

Please fill in the name of the event
you are preparing this manuscript for. 2025 SPE Reservoir Simulation Conference

Please fill in your 6-digit SPE
manuscript number. SPE-223917-MS

Please fill in your manuscript title. Optimal Drilling Scheduling in Field Development Planning by Deep Reinforcement
Learning

Please fill in your author name(s) and company affiliation.
Given Name Surname Company

Nicolás Javier Cárdenas Pantoja Energy Department, Politecnico di Milano, Milano, Italy
Adam Abdin Industrial Engineering Research Department,

CentraleSupélec Engineering School, University of
Paris-Saclay, Gif-sur-Yvette, France

Piero Baraldi Energy Department, Politecnico di Milano, Milano, Italy
Luca Pinciroli Energy Department, Politecnico di Milano, Milano, Italy
Alice Forello Eni S.p.A., via Emilia 1, San Donato Milanese, 20097 Italy
Laura Dovera Eni S.p.A., via Emilia 1, San Donato Milanese, 20097 Italy
Enrico Zio 1Centre de Recherche sur les Risques et les Crises

(CRC), MINES Paris-PSL, Sophia Antipolis, France

2Energy Department, Politecnico di Milano, Milano, Italy

This template is provided to give authors a basic shell for preparing your manuscript for submittal to an SPE meeting or event.
Styles have been included (Head1, Head2, Para, FigCaption, etc) to give you an idea of how your finalized paper will look
before it is published by SPE. All manuscripts submitted to SPE will be extracted from this template and tagged into an XML
format; SPE’s standardized styles and fonts will be used when laying out the final manuscript. Links will be added to your
manuscript for references, tables, and equations. Figures and tables should be placed directly after the first paragraph they are
mentioned in. The technical content of your paper WILL NOT be changed. Please start your manuscript below.

Abstract
We consider the problem of optimizing the drilling scheduling in Field Development Planning. The objective is
to identify the well drilling sequence and well types that maximize the project Net Present Value (NPV) properly
handling uncertainty on our knowledge of the reservoir geological parameters. This Sequential Decision Problem
(SDP) is modelled as a Markov Decision Problem (MDP) and solved using Deep Reinforcement Learning.
Specifically, we develop an approach based on Deep Q-Networks (DQN), where an online Neural Networks (NN)
learns and selects the most suitable drilling action, and a target NN estimates the expected future NPV (Q-value).
A soft-update mechanism is adopted to gradually blend the weights of the target NN with those of the online NN
with the objective of improving training stability. The proposed method is tested on a synthetic case study that
simulates a real drilling case. It is shown to outperform a state-of-the-art DQN implementation, achieving a larger
NPV and solutions more robust to the uncertainty on the reservoir geological properties.

1. Introduction
The Oil and Gas (O&G) extraction industry operates in highly dynamic and uncertain environments, where factors
such as geological variability, fluctuating commodity prices, and regulatory changes can significantly impact
project outcomes. Field Development Planning (FDP) entails the decisions about the placement and design of
wells and other critical infrastructures, with the objective of optimizing the process of extraction of subsurface
resources (Mirzaei-Paiaman et al., 2022). Specifically, FDP involves selecting well types, determining drilling
locations, designing wells, formulating production strategies, and planning infrastructure development, while
balancing geological, engineering, economic, safety, and environmental considerations (Muther et al., 2022).

This work proposes a method for optimizing drilling schedules. The objective is to maximize the profit over
the entire life cycle of an oil project. Since the decisions on well placement and drilling order influence the
performance of the reservoir over time, the optimization problem is formalized as a Sequential Decision Problem

(SDP), where decisions are made in consecutive steps, with each choice affecting future outcomes and subsequent
decisions (Ferguson, 1967).

