```
» POLITECNICO DI MILANO
```

Interpretation of Probability in Reliability and Risk Analysis

Contents

- Boolean Logic
- Definitions of probability

Why a Lecture on Probability?

Lecture 1, Slide 22:

«Operative definition of reliability: Probability that an item performs its required function, under given environmental and operational conditions for a stated period of time"

Lecture 1, Slide 42:
Probabilistic Risk Assessment 28

1. What undesired conditions may occur? Accident Scenario, S
2. With what probability do they occur? \square Probability, p
3. What damage do they cause?

Consequence, x

RISK $=\left\{\mathrm{S}_{\mathrm{i}}, \mathrm{p}_{\mathrm{i}}, \mathrm{X}_{\mathrm{i}} \boldsymbol{\}}\right.$

Basic Definitions

Definitions: experiment, sample space, event

- Experiment ε : process whose outcome is a priori unknown to the analyst (all possible outcomes are a priori known)
- Sample space Ω : the set of all possible outcomes of ε.
- Event E : a set of possible outcomes of the experiment ε (a subset of Ω)

Boolean Logic

Definition: Certain events \rightarrow Boolean Logic

Logic of certainty: an event E can either occur (the outcome of the experiment ε is one of the elements of E) or not occur

Indicator variable $\quad \boldsymbol{X}_{\boldsymbol{E}}=\left\{\begin{array}{l}0, \text { when } E \text { does not occur } \\ 1, \text { when } E \text { occurs }\end{array}\right.$

Certain Events (Example)

($\varepsilon=$ die toss; $\Omega=\{1,2,3,4,5,6\} ; E=O d d$ number)

I perform the experiment and the outcome is ' 3 '

Event
E, X_{E}
True $X_{E}=1$

Boolean Logic Operations

- Negation: \bar{E}

Boolean Logic Operations

- Negation: \bar{E}
- Union: $A \cup B$

Boolean Logic Operations

$\begin{array}{lll}\text { - } & \text { Negation: } & \bar{E} \\ \text { - Union: } & A \cup B\end{array}$

- Intersection: $A \cap B$

Boolean Logic Operations

- Negation: $\bar{E} \rightarrow X_{\bar{E}}=1-X_{E}$
- Union:

$$
\begin{aligned}
A \cup B \rightarrow X_{A \cup B} & =X_{A}+X_{B}-X_{A} X_{B}= \\
& =1-\left(1-X_{A}\right)\left(1-X_{B}\right)
\end{aligned}
$$

- Intersection: $A \cap B \rightarrow X_{A \cap B}=X_{A} X_{B}$

Definition: A and B are mutually exclusive events if: $X_{A \cap B}=0$

Boolean Logic Operations

- Negation: $\bar{E} \rightarrow \overline{X_{E}}=1-X_{E}$
- Union:

$$
\begin{aligned}
X_{A \cup B} & =1-\left(1-X_{A}\right)\left(1-X_{B}\right)=1-\prod_{j=A, B}\left(1-X_{j}\right)= \\
& =\coprod_{j=A, B} X_{j}=X_{A}+X_{B}-X_{A} X_{B}
\end{aligned}
$$

- Intersection:

$$
X_{A \cap B}=X_{A} X_{B}
$$

- Definition: A and B are mutually exclusive events if $X_{A \cap B}=0$

Uncertain Events

Uncertain Events

Let us consider: the experiment ε, its sample space Ω and the event E.

($\varepsilon=$ die toss; $\Omega=\{1,2,3,4,5,6\} ; E=O d d$ number $)$

Uncertain Events:

Let us consider: the experiment ε, its sample space Ω,
 event E.

Uncertain events can be compared \rightarrow probability of $E=p(E)$

Probability for comparing the
likelihood of events

Uncertain Events:

Let us consider: the experiment ε, its sample space Ω,
 event E.

Uncertain events can be compared \rightarrow probability of $E=p(E)$

Probability for comparing the likelihood of events

Money for comparing the value of objects

Definitions of probability

Three definitions of probability

1. Classical definition
2. Empirical Frequentist Definition
3. Subjective definition

1. Classical Definition of Probability

- Let us consider an experiment with N possible elementary, mutually exclusive and equally probable outcomes: $A_{1}, A_{2}, \ldots, A_{N}$ and the event:

$$
E=A_{1} \cup A_{2} \cup \ldots \bigcup A_{M}
$$

$$
p(E)=\frac{\text { number of outcomes resulting in } E}{\text { total number of possible outcomes }}=\frac{M}{N}
$$

1. Classical Definition of Probability

- Let us consider an experiment with N possible elementary, mutually exclusive and equally probable outcomes: $A_{1}, A_{2}, \ldots, A_{N}$:

When is it applicable?

- Gambling (e.g. tossing of a die)
- If no evidence favouring one outcome

$$
E=A_{1} \cup A_{2} \cup \ldots \cup A_{M}
$$ over others

$$
p(E)=\frac{\text { number of outcomes resulting in } E}{\text { total number of possible outcomes }}=\frac{M}{N}
$$

1. Classical Definition of Probability (criticisms)

- Let us consider an experiment with N possible elementary, mutually exclusive and equally probable outcomes: $A_{1}, A_{2}, \ldots, A_{N}$:

When is this requirement met? In most real life situations the

$$
E=A_{1} \cup A_{2} \cup \ldots \bigcup A_{M}
$$ outcomes are not equally probable!

$$
p(E)=\frac{\text { number of outcomes resulting in } E}{\text { total number of possible outcomes }}=\frac{M}{N}
$$

