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Concept: what is system resilience?

• Resilience concerns the whole evolution dynamics 
of a system to disruptions

plan adapt
absorb recovery



Concept: difference with risk

Risk =

Resilience =

Robustness Recovery rapidity



Concept: difference with risk
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Concept: properties

4R framework

Robustness, Rapidity

Redundancy Resourcefulness
• Physical
• Operational  

• Technical 
• Organizational



Resilience metrics

• Classification: depend on the applications of interest, calculation methods, 

available data, etc.

Resilience 

quantification 

metrics

Deterministic

Dynamic

Probabilistic

Static

Generic

Structural-

based

Ratio-based

Integral-based

Uncertainty?

With 𝑡?

Application

Computation

Resilience quantification



Resilience metric

Resilience metric 1 (Henry et al. 2012)

→ 𝑃(𝑡) system performance function

→ 𝑡𝑜: the time when the external disruptive event occurs

→ 𝑡𝑑: the time when system performance reach its lowest level

Measures the ratio between the recovered performance up to time 𝑡 and the

maximal loss of system performance due to a disruptive event.

→ 𝑹(𝑡): system resilience at time 𝑡
during the recovery process



Resilience metric

Resilience metric 1 (Henry et al. 2012)

• Deterministic, dynamic

• 𝑃(𝑡) could be sometimes high than 𝑃(𝑡𝑜), therefore 𝑹(𝑡) could >1

• Consider the lowest level of system performance, while not embrace 

the failure process, 𝑡 < 𝑡𝑑, in the failure phase



Resilience metric

Resilience metric 2 (Zobel 2011)

→ 𝑃𝑁 𝑡 : normalized system performance function

→ 𝑃𝑙
𝑁: loss of normalized system performance after a disruption 

→ 𝑡𝑜: the instant when P(t) reaches its minimum

→ 𝑡𝑒: the instant when the system performance returns to original level

→ 𝑡∗: a strict upper bound for restoration time 𝑡𝑒
→ 𝑇 = 𝑡𝑒 − 𝑡𝑜 and 𝑇∗ = 𝑡∗ − 𝑡𝑜.



Resilience metric

Resilience metric 2 (Zobel 2011)

• Measures the ratio between the area between the actual (simplified) 

system performance curve and the desidered function (=1) and the 

area below the desired function (=1) and the time axis

• Deterministic, static

• Considers both the performance loss and the length of recovery



Resilience metric

Resilience metric 3 (Bruneau 2003; Bruneau and Reinhorn 2007; 

Cimellaro 2010 from MCEER)

• The area between the actual system functionality and the time axis, 

normalized by the recovery time

→ 𝑃𝑁 𝑡 : normalized system performance

→ 𝑡0𝐸: the time when P(t) reaches its minimum

→ 𝑇𝑅𝐸: the total recovery time



Resilience metric

Resilience metric 3 (Bruneau 2003; Bruneau and Reinhorn 2007; 

Cimellaro 2010 from MCEER)

• One of the fundamental metrics

• Deterministic, static

• Give an more accurate evaluation of the resilience level, by 

considering the true evolution of system performance



Resilience metric

Resilience metric 4 (Chang & Shinozuka 2004)

→ 𝑃𝑜: the initial system performance loss after a disruption, i.e., the largest loss

during the disruptive event

→ 𝑃∗: the maximum acceptable loss of performance

→ 𝑡𝑒: the time when the performance returns to its original level

→ 𝑡∗: the maximum acceptable system recovery time



Resilience metric

Resilience metric 4 (Chang & Shinozuka 2004)

• Probabilistic metric, static

• Take into account both the loss of performance and the length of 

recovery, but not detailed restoration curve.

