```
» POLITECNICO DI MILANO
```


Basic notions of probability theory

Contents

- Boolean Logic
- Definitions of probability
- Probability laws

Why a Lecture on Probability?

Lecture 1, Slide 22:

Risk

RISK $=$ POTENTIAL DAMAGE + UNCERTAINTY

Dictionary: RISK = possibility of damage or injury to people or things

1) What undesired conditions may occur? \Rightarrow Accident Scenario, S
2) With what probability do they occur? $\quad \Rightarrow$ Probability, p
3) What damage do they cause? \Rightarrow Consequence, x

$$
\operatorname{RISK}=\left\{\mathbf{S}_{\mathbf{i}}, \mathbf{p}_{\mathbf{i}}, \mathbf{x}_{\mathbf{i}}\right\}
$$

こentraleSupélec

Basic Definitions

- Experiment ε : process whose outcome is a priori unknown to the analyst (all possible outcomes are a priori known)
- Sample space Ω : the set of all possible outcomes of ε.
- Event E : a set of possible outcomes of the experiment ε (a subset of Ω):
the event E occurs when the outcome of the experiment ε is one of the elements of E.

Boolean Logic

Definition: Certain events \rightarrow Boolean Logic

Logic of certainty: an event E can either occur or not occur

Indicator variable $\quad \boldsymbol{X}_{\boldsymbol{E}}=\left\{\begin{array}{l}0, \text { when } E \text { does not occur } \\ 1, \text { when } E \text { occurs }\end{array}\right.$

Certain Events (Example)

($\varepsilon=$ die toss; $\Omega=\{1,2,3,4,5,6\} ; E=$ Odd number)

I perform the experiment and the outcome is ' 3 '

Event

E, X_{E}

> True
> $X_{E}=1$

Boolean Logic Operations

- Negation: \bar{E}
- Union:

$$
X_{A \cup B}
$$

- Intersection:

$$
X_{A \cap B}
$$

Boolean Logic Operations

- Negation: $\bar{E} \rightarrow \overline{X_{E}}=1-X_{E}$
- Union:

$$
\begin{aligned}
X_{A \cup B} & =1-\left(1-X_{A}\right)\left(1-X_{B}\right)=1-\prod_{j=A, B}\left(1-X_{j}\right)= \\
& =X_{j=A, B} X_{j}=X_{A}+X_{B}-X_{A} X_{B}
\end{aligned}
$$

- Intersection:

$$
X_{A \cap B}=X_{A} X_{B}
$$

- Definition: A and B are mutually exclusive events if $X_{A \cap B}=0$

Uncertain Events

Uncertain Events

Let us consider: the experiment ε, its sample space Ω and the event E.

($\varepsilon=$ die toss; $\Omega=\{1,2,3,4,5,6\}$; $\mathrm{E}=$ Odd number)

Uncertain Events:

Let us consider: the experiment ε, its sample space Ω,
 event E.

Uncertain events can be compared \rightarrow probability of $E=p(E)$

Probability for comparing the likelihood of events

Money for comparing the value of objects

Probability theory

Probability theory: Kolmogorov Axioms

1. $0 \leq p(E) \leq 1$
2. $p(\Omega)=1 \quad p(\varnothing)=0$
3. Addition law:

Let E_{1}, \ldots, E_{n} be a finite set of mutually exclusive events:
$\left(X_{E_{i}} \cap X_{E_{j}}=\emptyset\right)$.

$$
p\left({ }_{i=1}^{n} E_{i}\right)=\sum_{i=1}^{n} p\left(E_{i}\right)
$$

Definitions of probability

Three definitions of probability

1. Classical definition
2. Empirical Frequentist Definition
3. Subjective definition

1. Classical Definition of Probability

- Let us consider an experiment with N possible elementary, mutually exclusive and equally probable outcomes: $A_{1}, A_{2}, \ldots, A_{N}$ and the event:

$$
E=A_{1} \mathrm{Y} A_{2} \mathrm{Y} \ldots \mathrm{Y} A_{M}
$$

$$
p(E)=\frac{\text { number of outcomes resulting in } E}{\text { total number of possible outcomes }}=\frac{M}{N}
$$

1. Classical Definition of Probability

- Let us consider an experiment with N possible elementary, mutually exclusive and equally probable outcomes: $A_{1}, A_{2}, \ldots, A_{N}$:

When is it applicable?