2. Frequentist Definition of Probability

Let us consider: the experiment ε, its sample space Ω and an event E.

$$
\varepsilon=\text { die toss; } \Omega=\{1,2,3,4,5,6\} ; E=\{\text { Odd number }\}
$$

- n times ε, E occurs k times
($n=100$ die tosses $\rightarrow k=48$ odd numbers)
- $k / n=$ the relative frequency of occurrence of E

$$
(\mathrm{k} / n=48 / 100=0.48)
$$

$$
\lim _{n \rightarrow \infty} \frac{k}{n}=p
$$

p is defined as the probability of E

2. Frequentist Definition of Probability (criticisms)

$$
\lim _{n \rightarrow \infty} \frac{k}{n}=p
$$

- This is not a limit from the mathematical point of view [limit of a numerical series]
- We tacitly assume that the limit exists
- It is not possible to repeat an experiment an infinite number of times ...

probability as a physical characteristic of the object:
- the physical characteristics of a coin (weight, center of mass, ...) are such that when tossing a coin over and over again the fraction of 'head' will be p

2. Frequentist Definition of Probability (criticisms)

$$
\lim _{n \rightarrow \infty} \frac{k}{n}=p
$$

- Applicable only to those events for which we can conceive of a repeatable experiment (e.g. not to the event «Inter wins 2023/2024 champion league»)
- The experiment conditions cannot be identical
- let us consider the probability that a specific valve V of a specific Oil \& Gas plant will fail during the next year
- what should be the population of similar valves?
- Large population: all the valves used in industrial plants. Considering data from past years, we will have a large number n, but data may include valves very different to V
- Small population: valve used in Oil\&Gas of the same type, made by the same manufacturer with the same technical characteristics \rightarrow too small n for limit computation.

Similarity Vs population size dilemma

2. Frequentist Definition of Probability (criticisms)

$$
\lim _{n \rightarrow \infty} \frac{k}{n}=p
$$

Some events (e.g. in the nuclear industry) have very low probabilities (e.g. $\mathrm{p} \approx 10^{-6}$) (RARE EVENTS)

Very difficult to observe

The frequentist definition is not applicable

3. Subjective Definition of Probability

$\mathrm{P}(E)$ is the degree of belief that a person (assessor) has that E will occur, given all the relevant information currently known to that person (background knowledge)

- Probability is a numerical encoding of the state of knowledge of the assessor (De Finetti: "probability is the feeling of the analyst towards the occurrence of the event")
- $P(E)$ is conditional on the background knowledge K of the assessor:

$$
P(E)=P(E \mid K)
$$

- Background knowledge typically includes data/models/expert knowledge
- If the background knowledge changes \rightarrow the probability may change
- Two interpretations of subjective probability:
- Betting interpretation
- Reference to a standard for uncertainty

3. Betting Interpretation

P $\{$ Iran will win next FIFA world cup $\mid K\}=0.05$

3. Betting Interpretation

$P(E)$ is the amount of money that the person assigning the probability would be willing to bet if a single unit of payment were given in return in case event E were to occur and nothing otherwise.

Fair betting:

The opposite must also hold: 1-P(E) is also the amount of money that the person assigning the probability would be willing to bet if a single unit of payment were given in return in case event E were not to occur and nothing otherwise.

3. Betting Interpretation: two sideness of the bet

3. Betting Interpretation (Criticism)

$\mathrm{P}(E)$ is the amount of money that the person assigning the probability would be willing to bet if a single unit of payment were given in return in case event E were to occur and nothing otherwise.
The opposite must also hold (1-P(E)) is also the amount of money that the person assigning the probability would be willing to bet if a single unit of payment were given in return in case event E were not to occur and nothing otherwise.

- probability assignment depends from the value judgment about money and event consequences
- Extreme case: the assessor may even think that in case of LOCA in a Nuclear Power Plant he/she will die and so the payment will be useless)

3. Reference to a standard for uncertainty

$\mathrm{P}(E \mid K)$ is the number such that the uncertainty about the occurrence of E is considered equivalent by the person assigning the probability (assessor) to the uncertainty about drawing a red ball from an urn of N balls containing $\mathrm{P}(E \mid K)^{*} N$ red balls.

$E=\{G e r m a n y$ will win next FIFA WORLD CUP\}

$$
P(E \mid K)=0.33
$$

urn

NUREG 75/014

Nureg 75/014: Reactor Safety Study: An Assessment of Accident Risks in U.S. Commercial Nuclear Power Plants (Rasmussen et al., 1975)

«The overall probability of a complete core meltdown is about $5 \cdot 10^{-5}$ per reactor per year»

NUREG 75/014: probability interpretation

Nureg 75/014: Reactor Safety Study: An Assessment of Accident Risks in U.S. Commercial Nuclear Power Plants
 (Rasmussen et al., 1975)

«The overall probability of a complete core meltdown is about $5 \cdot 10^{-5}$ per reactor per year"

> Interpretation?
"the likelihood of an average citizen's being killed in a reactor accident is about the same as the chance «Widely quoted and of being killed by a falling meteorite"
much criticized statement»

Probability theory

Probability Theory: Kolmogorov Axioms

1. $0 \leq p(E) \leq 1$
2. $p(\Omega)=1 \quad p(\varnothing)=0$
3. Addition law:

Let E_{1}, \ldots, E_{n} be a finite set of mutually exclusive events:

$$
\left(X_{E_{i}} \cap X_{E_{j}}=\emptyset\right) .
$$

$$
p\left(\bigcup_{i=1}^{n} E_{i}\right)=\sum_{i=1}^{n} p\left(E_{i}\right)
$$

