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Basic notions of probability theory

• Probability Laws

• Discrete Random Variables

Flipped class
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Flipped Class (Part 1) 

 We will give you the material to be studied in the groups and 
the corresponding exercises.

 You will study the material and you will do the exercises with 
your teammates. You can send to Prof. Baraldi questions on 
doubts about the theory. The answers to your questions will be 
discussed during the lecture of Monday (piero.baraldi@polimi.it
– write the group number in the title).

 Each group will upload the solutions on webeep within Monday 
Morning at 11:15. In case of problems using webeep, you can 
send the solution as an attachment to 
nicolasjavier.cardenas@polimi.it and piero.baraldi@polimi.it (in 
the e-mail subject write the number of the group)
 do not worry if you have not solved all exercises or if the solutions are 

wrong – It is normal.
 We will publish the solution of the exercises during next week.

mailto:piero.baraldi@polimi.it
mailto:nicolasjavier.cardenas@polimi.it
mailto:piero.baraldi@polimi.it
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Flipped Class (Part 2) 

 The beginning of next Monday lecture will be 
dedicated to discuss your questions (sent by email). 
Please try to formulate the question in a general way 
(not ask the solution of the exercise).

 The beginning of the Exercise Session of next Friday 
(March 1st) will be dedicated to the correction of the 
exercises.
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Flipped Class (Evaluation) 

All members of the groups solving correctly all exercises 
will get +0.50 in the final exam (bonus points)
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Practicalities

1) We will take the attendance group by group:
- If the group is formed by at least 2 students, the group can start 

work together  (in presence/hybrid/remotely connected)  using 
Skype, Whatsapp, Microsoft Team, or whatever you prefer. 

- The single-person groups will be rearranged. 
- Inform us if your name is not in the list

2) Send only one document per group, containing the 
solutions of all the exercises. 

3) Solutions can be handwritten and should report all 
the intermediate steps. Please a single file, not up-
down…
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 Start of the slides of the flipped lecture
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 Suggestion: do Exercise 0 in the exercise file 
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Contents

o Basic Definitions
o Boolean Logic
o Definitions of probability
o Probability laws
o Random variables
o Probability Distributions
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Probability 
theory
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Probability Theory: Kolmogorov Axioms

1.  

2.     
       
3. Addition law:

      Let E1, …, En be a finite set of mutually exclusive events: 
 (𝑋𝑋𝐸𝐸𝑖𝑖 ∩ 𝑋𝑋𝐸𝐸𝑗𝑗 = ∅). 
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Probability Laws
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• Union of two non-mutually exclusive events

• Rare event approximation: A and B events are considered as mutually
exclusive (𝐴𝐴 ∩ 𝐵𝐵 = ∅)  𝑃𝑃 𝐴𝐴 ∩ 𝐵𝐵 = 0 

       𝑃𝑃𝐴𝐴∪𝐵𝐵 =PA+PB

Probability laws (1)

A ∩ B

ΩA

B

𝑃𝑃𝐴𝐴∪𝐵𝐵 =PA+PB−P A ∩ B

It can be demonstrated
by using the three 

Kolmogorov axioms*  

* http://www.ucs.louisiana.edu/~jcb0773/Berry_probbook/425chpt2.pdf

𝑃𝑃𝐴𝐴∪𝐵𝐵 ≤PA+PB

«conservative error = risk overstimation»
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Probability laws (2)
• Union of non-mutually exclusive events:

• Upper bound

• Lower bound

• Rare event approximation: events are considered as mutually exclusive
(𝐸𝐸𝑖𝑖 ∩ 𝐸𝐸j = ∅,∀𝑖𝑖, 𝑗𝑗, 𝑖𝑖 ≠ 𝑗𝑗)  𝑃𝑃 𝐸𝐸∪ = ∑𝑖𝑖=1𝑛𝑛 𝑃𝑃 𝐸𝐸𝑖𝑖
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𝐸𝐸1 𝐸𝐸2

𝐸𝐸3

«conservative error, 
risk overstimation»
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o Conditional Probability of A given B

  

o Event A is said to be statistically independent from event 
B if:

o If A and B are statistically independent then:

Definition of Conditional Probability

A ∩ B

Ω
A

B
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Theorem of Total Probability
• Let us consider a partition of the sample space Ω  into n mutually 

exclusive and exhaustive events. In terms of Boolean events:
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𝐸𝐸4 𝐸𝐸5 𝐸𝐸6
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Theorem of Total Probability
• Let us consider a partition of the sample space Ω  into n mutually 

exclusive and exhaustive events. In terms of Boolean events:

• Given any event A in Ω, 

                             P(A)= ?
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Theorem of Total Probability
• Let us consider a partition of the sample space Ω  into n mutually 

exclusive and exhaustive events. In terms of Boolean events:

• Given any event A in Ω, 

𝐴𝐴 = �
𝑗𝑗=1
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𝐴𝐴 ∩ 𝐸𝐸𝑗𝑗

𝑃𝑃 𝐴𝐴 = ∑𝑗𝑗=1𝑛𝑛 𝑃𝑃 𝐴𝐴 ∩ 𝐸𝐸𝑗𝑗 = ∑𝑗𝑗=1𝑛𝑛 𝑃𝑃 𝐴𝐴|𝐸𝐸𝑗𝑗 𝑃𝑃(𝐸𝐸𝑗𝑗)
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DO EXERCISES 1 AND 2
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Random variables
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Random variables
Experiment: 𝜀𝜀
Sample space: Ω
Generic outcome: 𝜔𝜔

Ω
𝜔𝜔



Piero Baraldi

Random variables
Experiment: 𝜀𝜀
Sample space: Ω
Generic outcome: 𝜔𝜔

Ω
𝜔𝜔

X(ω) random variable 
in ℛ 

ℛ𝑋𝑋(𝜔𝜔)

Univocal mapping 
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Random variable - Example

Ω
1 2

X(ω) in ℜ

ℛ

Univocal mapping 

3
4 5 6

1 2 3 4 5 6

Experiment: 𝜀𝜀 =  {throwing a die}
Sample space: Ω={1,2,3,4,5,6}
Generic outcome: 𝜔𝜔
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Random variable - Event
Experiment: 𝜀𝜀 =  {throwing a die}
Sample space: Ω={1,2,3,4,5,6}
Event:  𝐸𝐸1= {1,2,3,4}

𝐸𝐸2= ∅

Ω
1 2

X(ω)

𝐸𝐸1={X<4.236}
𝐸𝐸2={X<0}
𝐸𝐸3={X<+∞}

ℛ

Univocal mapping 

3
4 5 6

1 2 3 4 5 6

𝐸𝐸3 = Ω
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Random variables

X(ω) random 
variable in ℛ 

General mathematical models of random behaviours (It is not 
necessary to speak of the physical process)  

They apply to different physical phenomena which behave similarly

Experiment: 𝜀𝜀
Sample space: Ω
Generic outcome: 𝜔𝜔
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Probability distributions for 
reliability, safety and risk 

analysis
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Probability functions (I)

o 𝐹𝐹𝑋𝑋 𝑥𝑥 = 𝑃𝑃 𝑋𝑋 ≤ 𝑥𝑥  
o Properties:

•  

•  

• FX(x) is a non-decreasing function of x
• The probability that X takes on a value in the interval [a,b] is:

FX(x)

x

0)(lim =
−∞→

xFXx

1)(lim =
+∞→

xFXx

{ } )()( aFbFbXaP XX −=≤<

• Cumulative Distribution Function (cdf)
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• discrete probability distributions

Probability distributions for reliability, 
safety and risk analysis:

• continuous probability distributions
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• 𝑋𝑋 – random variable takes discrete
     values 𝑥𝑥𝑖𝑖 , 𝑖𝑖 = 0,1, … ,𝑛𝑛

 Probability mass function:

𝑓𝑓𝑋𝑋(𝑥𝑥𝑖𝑖)=P{X= xi}=𝑝𝑝𝑖𝑖

 Cumulative distribution function:

 

x
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• Probability Mass Function (pmf)

Probability functions (II, discrete random variables) 

𝑓𝑓𝑋𝑋(𝑥𝑥𝑖𝑖)