- Gambling (e.g. tossing of a die)
- If no evidence favouring one outcome

$$
E=A_{1} \mathrm{Y} A_{2} \mathrm{Y} \ldots \mathrm{Y} A_{M}
$$ over others

$$
p(E)=\frac{\text { number of outcomes resulting in } E}{\text { total number of possible outcomes }}=\frac{M}{N}
$$

1. Classical Definition of Probability (criticisms)

- Let us consider an experiment with N possible elementary, mutually exclusive and equally probable outcomes: $A_{1}, A_{2}, \ldots ., A_{\mathrm{N}}$:

When is this requirement met?
In most real life situations the

$$
E=A_{1} \mathrm{Y} A_{2} \mathrm{Y} \ldots \mathrm{Y} A_{M}
$$ outcomes are not equally probable!

$$
p(E)=\frac{\text { number of outcomes resulting in } E}{\text { total number of possible outcomes }}=\frac{M}{N}
$$

2. Frequentist Definition of Probability

Let us consider: the experiment ε, its sample space Ω and an event E.

$$
\varepsilon=\text { die toss; } \Omega=\{1,2,3,4,5,6\} ; E=\{\text { Odd number }\}
$$

- n times ε, E occurs k times

$$
\text { (} n=100 \text { die tosses } \rightarrow k=48 \text { odd numbers) }
$$

- $k / n=$ the relative frequency of occurrence of E

$$
(\mathrm{k} / n=48 / 100=0.48)
$$

$$
\lim _{n \rightarrow \infty} \frac{k}{n}=p
$$

p is defined as the probability of E

2. Frequentist Definition of Probability (criticisms)

$$
\lim _{n \rightarrow \infty} \frac{k}{n}=p
$$

- This is not a limit from the matemathical point of view [limit of a numerical series]
- It is not possible to repeat an experiment an infinite number of times ...
- We tacitly assume that the limit exists

probability as a physical characteristic of the object:
- the physical characteristics of a coin (weight, center of mass, ...) are such that when tossing a coin over and over again the fraction of 'head' will be p

2. Frequentist Definition of Probability (criticisms)

$$
\lim _{n \rightarrow \infty} \frac{k}{n}=p
$$

- Applicable only to those events for which we can conceive of a repeatable experiment (e.g. not to the event «your professor will be sick tomorrow")
- The experiment conditions cannot be identical
- let us consider the probability that a specific valve V of a specific Oil \& Gas plant will fail during the next year
- what should be the population of similar valves?
- Large population: all the valves used in industrial plants. Considering data from past years, we will have a large number n, but data may include valves very different to V
- Small population: valve used in Oil\&Gas of the same type, made by the same manufacturer with the same technical characteristics \rightarrow too small n for limit computation.

Similarity Vs population size dilemma

2. Frequentist Definition of Probability (criticisms)

$$
\lim _{n \rightarrow \infty} \frac{k}{n}=p
$$

Some events (e.g. in the nuclear industry) have very low probabilities (e.g. $\mathrm{p} \approx 10^{-6}$) (RARE EVENTS)

Very difficult to observe

The frequentist definition is not applicable

3. Subjective Definition of Probability

$\mathrm{P}(E)$ is the degree of belief that a person (assessor) has that E will occour, given all the relevant information currently known to that person (background knowledge)

- Probability is a numerical encoding of the state of knowledge of the assessor (De Finetti: "probability is the feeling of the analyst towards the occurrence of the event")
- $\mathrm{P}(E)$ is conditional on the background knowledge K of the assessor:

$$
\mathrm{P}(E)=\mathrm{P}(E \mid K)
$$

- Background knowledge typically includes data/models/expert knowledge
- If the background knowledge changes \rightarrow the probability may change
- Two interpretations of subjective probability:
- Betting interpretation
- Reference to a standard for uncertainty

3. Betting Interpretation

P \{lceland will win next UEFA EURO 2020|K\} $=0.05$

3. Betting Interpretation

$P(E)$ is the amount of money that the person assigning the probability would be willing to bet if a single unit of payment were given in return in case event E were to occur and nothing otherwise.

The opposite must also hold: $1-\mathrm{P}(E)$ is also the amount of money that the person assigning the probability would be willing to bet if a single unit of payment were given in return in case event E were not to occur and nothing otherwise.

3. Betting Interpretation: two sideness of the bet

3. Betting Interpretation (Criticism)

$\mathrm{P}(E)$ is the amount of money that the person assigning the probability would be willing to bet if a single unit of payment were given in return in case event E were to occur and nothing otherwise.
The opposite must also hold ($1-\mathrm{P}(E)$) is also the amount of money that the person assigning the probability would be willing to bet if a single unit of payment were given in return in case event E were not to occur and nothing otherwise.

probability assignment depends from the value judgment about money and event consequences (the assessor may even think that in case of LOCA in a Nuclear Power Plant he/she will die and so the payment will be useless)

