Y POLITECNICO DI MILANO

Interpretation of Probability in Reliability and Risk Analysis

Contents

- Boolean Logic
- **O** Definitions of probability

Why a Lecture on Probability?

Lecture 1, Slide 22:

«Operative definition of **reliability**: **Probability** that an item performs its required function, under given environmental and operational conditions for a stated period of time"

Lecture 1, Slide 42:

Basic Definitions

POLITECNICO DI MILANO

Definitions: experiment, sample space, event

- Experiment ε: process whose outcome is a priori unknown to the analyst (all possible outcomes are a priori known)
- Sample space Ω : the set of all possible outcomes of ε .
- Event *E*: a set of possible outcomes of the experiment ε (a subset of Ω)

Boolean Logic

POLITECNICO DI MILANO

Definition: Certain events → **Boolean** Logic

Logic of certainty: an event *E* can either occur (the outcome of the experiment *ε* is one of the elements of *E*) or not occur

Indicator variable
$$X_E = \begin{cases} 0, \text{ when } E \text{ does not occur} \\ 1, \text{ when } E \text{ occurs} \end{cases}$$

Certain Events (Example)

 $(\epsilon = die toss; \Omega = \{1, 2, 3, 4, 5, 6\}; E = Odd number)$

I perform the experiment and the outcome is '3'

• Negation: \overline{E}

- Negation: \overline{E}
- Union: $A \cup B$

- Negation: \overline{E}
- Union: $A \cup B$

• **Intersection:** $A \cap B$

- Negation: $\overline{E} \rightarrow X_{\overline{E}} = 1 X_E$ • Union: $A \cup B \rightarrow X_{A \cup B} = X_A + X_B - X_A X_B =$ $= 1 - (1 - X_A)(1 - X_B)$
- Intersection: $A \cap B \to X_{A \cap B} = X_A X_B$

Definition: A and B are mutually exclusive events if:
$$X_{A \cap B} = 0$$

• Negation:
$$\overline{E} \rightarrow \overline{X_E} = 1 - X_E$$

• Union:

$$\begin{split} X_{A\cup B} &= 1 - (1 - X_A) (1 - X_B) = 1 - \prod_{j=A,B} (1 - X_j) = \\ &= \prod_{j=A,B} X_j = X_A + X_B - X_A X_B \end{split}$$

• Intersection:

$$X_{A \cap B} = X_A X_B$$

• Definition: A and B are mutually exclusive events if $X_{A \cap B} = 0$

Uncertain Events

POLITECNICO DI MILANO

Uncertain Events

Let us consider: the experiment ε , its sample space Ω and the event *E*.

(ε = die toss; Ω={1,2,3,4,5,6}; E=Odd number)

Uncertain Events:

Ε

Ω

Let us consider: the experiment ε , its sample space Ω , event *E*.

Uncertain events can be compared \rightarrow probability of E = p(E)

Probability for comparing the likelihood of events

Uncertain Events:

Ε

Ω

Let us consider: the experiment ε , its sample space Ω , event *E*.

Uncertain events can be compared \rightarrow probability of E = p(E)

Probability for comparing the likelihood of events

Money for comparing the value of objects

Definitions of probability

POLITECNICO DI MILANO

Three definitions of probability

- 1. Classical definition
- 2. Empirical Frequentist Definition
- 3. Subjective definition

1. Classical Definition of Probability

• Let us consider an experiment with N possible elementary, mutually exclusive and equally probable outcomes: A_1, A_2, \dots, A_N and the event:

$$E = A_1 \bigcup A_2 \bigcup \dots \bigcup A_M$$

1. Classical Definition of Probability

 $E = A_1 \bigcup A_2 \bigcup \dots \bigcup A_M$

• Let us consider an experiment with N possible elementary, mutually exclusive and equally probable outcomes: A_1, A_2, \dots, A_N :

When is it applicable?

- Gambling (e.g. tossing of a die)
- If no evidence favouring one outcome over others

$$p(E) = \frac{number \ of \ outcomes \ resulting \ in \ E}{total \ number \ of \ possible \ outcomes} = \frac{M}{N}$$

1. Classical Definition of Probability (criticisms)

• Let us consider an experiment with N possible elementary, mutually exclusive and equally probable outcomes: A_1, A_2, \dots, A_N :

When is this requirement met?

 $E = A_1 \bigcup A_2 \bigcup \ldots \bigcup A_M$

In most real life situations the outcomes are not equally probable!

 $p(E) = \frac{number \ of \ outcomes \ resulting \ in \ E}{total \ number \ of \ possible \ outcomes} = \frac{M}{N}$

2. Frequentist Definition of Probability

Let us consider: the experiment ε , its sample space Ω and an event *E*.

