with values in the range [0,1] and whose sum is 1

[7]. The loss function used to train the classifier is the cross entropy:

Ly(xi, yi) = −
K−1∑
k=0

1{yi = k} logGy(Gf (xi)) (1)

computed considering the labeled source domain data DS = {XS, YS}.

• Multiple Domain Discriminators

An ensemble of discriminators made by K class-wise domain discriminators G0
d, . . . , G

k
d, . . . , G

K−1
d

is developed to ensure the class-by-class alignment of the data distributions extracted from

the source and target domains. The objective of the k-th discriminator Gk
d = Gk

d(Gf (xi);θ
k
d) :

RD → [0, 1], with parameters θk
d, is to distinguish whether the feature representation f i has

been originated from a pattern xi of class k of the source domain DS (domain label diS = 0)

or from the target domain DT (domain label diT = 1). Gk
d is adversarially trained over the

feature extractor Gf to reduce the divergence between the distributions of the source and

target data of the k-th class.

The training of the discriminators Gk
d requires, in principle, patterns of class k of both the

source and target domains. This raises the issue that the degradation states yiT of the target

patterns xiT ∈ DT are not known and, therefore, the feature f iT
extracted by Gf cannot

be sent to the specific discriminator dedicated to the patterns of class yiT . To overcome

this problem, we have developed a mechanism based on the use of an attention term,

aki ∈ [0, 1], which indicates how much attention should be given by the discriminator Gk
d

to a generic pattern, xi, during its training. Specifically, the attention aki is used to weight

the extracted feature representations, f i = Gf (xi), i.e., the k-th discriminator, Gk
d, receives

in input aki ·Gf (xi). The effect of this weighting is that the updating of the model weights

performed by the error backpropagation method during the training of the discriminator Gk
d

is proportional to aki [27].

With respect to the source domain, the attention akiS given by the discriminator Gk
d to the



11

pattern xiS ∈ DS of class yiS is:

akiS =

0 if k ̸= yiS

1 if k = yiS

, iS=1, 2, . . . , nS (2)

and, therefore, xiS contributes to the training of only the discriminator dedicated to the

pattern of its true class yiS .

With respect to the target domain, the attention akiT given by the discriminator Gk
d to the

pattern xiT ∈ DT is:

akiT =

0 if ŷkiT < 1
K

ŷkiT if ŷkiT ≥
1
K

, iT =1, 2, . . . , nT (3)

where ŷkiT is the probability, estimated by the classifier Gy, that xiT is of class k. The

motivation of the assignment is that, since the true class of the target patterns is not known,

its estimation provided by the classifier is used. The effect is that Gk
d will pay more attention

on the patterns xiT with larger attentions akiT during its training. The threshold 1
K

used in

Eq. (3), which corresponds to the probability that xiT is of class k for a naive classifier,

allows limiting the propagation of the errors from Gy to Gk
d.

Each discriminator is formed by a binary classifier with two FC layers. Given a pattern

xi ∈ DS ∪DT , the domain classification loss function of the k-th domain discriminator is

the binary cross entropy:

Lk
d(xi, di) = −[di logGk

d(a
k
i ·Gf (xi))

+ (1− di) log(1−Gk
d(a

k
i ·Gf (xi)))]

(4)

The proposed method is built based on the Domain-Adversarial Neural Network (DANN) [12],

from which the feature extractor Gf and the classifier Gy derive. The main novelty is the use

of an ensemble of discriminators and their training using Eq. (4). The feature extractor Gf , the

classifier Gy and the K domain discriminators {Gk
d}K−1

k=0 are jointly trained in a deep feed-forward

network. Specifically, the parameters θf , θy of Gf , Gy are synergistically optimized to extract

discriminative feature representations for the given fault diagnostic task, through minimizing the

classification loss of degradation states Ly(θf ,θy) on the labeled source domain data DS . The
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Algorithm 1 Training procedure of the proposed deep multi-adversarial conditional DA network
Input: source dataset: DS={(xiS , yiS)}

nS
i=1; target dataset: DT = {xiT }

nT
i=1; mini-batch size for

source and target datasets: h; hyper-parameters: λd, λf ; learning rate: µ

Output: optimal θ̂f , θ̂y, {θ̂
k

d}K−1
k=0

1: initialize the parameters θf ,θy and {θk
d}K−1

k=0 of the feature extractor Gf , the classifier Gy

and the K domain discriminators {Gk
d}K−1

k=0 ;