• Consider uncertainties within the process



Resilience metric

Metrics Value Data required in 

system 

performance (SP) 

dimension

Data required 

in time 

dimension

Feature/advanta

ge in the 

application

Metric 1

𝑹(𝑡) =
𝑃(𝑡) − 𝑃(𝑡𝑑)

𝑃(𝑡𝑜) − 𝑃(𝑡𝑑)

Function of 

time

𝑃(𝑡): SP function 𝑡𝑜 and 𝑡𝑑 It is actually a

normalized SP

function

Metric 2

𝑹 = 1 −
𝑃𝑙
𝑁𝑇

2𝑇∗

Single

value

∈ [0,1]

The lowest value of

the normalized SP.

𝑡𝑜, 𝑡𝑒, and 𝑡∗ Provide a rough 

estimation based 

on relatively less 

information

Metric 3

𝑹 = න

𝑡0

𝑡𝑒
𝑃𝑁(𝑡)

𝑇𝑅𝐸
𝑑𝑡

Single

value

∈ [0,1]

𝑃𝑁 𝑡 : the 

normalized SP 

function of time

𝑡𝑜 and 𝑡𝑒 Including more 

information of SP

Metric 4

𝑹 = Pr(𝑃𝑜 < 𝑃∗ ∩ 𝑡𝑒
< 𝑡∗)

Single

value

Probability

SP value at a critical 

time instant

𝑡𝑒 and 𝑡∗ Taking into 

account the 

uncertainty of the 

event or system

• The use of resilience metrics depends on the applications and available data, 

e.g., the types of systems, types of disruptive events. 



Exercise

• System performance 𝑃(𝑡) is defined as the proportion of operational nodes 

at each time 𝑡.

• At 𝑡 = 𝑡𝑜, a disruption occurs and leads to the failure of certain nodes, and 

the failure propagates to other nodes.

• It takes ∆𝑡𝑟=1 for a node to shift from operation (failure) to failure (operation) 

when its dependent nodes are failed (repaired)

• Nodes having redundancy (yellow circle) are able to sustain disruptions

A network with nodes and directed links

• Each node has two states: operation vs. 

failure

• The direction of links indicates the 

functional dependency

• A node operates when all the nodes it 

depends on are functioning well
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Exercise

→ At 𝑡𝑜 = 1, a disruptive event strikes the system, node 1 is failed at t=2

→ At 𝑡𝑟 = 8, the failed node (node 1) is fixed;

→ The maximum acceptable system recovery instant 𝑡∗ = 12.

Failure scenario
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Exercise

→ At 𝑡𝑜 = 1, a disruptive event strikes the system, node 1 is failed at t=2

→ At 𝑡𝑟 = 8, the failed node (node 1) is fixed;

→ The maximum acceptable system recovery instant 𝑡∗ = 12.

Failure scenario

𝑡 = 2 𝑡 = 3 𝑡 = 4

𝑡 = 8𝑡 = 9𝑡 = 10
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Exercise (solutions)

System performance curve calculation

𝒕 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

𝑷



Exercise (solutions)

System performance curve calculation

𝒕 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

𝑷 1 0.9 0.7 0.5 0.5 0.5 0.5 0.6 0.7 1 1 1 1 1 1



Exercise (solutions)

Resilience metric 1 (Henry)

• The data required are:

→ 𝑃(𝑡)
→ 𝑡𝑜 = 0
→ 𝑡𝑑 = 4
→ 𝑃(𝑡𝑜) = 𝑃(𝑡 = 0) = 1

→ 𝑃(𝑡𝑑) = 𝑃(𝑡 = 0) = 0.5

• Essentially, it is a normalized system performance function for 𝑡 ≥ 𝑡𝑑

𝒕 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

𝑷 1 0.9 0.7 0.5 0.5 0.5 0.5 0.6 0.7 1 1 1 1 1 1

𝑡 ≥ 𝑡𝑑



Exercise (solutions)

Resilience metric 1 (Henry)

• The data required are:

→ 𝑃(𝑡)
→ 𝑡𝑜 = 0
→ 𝑡𝑑 = 4
→ 𝑃(𝑡𝑜) = 𝑃(𝑡 = 0) = 1

→ 𝑃(𝑡𝑑) = 𝑃(𝑡 = 0) = 0.5

• Essentially, it is a normalized system performance function for 𝑡 ≥ 𝑡𝑑

𝒕 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

𝑷 1 0.9 0.7 0.5 0.5 0.5 0.5 0.6 0.7 1 1 1 1 1 1

𝑡 ≥ 𝑡𝑑



Exercise (solutions)