Several approaches have been proposed to address the drilling scheduling problem as a SDP (He et al., 2022;
Nasir, 2020; Paola et al., 2020). They typically do not consider the uncertainty on geological properties and
provide solutions which are difficult to generalize to other reservoirs. Given the interest of the O&G industry in
drilling scheduling, the Olympus challenge was launched in (Fonseca et al., 2020) to provide a basis for assessing
the performance of methods for drilling scheduling optimization. This challenge provides 50 possible realizations
of the parameters describing the geological properties of a reservoir and requires optimizing the drilling schedule
with the objective of maximizing the expected Net Present Value (NPV). Several optimization approaches have
been already developed for the Olympus challenge. As discussed in Section 2.1, their performance and
applicability are limited by inadequate handling of uncertainty on geological properties and inability to transfer
knowledge from one reservoir to another.

The present work formulates the SDP of optimizing the drilling schedule as a Markov Decision Problem
(MDP) and solves it using Deep Reinforcement Learning (DRL). DRL extends traditional reinforcement learning
by leveraging neural networks to map states to actions (Yu et al., 2022). Its proven success in handling
optimization under uncertainty across various domains, such as game playing (OpenAI et al., 2019), autonomous
vehicles (Kiran et al., 2022), finance (Carta et al., 2021) and energy management problems (Q. Zhang et al.,
2019), makes DRL a suitable choice for this work. Specifically, we employ Deep Q-Networks (DQN) (Mnih et
al., 2013), a DRL algorithm that integrates Q-learning with deep neural networks, enabling the learning of
complex policies directly from raw data.

A limitation of DQN is that the agent learning process may become unstable due to abrupt and large updates
of the network weights, which, in turn, causes oscillating and diverging evolutions of the reward during training
(Halat & Ebadzadeh, 2021). In this context, the main contribution of the proposed method is the integration of a
soft-update mechanism (Lillicrap et al., 2015) into DQN. The idea is to ensure a more stable and effective learning
process by gradually blending the weights of the target network with those of the online network.

The method is developed considering a synthetic case study that simplifies the complexities of real drilling
scheduling problems. In this scenario, oil production from a well is assumed to depend on the capability of
maintaining a favorable pressure at the bottom of the well, which, in turn, is influenced by the operation of
surrounding wells. Unlike real reservoirs, where pressure propagation follows complex dynamics governed by
geological properties, this work assumes that the pressure at any given reservoir location is the sum of
contributions from the surrounding wells, each one inversely proportional to the distance between well and
location.

Two experiments are designed and conducted to evaluate the proposed method. The first one compares the
performance of the proposed method with that of a standard implementation of DQN (Paola et al., 2020), which
does not employ the soft-update mechanism to stabilize the learning process. In the second experiment, the effect
of the uncertainties affecting the reservoir properties on the performance of the proposed method is investigated.

The remaining sections are organized as follows. Section 2 discusses the scientific literature about FDP
Optimization and the current approaches for drilling scheduling by Reinforcement Learning. Section 3.1 states
the FDP optimization problem, whereas Sections 3.2 and 3.3 formulate the SDP as a MDP. Section 4 describes
the optimization method and the developed DRL technique. Section 5 describes the case study and Section 6
reports the obtained result. Finally, Section 7 identifies potential future steps of the research and concludes the
work.

2. Related Works

Related works about FDP optimization and DRL approaches for drilling scheduling are discussed in Sections
2.1 and 2.2, respectively.

2.1 FDP Optimization

The optimization of the drilling sequence was modeled as a SDP in (Wang & Oliver, 2019). The proposed
solution employed an A* search algorithm (Hart et al., 1968) guided by an heuristic function previously learned
on similar problems. Although this approach provides satisfactory results, it is not able to dynamically adapt to
changes in the environment. The Robust Optimization method, which is based on an ensemble of reservoir
models, each one predicting a corrective term to be applied to a mean reservoir model, is developed in (Wang &
Oliver, 2021). Its main limitation is that it does not directly handle the uncertainty on the reservoir properties. A
framework based on Iterative Discrete Latin Hypercube (IDLHC), that uses as starting point a guess based on
experience and deterministic sequential optimization was developed in (Mirzaei-Paiaman et al., 2022), the
obtained results show that the framework is not able to catch the dynamic feedbacks in the reservoir and lacks of
adaptability other reservoirs.