2: repeat

3: sample mini-batch {xiS , yiS}hi=1 from DS;

4: sample mini-batch {xiT }hi=1 from DT ;

5: update θ̂f , θ̂y, {θ̂
k

d}K−1
k=0 by:

θf ←− θf − µ
(

∂Ly

∂θf
− λdλfa

k ∂Lk
d

∂θf

)
θy ←− θy − µ∂Ly

∂θy

θk
d ←− θk

d − µλd
∂Lk

d

∂θk
d

6: until θf ,θy and {θk
d}K−1

k=0 converge.

parameters {θk
d}K−1

k=0 of {Gk
d}K−1

k=0 are adversarially optimized over θf to enable obtaining domain-

invariant feature representations for each degradation state, resorting to multiple two-player

minimax games in which {Gk
d}K−1

k=0 minimize the domain classification loss Ld(θf , {θk
d}K−1

k=0 ),

whereas Gf maximizes it oppositely, using domain labels of DS and DT . The overall loss

function, which is obtained by combining the loss function of the classifier of the degradation

state, Ly, reported in Eq. (1), and the loss function of the domain discriminators, Lk
d with

k=0, 1, ..., K − 1, reported in Eq. (4), is:

L(θf ,θy, {θk
d}K−1

k=0 ) =
1

nS

∑
xi∈DS

Ly (Gy(Gf (xi)), yi)

− 1

n

∑
xi∈DS∪DT

K−1∑
k=0

Lk
d

(
λd ·Gk

d(λf · aki ·Gf (xi)), di
) (5)

where n = nS + nT , nS is the number of patterns in the labeled source-domain dataset DS =

{xiS , yiS}
nS
i=1 and nT is the number of patterns in the unlabeled target-domain dataset DT =

{xiT }
nT
i=1. The hyper-parameters λd and λf are introduced to weight the loss functions in Eq. (5).

Specifically, the updating of the weights θk
d of the domain discriminators {Gk

d}K−1
k=0 is influenced
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by λd, whereas the updating of the weights θf of the feature extractor Gf is influenced by both

λd and λf , as shown in Fig. 1 and reported in Algorithm 1. The parameters θf ,θy, {θk
d}K−1

k=0 can

be optimized by seeking a saddle point solution θ̂f , θ̂y, {θ̂
k

d}K−1
k=0 so that

(θ̂f , θ̂y) = argmin
θf ,θy

L(θf ,θy, {θ̂
k

d}K−1
k=0 ) (6)

{θ̂
k

d}K−1
k=0 = argmax

{θk
d}

K−1
k=0

L(θ̂f , θ̂y, {θk
d}K−1

k=0 ) (7)

which can be trained by the standard backpropagation algorithm. Algorithm 1 summarizes the

pseudo-code of the proposed method. Fig. 1 shows the Gradient Reversal Layer (GRL), which

generates the minus sign (–) between the gradient from Gy, ∂Ly

∂θf
, and the gradient from Gk

d, ∂Lk
d

∂θf
.

The GRL, which is widely applied in adversarial learning [12], acts as an identity transformation

during the forward propagation, but reverses the sign of the gradients from Gk
d before passing

them to Gf during the backpropagation.

V. CASE STUDIES

The proposed method is applied to fault diagnostics of bearings of rotating machines (case

study 1), and of automatic doors used in the railway industry (case study 2).

A. Case study 1

Since the failures in bearings are the primary cause of rotating machinery unavailability, their

health-degradation-fault state monitoring is of paramount importance in many industrial sectors.