Resilience metric 2 (Zoebel)

• The data required are:

→ 𝑃𝑙
𝑁 = 0.5

→ 𝑡𝑜 =
→ 𝑡𝑒 = 10
→ 𝑡∗ = 12
→ 𝑇 = 𝑡𝑒 − 𝑡𝑜
→ 𝑇∗ = 𝑡∗ − 𝑡𝑜

𝒕 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

𝑷 1 0.9 0.7 0.5 0.5 0.5 0.5 0.6 0.7 1 1 1 1 1 1



Exercise (solutions)

Resilience metric 2 (Zoebel)

• The data required are:

→ 𝑃𝑙
𝑁 = 0.5

→ 𝑡𝑜 = 4
→ 𝑡𝑒 = 10
→ 𝑡∗ = 12
→ 𝑇 = 𝑡𝑒 − 𝑡𝑜 = 6
→ 𝑇∗ = 𝑡∗ − 𝑡𝑜 = 8

• A single value in the range of [0, 1]

• Only require field data about 𝑃𝑙
𝑁 and 𝑇, a rough estimation 

𝒕 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

𝑷 1 0.9 0.7 0.5 0.5 0.5 0.5 0.6 0.7 1 1 1 1 1 1

(10 - 4)     
0.81       

2 * (12 - 4)    



Exercise (solutions)

Resilience metric 2 (Zoebel)

• The data required are:

→ 𝑃𝑙
𝑁 = 0.5

→ 𝑡𝑜 = 1
→ 𝑡𝑒 = 10
→ 𝑡∗ = 12
→ 𝑇 = 𝑡𝑒 − 𝑡𝑜 = 9
→ 𝑇∗ = 𝑡∗ − 𝑡𝑜 = 11

• A single value in the range of [0, 1]

• Only require field data about 𝑃𝑙
𝑁 and 𝑇, a rough estimation (more 

conservative → considers the failure process)

𝒕 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

𝑷 1 0.9 0.7 0.5 0.5 0.5 0.5 0.6 0.7 1 1 1 1 1 1

0.8

• The data required are:

→ 𝑃𝑙
𝑁 = 0.5

→ 𝑡𝑜 =
→ 𝑡𝑒 = 10
→ 𝑡∗ = 12
→ 𝑇 = 𝑡𝑒 − 𝑡𝑜 =
→ 𝑇∗ = 𝑡∗ − 𝑡𝑜 =

(10 - 1)     

2 * (12 - 1)    



Exercise (solutions)

Resilience metric 3 (Bruneau)

• The data required are:

→ 𝑃𝑁(𝑡)
→ 𝑡𝑜𝐸 = 4
→ 𝑡𝑒 = 10
→ 𝑇𝑅𝐸 = 𝑡𝑒 − 𝑡𝑜𝐸

• A single value in the range of [0, 1]

• Require data of system performance 𝑃𝑁(𝑡) for the whole recovery 

process

𝑹

𝒕 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

𝑷 1 0.9 0.7 0.5 0.5 0.5 0.5 0.6 0.7 1 1 1 1 1 1



Exercise (solutions)

Resilience metric 3 (Bruneau)

• The data required are:

→ 𝑃𝑁(𝑡)
→ 𝑡𝑜𝐸 = 4
→ 𝑡𝑒 = 10
→ 𝑇𝑅𝐸 = 𝑡𝑒 − 𝑡𝑜𝐸

• A single value in the range of [0, 1]

• Require data of system performance 𝑃𝑁(𝑡) for the whole recovery 

process

𝑹

𝒕 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

𝑷 1 0.9 0.7 0.5 0.5 0.5 0.5 0.6 0.7 1 1 1 1 1 1

4

0.55



Exercise (solutions)