 ϵ = die toss; Ω ={1,2,3,4,5,6};E={Odd number}

- *n* times ε , *E* occurs *k* times
 - (*n* = 100 die tosses \rightarrow *k*=48 odd numbers)
- k/n = the relative frequency of occurrence of *E*

$$\lim_{n \to \infty} \frac{k}{n} = p \qquad p \text{ is defined as the probability of } E$$

2. Frequentist Definition of Probability (criticisms)

 $\lim_{n\to\infty}\frac{k}{n}=p$

- This is not a limit from the mathematical point of view [limit of a numerical series]
- We tacitly assume that the limit exists
- It is not possible to repeat an experiment an infinite number of times ...

probability as a physical characteristic of the object:

• the physical characteristics of a coin (weight, center of mass, ...) are such that when tossing a coin over and over again the fraction of 'head' will be *p*

2. Frequentist Definition of Probability (criticisms)

 $\lim_{n \to \infty} \frac{k}{n} = p$

- Applicable only to those events for which we can conceive of a repeatable experiment (e.g. not to the event «Inter wins 2023/2024 champion league»)
- The experiment conditions cannot be identical
 - let us consider the probability that a specific valve V of a specific Oil & Gas plant will fail during the next year
 - what should be the population of similar valves?
 - Large population: all the valves used in industrial plants. Considering data from past years, we will have a large number *n*, but data may include valves very different to V
 - Small population: valve used in Oil&Gas of the same type, made by the same manufacturer with the same technical characteristics → too small *n* for limit computation.

Similarity Vs population size dilemma

2. Frequentist Definition of Probability (criticisms)

 $\lim_{n \to \infty} \frac{k}{n} = p$

Some events (e.g. in the nuclear industry) have very low probabilities (e.g. p≈10⁻⁶) (RARE EVENTS)

Very difficult to observe

The frequentist definition is not applicable

3. Subjective Definition of Probability

P(E) is the **degree of belief** that a person (assessor) has that E will occur, **given all the relevant information currently known to that person** (background knowledge)

- Probability is a numerical encoding of the state of knowledge of the assessor (De Finetti: "probability is the feeling of the analyst towards the occurrence of the event")
- P(E) is conditional on the background knowledge K of the assessor:
 P(E)= P(E|K)
- Background knowledge typically includes data/models/expert knowledge
- If the background knowledge changes \rightarrow the probability may change
- Two interpretations of subjective probability:
 - Betting interpretation
 - Reference to a standard for uncertainty

3. Betting Interpretation

P {Iran will win next FIFA world cup | K} = 0.05

POLITECNICO DI MILANO

3. Betting Interpretation

P(E) is the amount of money that the person assigning the probability would be willing to bet if a single unit of payment were given in return in case event *E* were to occur and nothing otherwise.

Fair betting:

The opposite must also hold: 1- P(E) is also the amount of money that the person assigning the probability would be willing to bet if a single unit of payment were given in return in case event *E* were not to occur and nothing otherwise.

3. Betting Interpretation: two sideness of the bet

3. Betting Interpretation (Criticism)

P(E) is the amount of money that the person assigning the probability would be willing to bet if a single unit of payment were given in return in case event *E* were to occur and nothing otherwise.

The opposite must also hold (1 - P(E)) is also the amount of money that the person assigning the probability would be willing to bet if a single unit of payment were given in return in case event E were not to occur and nothing otherwise.

- probability assignment depends from the value judgment about money and event consequences
 - Extreme case: the assessor may even think that in case of LOCA in a Nuclear Power Plant he/she will die and so the payment will be useless)

3. Reference to a standard for uncertainty

P(E|K) is the number such that the uncertainty about the occurrence of *E* is considered equivalent by the person assigning the probability (assessor) to the uncertainty about drawing a red ball from an urn of *N* balls containing $P(E|K)^*N$ red balls.

E={Germany will win next FIFA WORLD CUP} P(E|K)=0.33

urn

NUREG 75/014

Nureg 75/014: Reactor Safety Study: An Assessment of Accident Risks in U.S. Commercial Nuclear Power Plants (Rasmussen et al., 1975)

«The overall **probability** of a complete core meltdown is about $5 \cdot 10^{-5}$ per reactor per year»

NUREG 75/014: probability interpretation

Nureg 75/014: Reactor Safety Study: An Assessment of Accident Risks in U.S. Commercial Nuclear Power Plants

(Rasmussen et al., 1975)

«The overall **probability** of a complete core meltdown is about $5 \cdot 10^{-5}$ per reactor per year"

Interpretation?

"the likelihood of an average citizen's being killed in a reactor accident is about the same as the chance «Widely quoted and of being killed by a falling meteorite" much criticized

statement»

Probability theory

POLITECNICO DI MILANO

Probability Theory: Kolmogorov Axioms

- 1. $0 \le p(E) \le 1$
- 2. $p(\Omega) = 1 \quad p(\emptyset) = 0$
- 3. Addition law:

Let $E_1, ..., E_n$ be a finite set of mutually exclusive events: $(X_{E_i} \cap X_{E_j} = \emptyset).$ $p\left(\bigcup_{i=1}^n E_i\right) = \sum_{i=1}^n p(E_i)$ E_1 E_2

Ω