𝐹𝐹𝑋𝑋 𝑥𝑥 = 𝑃𝑃 𝑋𝑋 ≤ 𝑥𝑥 =

= �
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�
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𝑓𝑓𝑋𝑋(𝑥𝑥𝑖𝑖) = 1
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Summary measures: median, variance, … 

• Mean Value (Expected Value):

𝜇𝜇𝑋𝑋 = 𝐸𝐸 𝑥𝑥 = �
𝑖𝑖=1

𝑛𝑛

𝑥𝑥𝑖𝑖𝑝𝑝𝑖𝑖

• Variance:

It is a measure of the dispersion of the values around the mean

Where the probability mass is concentrated on average?

𝑉𝑉𝑉𝑉𝑉𝑉 𝑋𝑋 = 𝜎𝜎𝑋𝑋2 = �
𝑖𝑖=1

𝑛𝑛

𝑥𝑥𝑖𝑖 − 𝜇𝜇𝑋𝑋 2𝑝𝑝𝑖𝑖
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Example (Probabilty Mass Function)

Ω
‘head’ ‘tail’

𝑥𝑥0 1
𝑓𝑓𝑋𝑋(𝑥𝑥𝑖𝑖)

Experiment: 𝜀𝜀 =  {tossing a fair coin}

Questions:
1. 1. Draw the probability mass function
2. 2. Draw the cumulative distribution
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Ω
‘head’ ‘tail’

𝑥𝑥0 1

𝑥𝑥0 1

Probability mass function:
𝑓𝑓𝑋𝑋(0) = 𝑃𝑃 𝑋𝑋 = 0 = 0.5
𝑓𝑓𝑋𝑋(1) = 𝑃𝑃 𝑋𝑋 = 1 = 0.5

𝑓𝑓𝑋𝑋(𝑥𝑥𝑖𝑖)

0.5

1

Experiment: 𝜀𝜀 =  {tossing a coin}
Example (Probabilty Mass Function)
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Ω
‘head’ ‘tail’

𝑥𝑥0 1

𝑥𝑥0 1

𝑥𝑥0 1

Probability mass function:
𝑓𝑓𝑋𝑋(0) = 𝑃𝑃 𝑋𝑋 = 0 = 0.5
𝑓𝑓𝑋𝑋(1) = 𝑃𝑃 𝑋𝑋 = 1 = 0.5

Cumulative distribution

𝑓𝑓𝑋𝑋(𝑥𝑥𝑖𝑖)

𝐹𝐹𝑋𝑋(𝑥𝑥)

0.5

0.5

1

1

Experiment: 𝜀𝜀 =  {tossing a coin}
Example (Probabilty Mass Function)
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SUGGESTION: DO EXERCISE 3
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SUGGESTION FOR THE 
«BRAVE» STUDENTS: DO 
EXERCISE 4
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Univariate discrete 
probability distributions
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Univariate discrete probability distributions:

1) binomial distribution
2) geometric distribution
3) Poisson distribution
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Univariate Discrete Distributions: Binomial Distribution (I)

Y = discrete random variable  with only two possible outcomes: 

• Y=1 (success) with P{Y=1}=p

• Y=0 (failure) with P{Y=0}=1-p

We perform n different trials of the experiment, 𝑌𝑌1, … ,𝑌𝑌𝑛𝑛

X= discrete random variable counting the number of success out of the n trial (independently
from the sequence with which successes appear):

𝑋𝑋 = ∑𝑖𝑖=1𝑛𝑛 𝑌𝑌𝑖𝑖 Ω = 0,1,2, … ,𝑛𝑛

The probability mass function:

𝑛𝑛
𝑥𝑥 =binomial coefficient= 𝑛𝑛!

𝑛𝑛−𝑥𝑥 !𝑥𝑥!

x=0,1, 2,…,n

Bernoulli process

𝑏𝑏 𝑥𝑥;𝑛𝑛,𝑝𝑝 = 𝑛𝑛
𝑥𝑥 𝑝𝑝𝑥𝑥 1 − 𝑝𝑝 𝑛𝑛−𝑥𝑥 with
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Why?