Resilience metric 3 (Cimellaro)

• The data required are:

→ 𝑃𝑁(𝑡)
→ 𝑡𝑜𝐸 = 1
→ 𝑡𝑒 = 10
→ 𝑇𝑅𝐸 = 𝑡𝑒 − 𝑡𝑜𝐸

𝑹

𝒕 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

𝑷 1 0.9 0.7 0.5 0.5 0.5 0.5 0.6 0.7 1 1 1 1 1 1

• More realistic → considers the failure process



Exercise (solutions)

Resilience metric 3 (Cimellaro)

• The data required are:

→ 𝑃𝑁(𝑡)
→ 𝑡𝑜𝐸 = 1
→ 𝑡𝑒 = 10
→ 𝑇𝑅𝐸 = 𝑡𝑒 − 𝑡𝑜𝐸

𝑹

𝒕 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

𝑷 1 0.9 0.7 0.5 0.5 0.5 0.5 0.6 0.7 1 1 1 1 1 1

0.59

• More realistic → considers the failure process



Exercise (solutions)

Resilience metric 4 (Chang)

• The data required are:

→ Consider uncertainty: the recovery time ∆𝑡𝑟 of failed node is a discrete 

random variable 

→ The maximum acceptable performance loss 𝑃∗=0.5 

→ The maximum acceptable recovery time 𝑡∗= 12

𝒕 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

𝑷 1 0.9 0.7 0.5 0.5 0.5 0.5 0.6 0.7 1 1 1 1 1 1



Exercise (solutions)

Resilience metric 4 (Chang)

• Monte Carlo simulation for the recovery process

• Example of system performance curves

𝒕 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

𝑷 1 0.9 0.7 0.5 0.5 0.5 0.5 0.6 0.7 1 1 1 1 1 1



Exercise (solutions)

Resilience metric 4 (Chang)

• Monte Carlo simulation for the recovery process

• Example of system performance curves

𝒕 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

𝑷 1 0.9 0.7 0.5 0.5 0.5 0.5 0.6 0.7 1 1 1 1 1 1

• we only need to check if the time that the system is recovered to 100% is earlier than t=12. 



Resilience assessment

• Objective: quantitatively evaluate the resilience of a 

system against specific hazards

• Methods: 

- Statistical methods based on historical events data 

if available

- Simulation-based computational methods if 

hazards are predictable and calculable, e.g., can be 

modeled via probabilistic approaches

- Worst-case analysis methods for deep uncertain 

hazards 
→ Nondeliberate hazards, e.g., extreme disasters

→ Climate Change

→ Deliberate threats (e.g., vandalism, sabotage, and terrorism)



A game-theory worst-case assessment framework

“WORST‐CASE” DISRUPTION MODEL

• Hypothetical intelligent adversary

• Disruption: loss of sets of system 
components

• Worst‐case adversary behavior: use 
limited capability to inflict maximum 
damage

SYSTEM RESPONSE MODEL

• Model the function of a system of 
interest

• Operator makes decisions about 
system activities after disruption

• What we want (objectives) vs. What 
is feasible (constraints)

Attacker-Defender Interdiction Model

→ 𝑿: limited capability of the attacker
→ 𝒀(𝒙): defender’s feasible operation space, in a function of 𝒙
→ 𝑃(𝒚): What we want, system performance function
→ Min or max depending on the definition of P(y)



• A Stackelberg (leader-follower) game

• Solution is given by its Stackelberg Equilibrium

• Theorem: in a finite game with 2 players, i.e., 𝑿 and 𝒀(𝒙)
are finite, there is always a Stackelberg equilibrium

Attacker-Defender Interdiction Model

A game-theory worst-case assessment framework



An example: fuel supply network

• White → demand =1 barrel of fuel

• Black → suppliers = 10 barrels

• Links → bidirectional, capacity = 15, 
transmission cost = 1€/barrel

• Penalty of unsatisfied demand: 10€/barrel

• We care about the total cost

• A baseline flow pattern corresponding the 
minimum cost flow solution

min
𝒚∈𝒀

𝐶𝑜𝑠𝑡(𝒚)

• Total cost = 25€

A game-theory worst-case assessment framework



• 𝒙→only single link break is allowed
• Recourse actions 𝒚: re-dispatching network flow
• Incurs additional operating cost, but does not prevent fuel from being 

delivered to each demand
• Worst-case single disruption: [10, 13] → increase 8€ cost

Total cost = 30€ Total cost = 33€

An example: fuel supply network

A game-theory worst-case assessment framework



How does the worst-case assessment help?