In this work, we consider two bearing datasets, IMS and CWRU [28], containing data patterns

of four classes (healthy (H) and degraded due to defects at the Inner-race (I), Outer-race (O)

and Ball (B)), collected from two different experimental platforms. The objective is to show that

the novel method proposed in this work can correctly classify the degradation state of bearings

working in an experimental platform different from the one from which the labeled patterns used

to train the model have been collected.

The IMS bearing dataset has been generated using an experiment platform made by four

double-row bearings on a shaft [28]. Vibration signals are measured by accelerometers installed

on the bearing housings at a frequency of 20 kHz. The CWRU bearing dataset provided by the
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TABLE I

CONFIGURATION OF THE DEVELOPED MODELS IN CASE STUDIES 1 AND 2

Gf kernel/pooling size filter output size Gy input size output size Gk
d input size output size

case study 1 2 1=2 1 2 1 2 1=2 1 2 1=2

conv1/pooling1 197×1/2×1 57×1/2×1 64 502×64 222×64 FC 1 1760 2720 256 FC 1 1760 2720 1024

conv2/pooling2 123×1/2×1 33×1/— 64 190×64 190×64 FC 2 256 256 64 FC 2 1024 1024 2

conv3/pooling3 81×1/2×1 21×1/2×1 32 55×32 85×32 FC 3 64 64 4

FC — — — 1760 2720

Case Western Reserve University (CWRU) has been generated on another experimental platform

made by a 2 hp motor and test bearings [28]. Also in this case, vibration signals are measured

by accelerometers attached to the housing, at a frequency of 12 kHz.

We consider a one-dimensional time series constituted by L = 1200 consecutive accelera-

tion measurements as input pattern xi ∈ R1×1200 of the diagnostic model. Both datasets are

characterized by imbalanced multi-class distributions of the majority class H (500 patterns in

the IMS dataset and 400 in the CWRU dataset) and the under-represented classes I, O, and B

(100 patterns of class I, 100 of class O and 200 of class B in the IMS dataset; 80 patterns of

class I, 80 of class O and 100 of class B in the CWRU dataset). In both datasets, the most

under-represented classes (I and O) are present with an imbalance ratio (the ratio between the

number of patterns of the minority and majority classes) of 20%, which is smaller than the limit

of 40% defining an imbalanced dataset [26].

The labeled IMS dataset is firstly used as source dataset DS = {XIMS
S , Y IMS

S } and the

unlabeled CWRU dataset as target dataset DT = {XCWRU
T }. The input data are min-max

normalized and, then, fed into our proposed deep multi-adversarial conditional DA network. The

configuration of the overall network architecture is reported in Table I. The CNN-based feature

extractor Gf uses wide convolution kernels to capture low-frequency features and suppress high-

frequency noises.

The hyper-parameter, λd, used for updating the domain discriminators {Gk
d}K−1

k=0 is set equal to

1 to ensure that Gk
d is trained as fast as the classifier Gy [12]. To avoid the heavy computational
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cost of a grid search for the selection of the other model hyper-parameters, the hyper-parameter,

λf , used for updating the feature extractor Gf , and the learning rate, µ, are adaptively adjusted

[12]. Regarding the adaptation of λf :

λf =
2

1 + exp(−10 · p)
− 1 (8)

where p is set equal to the ratio between the current epoch, epochi, and the maximum number

of epochs, epochmax:

p =
epochi

epochmax
(9)

As a result, the optimization of the feature extractor Gf is dominated by the error of the classifier

Gy at the early stage of the training procedure, when λf is small, which allows extracting features

more discriminative for the classification and, therefore, to propagate less errors to the domain

discriminators {Gk
d}K−1

k=0 . With respect to the setting of the learning rate µ, the Cyclical Learning

Rate (CLR) policy, which cyclically varies µ within a band of values [base lr,max lr], is used

to eliminate the need of manual tuning [29]. Specifically, the LR range test [29] is applied to set

base lr and max lr, which result equal to 5e-4 and 3e-3, respectively, and max lr exponentially

decreases until it reaches base lr. The mini-batch size, h, is set equal to 16 to achieve a robust

convergence of the training algorithm [30], and the maximum training epoch epochmax is set

equal to 2500. Since the target domain data are unlabeled, the training procedure is not terminated

until the classification loss (Eq. (1)) on the labeled test data of the source domain stabilizes and

does not decrease for 100 successive epochs, as suggested in [12].