 Probability of any specific sequence of x successes and 
n-x failures:

𝑝𝑝𝑥𝑥 1 − 𝑝𝑝 𝑛𝑛−𝑥𝑥

 Number of sequences yielding to x successes out of n 
trials: 

𝑛𝑛
𝑥𝑥 =

𝑛𝑛!
𝑥𝑥! 𝑛𝑛 − 𝑥𝑥 !

 All these sequences are mutually exclusive

𝑏𝑏 𝑥𝑥;𝑛𝑛, 𝑝𝑝 = 𝑛𝑛
𝑥𝑥 𝑝𝑝𝑥𝑥 1 − 𝑝𝑝 𝑛𝑛−𝑥𝑥
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Univariate Discrete Distributions: Binomial Distribution (II)

)1(][
][

pnpXVar
npXE

−=
=

x=0,1, 2,…n𝑏𝑏 𝑥𝑥;𝑛𝑛,𝑝𝑝 = 𝑛𝑛
𝑥𝑥 𝑝𝑝𝑥𝑥 1 − 𝑝𝑝 𝑛𝑛−𝑥𝑥 with
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Univariate discrete probability distributions:
1) binomial distribution
2) geometric distribution
3) Poisson distribution
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Univariate Discrete Distributions, Geometric Distribution

𝑝𝑝 = P{failure}

T= trail of the first experiment whose outcome is “failure”

The probability mass function:

ppptg t 1)1();( −−= t=1, 2,…

Expected value: 

pp
pppppptTE t

t
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)]1(1[
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Univariate Discrete Distributions, Geometric Distribution

𝑝𝑝 = P{Failure}

T= trail of the first experiment whose outcome is “failure” (or number of trials 
between two successive occurrences of failure);

The probability mass function:

ppptg t 1)1();( −−= t=1, 2,…

Expected value of T (or return period): 

pp
pppppptTE t

t
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SUGGESTION FOR THE 
«BRAVE» STUDENTS: 
DOUBLECHECK THE 
SOLUTION OF EXERCISE 4



Piero Baraldi

DO EXERCISES 4 AND 5
(IN EXERCISE 5, WHEN 
NUMBERS ARE GETTING TOO
BIG, JUST WRITE THE 
FORMULA WITHOUT 
COMPUTING THE NUMERICAL 
SOLUTION)

Suggestion
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Univariate discrete probability distributions:
1) binomial distribution
2) geometric distribution
3) Poisson distribution
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Approximation of the binomial distribution in the case of:
 𝑝𝑝 → 0
 𝑛𝑛 → ∞

It depends from only one parameter: 
𝜇𝜇 = 𝑛𝑛𝑛𝑛=100 = E[X]

which can be interpreted as the average number of successes in n experiments.

𝑏𝑏 𝑥𝑥;𝑛𝑛,𝑝𝑝 =
𝑛𝑛𝑛𝑛
𝑥𝑥!

𝑥𝑥

𝑒𝑒−𝑛𝑛𝑛𝑛

𝑏𝑏 𝑥𝑥;𝑛𝑛,𝑝𝑝 =
𝑛𝑛𝑛𝑛
𝑥𝑥!

𝑥𝑥

𝑒𝑒−𝑛𝑛𝑛𝑛 → 𝜋𝜋 𝑥𝑥; 𝜇𝜇 =
𝜇𝜇
𝑥𝑥!

𝑥𝑥

𝑒𝑒−𝜇𝜇
 𝑝𝑝 → 0
 𝑛𝑛 → ∞

From the binomial to the poisson distribution
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REVISE EXERCISE 5
Suggestion
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k=0,1, 2,…

Univariate Discrete Distributions, Poisson Distribution

Stochastic events that occur in a (continuous) period of time (e.g. failures, 
earthquakes,…):

• Rate of occurrence, λ, is constant

• Discrete Random Variable:

𝐾𝐾 = number of events in the period of observation (0, 𝑡𝑡)

• Probability mass function: t
k

e
k
ttkp λλλ −=
!
)()),,0(;(

tKVar
tKE
λ

λ
=

=
][

][
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DO EXERCISES 6 AND 7
Suggestion
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