• Avoid the two biggest gotchas:

→ “We didn’t know that X would cause Y…”

→ “We never thought that could happen…”

• We don’t have to guess at scenarios

→ (or try to assess the intent of bad guys)

A game-theory worst-case assessment framework



Resilience-oriented decision making

Resilience strategies



Resilience strategies

• To enhance resilience, resilience strategies include:

→ Enhance the resilience awareness
→ Share information
→ Make integrated decision makings
→ Train staff and managers
→ Harden system components 
→ Adjust system topology
→ Control system demand level
→ Deploy backup systems (redundancy)
→ Optimize repair sequence

• Resilience strategies are system specific

• Generally, in the time domain: pre-event strategies vs. post-
event strategies, e.g., hardening vs. repair crew scheduling



Resilience-oriented decision making

Optimal pre-event planning for resilience enhancement against threats

• The system operators make decisions about the pre-event resilience 
strategies in order to reconcile the objectives (enhance resilience) with 
its constraints in an intelligent and efficient manner.

Constrained optimization: 
Defender-Attacker-Defender models

max
𝒘∈𝑾

min
𝒙∈𝑿(𝒘)

max
𝒚∈𝒀(𝒘,𝒙)

𝑃(𝒚)

Pre-event resilience 
strategies: defensive 
investments and 
budget constraints for 
the “defender” 

The worst-case
resilience assessment 
framework



Resilience-oriented decision making

System defender: determine the pre-event 

resilience strategies, 𝒘, pursuing maximal system 

performance 

Disruptive agent: maximize the damage considering 

his ability 𝑿(𝒘)

System operator: mitigate the negative effect of the 

disruptive attack by recourse actions 𝒚 ∈ 𝒀(𝒘, 𝒙)

Defender-Attacker-Defender models

max
𝒘∈𝑾

min
𝒙∈𝑿(𝒘)

max
𝒚∈𝒀(𝒘,𝒙)

𝑃(𝒚)



Single attack a Defensive barriers d

UNCERTAIN to defender 

(subjective judgment)

d∈Da∈A

The Advanced Lead-cooled Fast Reactor European Demonstrator (ALFRED)

Controller

Actuators

Sensors

ALFRED subjected to cyber attacks

Objective: to provide a one-sided (i.e., defender) prescriptive support strategy

d* for optimizing allocation of resources for the defensive barriers based on a

subjective expected utility model.

DoS attack to 4 Sensors;

Stuck failure to 3 actuators;

FDI attack to 4 PIs.

Prevention:
o Firewall;

o Intrusion detection system;

o Operators;

o Security software;

Recovery:
o Mainframes computers;

o Database servers;

o Security engineers.

d*

79

Resilience-oriented decision making: ALFRED



State of the art: traditional game-theoretical defend-attack modeling

o The players (defender and attacker) rely on shared knowledge;

√
√

knows own beliefs and preferences;The defender:

knows those of the attacker (and vice versa);

best response given aDefender 

assessment

d ∈ D

d*(a)
Common knowledge

Attacker 

assessment

a ∈ A
Common knowledge

a*(d)
best response given d

Nash Stackelberg equilibrium

(d*,a*)

80

Resilience-oriented decision making: ALFRED



[J] Wang W., Di Maio F., Zio E. Risk Analysis, (2018)

Approach: Adversarial Risk Analysis (ARA) game-theoretical defend-attack modeling

o incomplete information,;

√
X

only know own beliefs and preferences;The defender:

only speculates those of the attacker;

one-sided prescriptive supportDefender 

assessment

d ∈ D

d*
Incomplete information

Attacker 

assessment

a ∈ A
Incomplete information

π(a|d)
occurrence of a, given d

Defender subjective judgment

(probability distributions)

81

Resilience-oriented decision making: ALFRED



[J] Wang W., Di Maio F., Zio E. Risk Analysis, (2018) under review.