The results of the proposed method are compared to the results obtained by the following

state-of-the-art methods:

• a CNN trained using only the source dataset DS = {XS, YS} and directly tested on the

target input data XT ; this method, which will be referred to as “M1”, provides a lower

performance bound for the DA-based methods.

• two marginal DA methods based on DANN [12] (denoted as “M2”) and Wasserstein

Distance Guided Representation Learning (WDGRL) [16] (denoted as “M3”), respectively.

• four conditional DA methods based on multi-feature concatenation (f ⊕ ŷ) [31] (denoted as

“M4”), multilinear mapping (f⊗ ŷ) [18] (denoted as “M5”), multilinear mapping combined
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with entropy weight (f ⊗ ŷ + entropy weight) [18] (denoted as “M6”) and Batch Spectral

Penalization (BSP) [20] (denoted as “M7”).

To ensure the fairness of comparison, the feature extractor Gf and the condition predictor Gy of

all methods adopt the same network architecture of the proposed method (Table I), and the same

strategies are applied for the adaptive setting of the hyper-parameters and the stopping criterion.

The models of all methods are trained using the Adam optimization method [32]. A 5-fold cross

validation approach is applied to evaluate the diagnostic performance. Specifically, the target

datasets DT is split into five smaller subsets (folds), then, each of the five folds is used as a test

set to compute the classification accuracy, and the remaining four folds are merged and used

for the model development. Stratified sampling is applied to ensure that the fractions of patterns

of each class are approximately preserved in each train and test fold. Given the imbalanced

distribution of the patterns among the classes, the performances of the methods are evaluated

considering the F-score metric for each class k = 0, 1, . . . , K − 1:

F − scorek =
2PkRk

Pk +Rk

(10)

where Pk and Rk are the class k precision and recall, respectively:

Pk =
TPk

TPk + FPk

(11)

Rk =
TPk

TPk + FNk

(12)

where TPk is the number of test patterns of class k that have been correctly assigned to class

k, FPk is the number of test patterns that are not class k but have been erroneously assigned to

class k, and FNk is the number of test patterns of class k that have been erroneously assigned

to other classes.

The obtained results and the corresponding computational times on a GeForce RTX 2070

SUPER GPU are reported in Table II. Notice that: 1) as expected, all methods based on DA

outperform M1; 2) the overall classification accuracy of the conditional DA methods tends to

be close to the accuracy of DANN, and it is more satisfactory than the accuracy of WDGRL;

3) all methods, except the proposed one, provide very unsatisfactory performances on class O;

4) the proposed method achieves the best classification accuracy on the whole test data, and
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TABLE II

CLASSIFICATION RESULTS OF CASE STUDY 1; COMPUTATIONAL TIME IS REPORTED IN (MINUTE:SECOND)

Method

case study 1

source: IMS → target: CWRU source: CWRU → target: IMS

mean F-score overall accuracy time mean F-score overall accuracy time

H I O B mean std (m:s) H I O B mean std (m:s)