Other methods proposed for the solution of the Olympus challenge are summarized in Table 1 considering
the number of realizations of the geological properties utilized and the number of times the optimizer runs the
reservoir model.

Reference Method Number of utilized realizations of the
geological properties

Number of times that the model of the
reservoir has been run during the

optimization
(Barros et al., 2020) Leeuwenburgh priority control 50 1300

(Bergey, 2020) Heuristic + Latin Hypercube
Sampling 1 280

(Chang et al., 2020)
Line Search Derivative-Free +

Stochastic Simplex Approximate
Gradient

50 1750

(Silva et al., 2020) Genetic Algorithm (GA) 50 105000
(Schulze-Riegert et al., 2020) Probabilistic well ranking 1 2500

Table 1. Olympus challenge: Optimization approaches proposed for drilling scheduling

2.2 Deep Reinforcement Learning for Drilling Scheduling

A complete review of RL and its use for the solution of a large variety of optimization problems can be found
in (Sutton & Barto, 2018). In general, DRL techniques require to define:

• the state space, which comprises static and dynamic information;
• the action space, i.e., the set of possible actions that can be performed in a state;
• the learning agent, i.e., the algorithm that interacts with the environment.

Table 2 reports the works addressing the problem of optimal drilling scheduling using approaches based on
DRL. These works are classified considering state space, action space and learning agent. Dynamic Programming
(DP) and DRL were proposed to optimize the drilling policy in (Paola et al., 2020). Specifically, a Deep Recurrent
Neural Network (DRNN) is used as a surrogate model of the reservoir simulator to reduce the computational
effort of estimating flows in the reservoir. A DRL approach was applied to optimize the drilling policy using
Proximal Policy Optimization (PPO) with a convolutional neural network (CNN) in (Nasir, 2020). A reservoir
model defined by the parameters of the equations governing the two-phase flow was developed and used to train
a CNN within a DRL algorithm in (Nasir et al., 2021). An approach for Field Development Optimization (FDO)
based on DRL was developed in (He et al., 2022). Despite these developments, an approach able to satisfactorily
handle uncertainty on the reservoir properties has not yet been proposed. Additionally, current approaches were
developed considering a specific reservoir and cannot be easily transferred to other reservoirs.

Reference State Space Action Space Agent
(Paola et al.,

2020)
Not Reported ⋅ Location

⋅ Type of well (INJ/PROD)
DQN

(Nasir, 2020) Static information:
⋅ Permeability

Dynamic information:
⋅ Pressure
⋅ Saturation
⋅ Location map
⋅ Drilling stage number
⋅ Number of producer and injector wells already drilled

⋅ Location
⋅ To drill or not
⋅ Type of well (INJ/PROD)

PPO

(He et al., 2022) Static information:
⋅ Rock and fluid compressibility
⋅ Transmissibility
⋅ Impact of depth on fluid potential
⋅ Drilling cost
⋅ Productivity Index
⋅ Producer Bottomhole
⋅ Active Cell Indicator

Dynamic information:
⋅ Pressure
⋅ Total compressibility
⋅ Time remaining in the planning horizon

⋅ Location
⋅ To drill or not
⋅ Type of well (INJ/PROD)

PPO

(Nasir et al.,
2021)

Static information:
⋅ Transmissibility
⋅ Productivity Index
⋅ Well Cost to Net Oil Price Ratio
⋅ Water Production Cost
⋅ Maximum Liquid Production Rate
⋅ Drilling Time
⋅ Water Cut Constraint

Dynamic information:
⋅ Pressure
⋅ Saturation
⋅ Oil Accumulation
⋅ Water Mobility
⋅ Oil Mobility
⋅ Producer Drawdown
⋅ Well Location Mask
⋅ Current Discount Rate
⋅ Time remaining in the planning horizon

⋅ Location
⋅ To drill or not
⋅ Type of well (INJ/PROD)

PPO

Table 2. DRL-based solutions to the drilling scheduling problem

3. Problem Statement and Formulation
The proposed method is based on (Cárdenas Pantoja et al., 2024), where the capacity of DQN to find the

optimal policy for drilling scheduling is demonstrated in a reduced synthetic case study that does not consider
uncertainty in the reservoir properties.