3. Reference to a standard for uncertainty

$\mathrm{P}(E)$ is the number such that the uncertainty about the occurrence of E is considered equivalent by the person assigning the probability (assessor) to the uncertainty about drawing a red ball from an urn containing $\mathrm{P}(E)^{*} 100 \%$ red balls

$E=\{G e r m a n y$ will win next FIFA WORLD CUP\}

$$
P(E)=0.33
$$

urn

Probability laws

Probability laws (1)

- Union of two non-mutually exclusive events

$$
P_{A \cup B}=P_{A}+P_{B}-P_{A \cap B}
$$

It can be demonstrated by using the three
Kolmogorov axioms*

$$
P_{A \cup B} \leq P_{A}+P_{B}
$$

- Rare event approximation: A and B events are considered as mutually exclusive $(A \cap B=\emptyset) \rightarrow P(A \cap B)=0 \rightarrow$

$$
P_{A \cup B}=P_{A}+P_{B}
$$

Probability laws (2)

- Union of non-mutually exclusive events: $E_{\cup}=\bigcup_{i=1, \ldots, n} E_{i}$

$$
P\left(E_{\cup}\right)=\sum_{i=1}^{n} P\left(E_{i}\right)-\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} P\left(E_{i} \cap E_{j}\right)+\cdots+(-1)^{n+1} P\left(E_{1} \cap E_{2} \cap \cdots \cap E_{n}\right)
$$

- Upper bound $P\left(E_{U}\right) \leq \sum_{j=1}^{n} P\left(E_{j}\right)$
- Lower bound $P\left(E_{U}\right) \geq \sum_{j=1}^{n} P\left(E_{j}\right)-\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} P\left(E_{i} \cap E_{j}\right)$
- Rare event approximation: events are considered as mutually exclusive $\left(E_{i} \cap E_{\mathrm{j}}=\emptyset, \forall i, j, i \neq j\right) \rightarrow P\left(E_{\mathrm{U}}\right)=\sum_{i=1}^{n} P\left(E_{i}\right)$

Probability laws (3)

- Conditional Probability of A given B

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

- Event A is said to be statistically independent from event B if:

$$
P(A \mid B)=P(A)
$$

- If A and B are statistically independent then:

$$
P(A \cap B)=P(A) P(B)
$$

Theorem of Total Probability

- Let us consider a partition of the sample space Ω into n mutually exclusive and exhaustive events. In terms of Boolean events:
Ω

$$
E_{i} \cap E_{j}=0 \quad \forall i \neq j \quad \bigvee_{i=1}^{n} E_{j}=\Omega
$$

E_{1}	E_{2}	E_{3}
E_{4}	E_{5}	E_{6}

Theorem of Total Probability

- Let us consider a partition of the sample space Ω into n mutually exclusive and exhaustive events. In terms of Boolean events:
Ω

$$
E_{i} \cap E_{j}=0 \quad \forall i \neq j \quad \bigvee_{j=1}^{n} E_{j}=\Omega
$$

E_{1}	E_{2}	E_{3}
E_{4}	E_{5}	E_{6}

- Given any event A in Ω, its probability can be computed in terms of the partitioning events and the conditional probabilities of A on these events: $\quad A=\cup_{j}\left(A \cap E_{j}\right) \rightarrow P(A)=\sum_{j} P\left(A \cap E_{j}\right)$

$$
P(A)=P\left(A \mid E_{1}\right) P\left(E_{1}\right)+P\left(A \mid E_{2}\right) P\left(E_{2}\right)+\ldots+P\left(A \mid E_{n}\right) P\left(E_{n}\right)
$$

Bayes Theorem

- Let us consider a partition of the sample space Ω into n mutually exclusive and exhaustive events E_{j}. We know
- Event A has occurred

Can I use this information to update the probability of $P\left(E_{j}\right)$?

E_{1}	E_{2}	E_{3}
E_{4}	E_{5}	E_{6}

$$
P\left(E_{i} \mid A\right)=\frac{P\left(E_{i} A\right)}{P(A)}=\frac{P\left(A \mid E_{i}\right) P\left(E_{i}\right)}{\sum_{j=1}^{n} P\left(A \mid E_{j}\right) P\left(E_{j}\right)}
$$

theorem of total probability

The Bayesian Subjective Probability Framework

$\mathrm{P}(E / K)$ is the degree of belief of the assigner with regard to the occurrence of E (numerical encoding of the state of knowledge - K - of the assessor)

Bayes Theorem to update the probability assignment in light of new information

Updated

$$
P\left(E_{i} \mid A, K\right)=\frac{P\left(A \mid E_{i}, K\right) \cdot P\left(E_{i} \mid K\right)}{\sum_{j=1}^{n} P\left(A \mid E_{j}, K\right) \cdot P\left(E_{j} \mid K\right)}
$$

new information