M1 0.80 0.39 0.11 0.00 0.63 0.08 03:01 0.74 0.05 0.02 0.13 0.57 0.02 02:34

M2 1.00 0.63 0.00 0.97 0.86 0.01 08:45 0.87 0.13 0.25 0.47 0.68 0.09 09:51

M3 0.98 0.48 0.07 0.49 0.78 0.05 22:20 0.91 0.11 0.02 0.78 0.74 0.01 20:51

M4 0.99 0.66 0.00 0.96 0.87 0.02 09:53 0.95 0.30 0.44 0.64 0.75 0.04 10:40

M5 1.00 0.72 0.11 0.91 0.88 0.01 10:58 0.92 0.25 0.43 0.68 0.73 0.06 10:44

M6 1.00 0.70 0.22 0.86 0.87 0.01 12:18 0.90 0.23 0.33 0.55 0.71 0.04 11:52

M7 0.99 0.68 0.08 0.92 0.87 0.01 20:01 0.95 0.20 0.36 0.80 0.80 0.03 20:55

Proposed 0.99 0.72 0.68 0.99 0.93 0.02 15:36 0.98 0.31 0.57 0.85 0.84 0.02 14:05

significantly improves the classification accuracy on classes I and O; 5) the proposed method

requires more computational effort than M1, M2, M4, M5 and M6, due to the increase of the

model complexity, but still smaller computational effort than M3 and M7.

Fig. 2 shows the two-dimensional representations provided by t-SNE embedding [33] of the

original features X and the features f extracted by Gf . It can be observed that the original

features are not discriminative among different classes and that there is a mismatch between

the distributions of the data in the source and target domains. Also, the divergence between the

distributions of the source and target data of each class is still remarkably larger in the space of

the features extracted by DANN, where the target data of class O completely overlap with the

source data of class I, than in the feature space obtained by the proposed method. This result

confirms the capability of the class-specific domain discriminators employed by the proposed

method of mitigating the effects of negative transfer on the two most under-represented classes

I and O.

The proposed approach for the training of the multiple domain discriminators, which is

based on the use of the attention mechanism described in Section IV, is here compared with
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(b) DANN (c) Proposed method(a) Original 

Fig. 2. Two-dimensional representation of the spaces of: a) the original features, b) the features extracted by DANN

and c) the features extracted by the proposed method. The source and target test data are represented using less and

more opacity, respectively.

another possible alternative strategy, which assigns each pattern to the training set of only

one discriminator. Specifically, the generic pattern xiS of class k of the source domain is

assigned to the training set of the discriminator Gk
d, whereas the generic pattern xiT of the

target domain is assigned to the training set of a discriminator Gk
d randomly sampled from the

discrete probability distribution of the classes, ŷiT
, provided by the classifier Gy. Fig. 3 shows

the superior performance of the proposed method, especially on the under-represented classes

I and O, which confirms the capability of the attention mechanism of providing class specific

information for the training of the class-specific domain discriminators {Gk
d}K−1

k=0 .

Furthermore, the effect of the amount of data used for the development of the proposed model

on the classification performance is investigated in Fig. 4 considering the transfer task IMS →

CWRU. The total number of training data in the source and target domains are reduced to

50% and 20%, respectively, by using stratified sampling to preserve the imbalanced distributions

among the data of the different classes. It can be observed that: 1) a 50% reduction of the data

causes the significant decrease of the classification performance of only the minority class O;

2) when the number of data is further reduced to 20% of the original dataset with only 100

patterns of class H, 20 of class I, 20 of class O and 40 of class B in the IMS dataset, and

80 patterns of class H, 16 of class I, 16 of class O and 20 of class B in the CWRU dataset,

the overall classification performance becomes unsatisfactory due to the insufficient number of
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Fig. 3. Comparison of different strategies for the training of the multiple domain discriminators: a) random assignment

based on ŷiT
and b) the proposed attention mechanism.
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(b) 50%(a) 100% (c) 20%

Fig. 4. Classification performance when 100%, 50% and 20% of the available data are used for model development,

considering the transfer task IMS → CWRU.

training patterns.

The proposed method is also verified considering the reverse DA task: the CWRU dataset
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is used as source dataset DS = {XCWRU
S , Y CWRU

S } and the IMS dataset as target dataset

DT ={XIMS
T }. The performances obtained using the same architecture and strategy for hyper-

parameters setting are reported in Table II.