Approach: Monte Carlo (MC) scheme embedded within the ARA modeling

o Attacker decision for π(a|d), as seen by defender:

o Defender decision for d*:

given d, propagate uncertainty among Nm runs, for estimating frequency of occurrence of a 
being the optimal 𝒂∗,𝒎 𝒅 , π(a|d):

IN
N

E
R

calculate attacker expected utility of each a, for finding the optimal one:
𝑎∗,𝑚 𝑑 = argmax𝑎Ψ𝐴

𝑚 𝑎 𝑑

O
U

T
E

R

o sample incomplete information (e.g. costs) from subjective distributions 

π(a|d) 

for 

each d

propagate uncertainty among Nv runs, for estimating frequency of d being the optimal 𝑑∗,𝑣, and 
finding the optimal allocation d* of resource for defensive barriers by:

𝑑∗ = argmax𝑑𝑓 𝑑

IN
N

E
R calculate defender expected utility of each d, for finding the optimal one:

𝑑∗,𝑣 = argmax𝑑Ψ𝐷
𝑣 𝑑

where,

Ψ𝐷
𝑣 𝑑 =෍

𝑎

෍

𝑠

𝑝𝐷 𝑠 𝑑, 𝑎 ∙ 𝑢𝐷 𝑑, 𝑎, 𝑠 ∙ 𝜋 𝑎 𝑑

O
U

T
E

R

π(a|d)

d*

o sample incomplete information (e.g. costs) from subjective distributions 

82

Resilience-oriented decision making: ALFRED



Nash equi: {N1=1, N2=4, N3=4, N4=3, N5=2, N6=2, N7=2}

ARA d*: {N1=1, N2=4, N3=4, N4=1, N5=2, N6=2, N7=2}

Results: ARA model

Prevention:

o N1=Firewall;

o N2=Intrusion detection system;

o N3=Operators;

o N4=Security software;

Recovery:

o N5=Mainframes computers;

o N6=Database servers;

o N7=Security engineers.

Defender strategy d

83

With maximum defense 

budget = 2,000 k€

Resilience-oriented decision making: ALFRED

What we have done:

o Optimization of the allocation of defensive barriers against cyber attacks by Adversarial Risk Analysis (ARA);

What we have found (case study):

o ARA beats Nash equilibrium in ALFRED;

[J] W. Wang, F. Di Maio, E. Zio. Adversarial Risk Analysis to Allocate Optimal Defense Resources for Protecting Nuclear Power Plants from Cyber Attack. 
Risk Analysis, 



Resilience-oriented decision making

Optimal pre-event planning for resilience enhancement against threats

• The system operators make decisions about the pre-event resilience 
strategies in order to reconcile the objectives (enhance resilience) with 
its constraints in an intelligent and efficient manner.

Maintenance

scheduler

System model

GTST-MLD

Component 

stochastic failure

Cost approximator

Maintenance

order

Cost/Revenue
System Response

Load-following 

operation

Agent

Reward

Action

Environment model
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Reinforcement Learning: A type of machine 

learning where an agent learns to make decisions 

through trial-and-error interactions with an 

environment in order to maximize a cumulative 

reward.



Profit-driven-reward Reinforcement Learning
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Approach: Deep Reinforcement Learning

State-value

Action-value

Tabular RL

Value Tabular

For continuous state space or complex system, 

it’s impossible to list all the combinations

or

Tabular Deep Neural Network 

(DNN)



Profit-driven-reward Reinforcement Learning

Approach: Imitation Learning (IL)

Imitation Learning (IL) is a type of supervised learning in which an agent learns to perform a task by mimicking the behavior of

an expert.