3.1 Problem Statement

We consider a reservoir whose geological parameters, 𝛷𝛷, are uncertain and distributed according to an unknown
distribution. We assume that 𝑁𝑁𝑟𝑟 realizations, 𝜙𝜙𝑟𝑟, 𝑟𝑟 = 1, … ,𝑁𝑁𝑟𝑟, of 𝛷𝛷 are provided by reservoir engineers on the
basis of the results of a geological study of the field. The life cycle of the O&G recovery project is divided into 𝑇𝑇

time-steps of duration Δ𝑡𝑡. The objective is to identify the drilling sequence and the types of well (producer or
injector) which maximize the NPV:

𝑁𝑁𝑁𝑁𝑁𝑁 = �
𝑟𝑟𝑡𝑡

(1 + 𝑑𝑑)𝑡𝑡

𝑇𝑇

𝑡𝑡=1

(1)

where 𝑑𝑑 is the discount factor, and 𝑟𝑟𝑡𝑡 is the difference between revenue and expenses incurred during the time
interval 𝑡𝑡. Producer wells exploit the reservoir, whereas injector wells inject water or gas to sustain reservoir
pressure.

The operational expenses are the platform investment and the cost of drilling wells and injecting water. The
revenue is directly proportional to the flow of oil extracted by the producer wells. Specifically, the oil production
of the 𝑖𝑖𝑡𝑡ℎ well in the time interval 𝑡𝑡, 𝑜𝑜𝑡𝑡,𝑖𝑖, is assumed to be a function, 𝑓𝑓, of the Bottom Hole Pressure (BHP), 𝑝𝑝𝑡𝑡,𝑖𝑖,
in correspondence of the 𝑖𝑖𝑡𝑡ℎ well and the reservoir geological parameters 𝛷𝛷

𝑜𝑜𝑡𝑡,𝑖𝑖 = 𝑓𝑓�𝑝𝑝𝑡𝑡,𝑖𝑖,𝛷𝛷�

Similarly to the Olympus challenge (Fonseca et al., 2020), we further assume that:

· only single wellbores, with no sidetracks, can be drilled;

· wells cannot be converted from producer to injector or vice versa after they start operating;

· the number, 𝑁𝑁𝑤𝑤, of wells to drill is fixed;

· well trajectories and well locations are known.

3.2 Problem Formulation

Due to the sequential nature of the decisions involved, the problem of optimizing the drilling sequence is a
SDP, which, in turn, is formulated as a MDP (Bellman, 1957) defined by the sets 𝒮𝒮, 𝒜𝒜, 𝒫𝒫, ℛ, 𝛾𝛾, where:

· 𝒮𝒮 is the state space;
· 𝒜𝒜 is the action space;
· 𝒫𝒫 is the transition probability space. Specifically, the generic element of the matrix: 𝑝𝑝(𝑠𝑠′|𝑠𝑠,𝑎𝑎) is the

probability to transit from state 𝑠𝑠 to state 𝑠𝑠′ by performing action 𝑎𝑎;
· ℛ is the set of possible rewards, i.e., 𝑟𝑟(𝑠𝑠,𝑎𝑎, 𝑠𝑠′) is the expected immediate reward of a transition from

𝑠𝑠 to 𝑠𝑠′ as a consequence of action 𝑎𝑎;
· γ ∈  [0,1] is the discount factor used to compute the present value of future rewards.

Sections 3.3.1, 3.3.2 and 3.3.3 define the state space, 𝒮𝒮, the action space, 𝒜𝒜, and the reward function, ℛ,
respectively. Note that the learning agent directly interacts with a simulation representing the environment, hence
the explicit definition of the transition function 𝒫𝒫 is not required since transitions are managed by the environment
(simulation) itself.