Since the CWRU dataset (nS = 660) contains less data than the IMS dataset (nT = 900),

the classification accuracy on the DA task from CWRU to IMS is less satisfactory than the

classification accuracy on the DA task from IMS to CWRU. These results are due to the

negative transfer problem, which is more relevant when the source domain contains few and

class-imbalanced training patterns, and, therefore, the domain discrepancy cannot be effectively

reduced by only aligning the marginal distributions. Still, also in this case, the proposed method

remarkably improves the classification performance of class O.

B. Case study 2

We consider the problem of classifying the degradation state of automatic doors used in a

fleet of high-speed trains, in the situation in which labeled data are available only for the doors

of one train.

Two signals, whose names are not reported in this work for confidentiality reasons, are

measured during the opening and closing of the door. Fig. 5 shows an example of pattern

xi ∈ R2×500, collected during a door opening (left) and closing (right), which last for a period

of approximately 5 seconds (L = 500 measurements). Two datasets have been collected from

two different trains, hereafter referred to as train#1 and train#2. They contain patterns of four

classes, which correspond to the healthy state (N0) and three degraded states caused by different

degradation mechanisms (F1, F2 and F3). The classification problem is imbalanced, being the

number of patterns of the healthy state class significantly larger (100 patterns of class N0 for

train#1 and 86 for train#2) than the number of patterns of the classes corresponding to the

degraded states (42 patterns of class F1, 38 of class F2 and 74 of class F3 for train#1; 20

patterns of class F1, 18 of class F2 and 22 of class F3 for train#2). Notice that the most under-

represented class F2 is present in the dataset with an imbalance ratio of 38% for train#1 and

of 21% for train#2, which are smaller than the limit of 40% defining an imbalanced dataset

[26]. Also, the dataset collected from train#1 contains more patterns than the dataset collected

from train#2. This is due to the fact that the doors installed in the two trains operate in different

operating conditions due to different mounting settings and characteristics of the train journeys
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Fig. 5. Signal measurements during a door opening (left) and closing (right). Measurements units are not reported for

confidentiality reasons.

and, therefore, the corresponding datasets are characterized by different marginal and class-

conditional distributions.

We consider two different cross-domain fault diagnostic tasks: train#1→ train#2, in which

the labeled train#1 dataset is used as source domain DA
S = {X train#1

S , Y train#1
S } and the

unlabeled train#2 dataset is used as target domain DA
T = {X train#2

T }, and train#2→ train#1,

in which the labeled train#2 dataset is used as source domain DB
S = {X train#2

S , Y train#2
S } and

the unlabeled train#1 dataset is used as target domain DB
T = {X train#1

T }. As for the first case

study, the input data are min-max normalized and the same strategy of adaptively adjusting the

hyper-parameter λf and the learning rate µ is applied. Also, all methods are based on the same

network architectures of the feature extractor Gf and the classifier Gy (Table I) and the same

stopping criterion is used. The mini-batch size h is set equal to 16, and the maximum training

epoch epochmax to 2500. The obtained performances and the corresponding computational times
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TABLE III

CLASSIFICATION RESULTS OF CASE STUDY 2; COMPUTATIONAL TIME IS REPORTED IN (MINUTE:SECOND)

Method

case study 2

source: train#1 → target: train#2 source: train#2 → target: train#1

mean F-score overall accuracy time mean F-score overall accuracy time

N0 F1 F2 F3 mean std (m:s) N0 F1 F2 F3 mean std (m:s)

M1 0.86 0.00 0.26 0.66 0.70 0.07 01:15 0.93 0.58 0.30 0.68 0.72 0.04 01:34

M2 0.94 0.67 0.86 0.88 0.89 0.03 04:10 0.88 0.18 0.70 0.78 0.76 0.03 04:05

M3 0.96 0.76 0.71 0.89 0.90 0.03 08:37 0.91 0.58 0.70 0.82 0.82 0.02 10:50

M4 0.93 0.71 0.88 0.96 0.90 0.04 04:54 0.86 0.14 0.75 0.82 0.76 0.02 04:34

M5 0.94 0.79 0.82 0.97 0.91 0.02 05:13 0.94 0.34 0.56 0.76 0.78 0.05 04:46

M6 0.95 0.70 0.75 0.89 0.89 0.03 05:38 0.96 0.56 0.69 0.77 0.81 0.02 04:50

M7 0.97 0.78 0.76 0.89 0.91 0.03 09:31 0.89 0.27 0.82 0.81 0.79 0.03 09:05

Proposed 0.96 0.86 0.92 0.91 0.94 0.03 07:27 0.94 0.60 0.94 0.88 0.87 0.02 08:27

within a 5-fold cross validation are reported in Table III.