IL can help speed up the convergency when the state space is large and it is hard to find global optimum.

Initialize DNN agent weights

Sample batch of state-action-reward 

triplets from dataset

Calculate loss between heuristic 

Predictive Maintenance actions and 

DNN agent prediction

Update DNN weights

Generate dataset of state-

action-reward triplets
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Profit-driven-reward Reinforcement Learning

Approach: Proximal Policy Optimization (PPO)

Proximal Policy Optimization (PPO) is a popular actor-critic RL algorithm, which aims at stabilizing the policy optimization by

optimizing a surrogate objective function that is a compromise between the current policy and a new candidate policy, and

constraining/clipping the gradient updates, in the attempt to monotonically improve the policy.

Set the IL pre-trained DNN agent

Select action റ𝑎𝑡 based on DNN agent

Execute action റ𝑎𝑡 and observe reward 

𝑟𝑡 and next state റ𝑠𝑡+1

Update state റ𝑠𝑡 to next state റ𝑠𝑡+1

Initialize state റ𝑠0

Repeat until 

reaching the 

mission time

Update DNN agent with PPO algorithm

Repeat until 

reaching 

convergency
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Application: Cyber-Physical Energy Systems (CPESs)

Cyber world

Physical world

Data gathering 

by sensors

Real-time feedback 

by actuators

Data management
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Controllers
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Context: The Flexibility of Energy Production

Fossil Energy Greenhouse 

Gas Emission

Climate Change Energy Transition

Nuclear Energy Renewable Energy

High level of variability and 

uncertainty penetrate the grid

Energy 

Demand
Energy 

Production

Flexible operation 

(e.g., load-following) 
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Context : CPES Flexible Operation

Flexible operation: The ability of a plant to adjust its power output to match fluctuations in electricity demand, while maintaining 

safety and efficiency (load-following includes three phases: a power decrease, a low power duration and a power ramp).

Type
Load Cycle 

(%)

Maximum 

Number of 

Load 

Cycles

Probability

Normal

Light cycle

100-90-100 100,000 0.163

100-80-100 100,000 0.163

100-60-100 15,000 0.0245

Deep cycle 100-40-100 12,000 0.0196

Emergency 100-20-100 100 1.65e-4

Base-load --- --- 0.6297

Load-following scheme
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Case Study: The ALFRED

Condenser
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Header

Control System
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PTh
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Gatt

Gwater

hCR

PI1

PI2

PI3

PI4

Tfeed

Feedforward

Turbine Admission ValveControl 

Rods

PMech

Physical System

Note:    - sensor

Hardware component 

stochastic failures

Sensors

Actuators

Controller

4 sensors

3 actuators

Turbine Admission Valve

Feedwater pump

Control rod

The Advanced Lead Fast Reactor European Demonstrator (ALFRED)

ALFRED multi-loop control scheme
4 Single-Input-Single-Output control loops

450℃

180e5Pa

400℃

300e6W

Controlled 

variables

Cyber controller aging

4 PIs
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Dynamic Reliability Assessment Framework

Support components

Cyber attacks IFs

Cyber aging IF

Hardware stochastic failure IFs

Simulation-based 

MLD weights

ST

GT

MLD

IFs trigger

Propagation

System unreliability estimation:

1. Initiation (simulating the occurrences of IFs)

2. Propagation (simulating the IFs propagation to 

components AND/OR functions by GTST according 

to the relationships expressed by the MLD)

[1] Di Maio F, Mascherona R, Zio E. Risk analysis of cyber-physical systems by GTST-MLD[J]. IEEE Systems Journal, 2019, 14(1): 1333-1340.
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Dynamic Reliability Assessment Framework

Cyber aging

Cyber aging IF models the controller aging under flexible load-following operation

SCADA

Hardware

Software

Communication

𝐷𝑎𝑔𝑖𝑛𝑔

System blocking probability 𝑷𝒃𝒍𝒐𝒄𝒌𝒊𝒏𝒈

Cyber aging model

𝑃𝑏𝑙𝑜𝑐𝑘𝑖𝑛𝑔 ∙ 𝑃𝑙𝑜𝑎𝑑

𝑃𝑙𝑜𝑎𝑑 refers to probability of load-following operation 
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Case Study: The ALFRED

Result: Maintenance timing comparison

• Predictive strategy randomly arranges maintenance activities.