Considering the cross-domain diagnostic task (train#1 → train#2), all the methods per-

forming DA provide more satisfactory results than the “M1” method, which confirms that

environments and operating conditions in the two trains are remarkably different, and cause

large divergence in the data distributions. All conditional DA methods outperform the method

DANN, although, as expected, the computational burden is increased. The proposed method

provides the best overall accuracy, which is mainly due to the improvement in the classification

of the minority classes F1 and F2. This result confirms the capability of the proposed multi-

adversarial conditional adaptation model of performing class-by-class transfer. Considering the

cross-domain diagnostic task (train#2 → train#1), characterized by the availability of less

data in the source domain than in the target domain, negative transfer causes an overall worsening

of the performances due to the difficulty of aligning the class-conditional distributions. Notice,

however, that the proposed method still provides the most satisfactory results.
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TABLE IV

RESULTS OF THE HOLM POST-HOC TEST

Method
Average

rank
Z-value p-value

Adjusted

p-value

Hypothesis

(α = 0.05)

M1 7.28 7.488 <0.00001 <0.00007 Rejected

M2 5.78 5.551 <0.00001 <0.00007 Rejected

M3 5.00 4.544 <0.00001 <0.00007 Rejected

M4 4.38 3.744 0.000181 0.00054 Rejected

M5 3.73 2.905 0.003673 0.00550 Rejected

M6 4.58 4.002 0.000063 0.00025 Rejected

M7 3.80 2.995 0.002744 0.00550 Rejected

Proposed 1.48 — — — —

C. Performance comparison

Friedman and Holm post-hoc tests [34] have been performed to verify whether the overall

accuracy of the proposed method in the two case studies is superior to that of the other state-

of-the-art methods.

Considering the four class-specific F −scores and the overall accuracy on the whole test data

in the four performed domain adaptation tasks (IMS → CWRU and CWRU → IMS in case

study 1, train#1 → train#2 and train#2 → train#1 in case study 2), the null-hypothesis of no

significant difference in the performance of all methods is rejected by the Friedman test with a

level of significance α = 0.05, being Friedman test statistic X 2
F equal to 66.13 which is larger

than X 2
.05 = 14.07. Then, according to the Holm post-hoc test, all the null-hypotheses of no

significant difference between the proposed method and any of the other methods are rejected

since the adjusted p-values are smaller than the level of significance α = 0.05 (Table IV). This

allows concluding that the proposed method outperforms the other comparison methods in terms

of the overall accuracy on the two case studies.

VI. CONCLUSION

A novel deep multi-adversarial conditional DA network is developed for fault diagnostics

of a fleet of machines. Differently from conventional deep learning approaches, the method
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is able to reduce the divergence among distributions of data measured from different ma-

chines, by extracting domain-invariant feature representations through an adversarial learning

process between the CNN-based feature extractor and an ensemble of domain discriminators.

The problem of negative transfer, which is typical of fault diagnostic applications characterized by

imbalanced multi-class datasets, has been overtaken by developing an innovative solution based

on an ensemble of discriminators, which allows aligning the weighted data distributions class by

class. The method has been verified considering two cross-domain fault diagnostic case studies

from different industrial sectors. The obtained results show the superior diagnostic performance

of the proposed method with respect to other state-of-the-art methods, which is confirmed by

applying Friedman and Holm post-hoc tests. Future work will include the heterogeneous TL

scenario, in which the feature spaces between the source and target domains are different, and

possibly characterized by different dimensionality.
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