• RL strategies arrange maintenance intervention mostly on 000 and 001 sequence days to satisfy load-following operation 

as much as possible.

115

Z. Hao, F. Di Maio, E. Zio, “A Sequential Decision Problem Formulation and Deep Reinforcement Learning Solution of the Optimization of O&M of 

Cyber-Physical Energy Systems (CPESs) for Reliable and Safe Power Production and Supply”, Reliability Engineering & System Safety, Vol. 235, 

109231, 2023
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scientific and technical issues



CI vulnerability 
assessment

CI resilience 
assessment

Optimal design
Optimal resilience

Modelling & 
Simulation

Data/event-
driven study

Resilience of critical infrastructures

Knowledge

Analysis

Decision 

making


	Diapositiva 1
	Diapositiva 2: Concept: what is system resilience?
	Diapositiva 6: Concept: difference with risk
	Diapositiva 7: Concept: difference with risk
	Diapositiva 8: Concept: properties
	Diapositiva 10: Resilience quantification
	Diapositiva 11: Resilience metric
	Diapositiva 12: Resilience metric
	Diapositiva 13: Resilience metric
	Diapositiva 14: Resilience metric
	Diapositiva 15: Resilience metric
	Diapositiva 16: Resilience metric
	Diapositiva 17: Resilience metric
	Diapositiva 18: Resilience metric
	Diapositiva 22: Resilience metric
	Diapositiva 23: Exercise
	Diapositiva 24: Exercise
	Diapositiva 25: Exercise
	Diapositiva 26: Exercise (solutions)
	Diapositiva 27: Exercise (solutions)
	Diapositiva 28: Exercise (solutions)
	Diapositiva 29: Exercise (solutions)
	Diapositiva 30: Exercise (solutions)
	Diapositiva 31: Exercise (solutions)
	Diapositiva 32: Exercise (solutions)
	Diapositiva 33: Exercise (solutions)
	Diapositiva 34: Exercise (solutions)
	Diapositiva 35: Exercise (solutions)
	Diapositiva 36: Exercise (solutions)
	Diapositiva 37: Exercise (solutions)
	Diapositiva 38: Exercise (solutions)
	Diapositiva 39: Exercise (solutions)
	Diapositiva 40: Resilience assessment
	Diapositiva 47: A game-theory worst-case assessment framework
	Diapositiva 48
	Diapositiva 49
	Diapositiva 50
	Diapositiva 52
	Diapositiva 55: Resilience-oriented decision making
	Diapositiva 56: Resilience strategies
	Diapositiva 58: Resilience-oriented decision making
	Diapositiva 59: Resilience-oriented decision making
	Diapositiva 79
	Diapositiva 80
	Diapositiva 81
	Diapositiva 82
	Diapositiva 83
	Diapositiva 84: Resilience-oriented decision making
	Diapositiva 85: Profit-driven-reward Reinforcement Learning
	Diapositiva 86: Profit-driven-reward Reinforcement Learning 
	Diapositiva 87: Profit-driven-reward Reinforcement Learning 
	Diapositiva 88: Application: Cyber-Physical Energy Systems (CPESs) 
	Diapositiva 89: Context: The Flexibility of Energy Production
	Diapositiva 90: Context : CPES Flexible Operation 
	Diapositiva 102: Case Study: The ALFRED 
	Diapositiva 103: Dynamic Reliability Assessment Framework 
	Diapositiva 104: Dynamic Reliability Assessment Framework 
	Diapositiva 115: Case Study: The ALFRED 
	Diapositiva 133: Protection and resilience of critical infrastructures: scientific and technical issues
	Diapositiva 134