3.3 Definition of State, Action and Reward Spaces

1. State Space

The state 𝑠𝑠𝑡𝑡 of the system in time-step 𝑡𝑡 is the concatenation of the states, 𝑙𝑙𝑡𝑡,𝑖𝑖, 𝑖𝑖 = 1, … ,𝑁𝑁𝑤𝑤, of the well
locations in the same time-step:

𝑠𝑠𝑡𝑡 = �𝑙𝑙𝑡𝑡,𝑖𝑖�𝑖𝑖=1,…,𝑁𝑁𝑤𝑤

, 𝑡𝑡 = 0, … ,𝑇𝑇 (3)

The state, 𝑙𝑙𝑡𝑡,𝑖𝑖, of the 𝑖𝑖𝑡𝑡ℎ well location at time-step 𝑡𝑡 is defined as (Cárdenas Pantoja et al., 2024):

𝐿𝐿𝑜𝑜𝑐𝑐𝑖𝑖 : two-dimensional vector of the Cartesian coordinates of the well location;

𝑇𝑇𝑇𝑇𝑝𝑝𝑒𝑒𝑡𝑡,𝑖𝑖 : ternary variable set equal to 1 if the well is a producer, -1 if the well is an injector or 0 if the well has
not yet been drilled;

𝑝𝑝𝑡𝑡,𝑖𝑖 : scalar equal to the BHP in correspondence of well 𝑖𝑖 at the beginning of time-step 𝑡𝑡;

𝑜𝑜𝑤𝑤𝑡𝑡,𝑖𝑖 : scalar equal to the fluid produced or injected by well 𝑖𝑖 in time-step 𝑡𝑡. It is positive if the well is a
producer and negative if it is an injector.

2. Action Space

𝒜𝒜𝑡𝑡 is the set containing well locations and type (producer or injector) possible at the beginning of time-step 𝑡𝑡. It
is dynamically defined as:

𝒜𝒜𝑡𝑡+1 = 𝒜𝒜𝑡𝑡 ∖ {𝑎𝑎𝑡𝑡} (6)

where 𝑎𝑎𝑡𝑡 ∈ 𝒜𝒜𝑡𝑡 is a tuple containing the well drilled during time-step 𝑡𝑡 and its type:

𝑎𝑎𝑡𝑡 = [𝑤𝑤𝑖𝑖,𝑇𝑇𝑇𝑇𝑝𝑝𝑒𝑒𝑖𝑖] (7)

For example, 𝑎𝑎𝑡𝑡 = (𝑤𝑤𝑖𝑖,  1) indicates that the well drilled during time-step 𝑡𝑡 is 𝑤𝑤𝑖𝑖 and its type is producer.

3. Reward

The reward, r(𝑠𝑠,  𝑎𝑎,  𝑠𝑠′) of a transition from state 𝑠𝑠 to state 𝑠𝑠′ as a consequence of action 𝑎𝑎 in time-step 𝑡𝑡 is:

𝑟𝑟(𝑠𝑠,  𝑎𝑎,  𝑠𝑠′) ≐ 𝑟𝑟𝑡𝑡 =
�∑ 𝑜𝑜𝑡𝑡,𝑖𝑖𝑖𝑖∈𝑁𝑁𝑤𝑤 �𝑣𝑣𝑜𝑜 − �∑ 𝑤𝑤𝑡𝑡,𝑖𝑖𝑖𝑖∈𝑁𝑁𝑤𝑤 �𝑣𝑣𝑤𝑤

(1 + 𝑑𝑑)𝑡𝑡
(8)

where,

𝑜𝑜𝑡𝑡,𝑖𝑖 : is the oil produced by well 𝑖𝑖 in time-step 𝑡𝑡;

𝑤𝑤𝑡𝑡,𝑖𝑖 : is the water injected by well 𝑖𝑖 in time-step 𝑡𝑡;

 𝑣𝑣𝑜𝑜 : is the oil price per unit sold;

𝑣𝑣𝑤𝑤 : is the cost of injecting water per unit.

The total reward of a complete episode is the NPV obtained in the time horizon 𝑇𝑇:

𝑁𝑁𝑁𝑁𝑁𝑁 = �𝑟𝑟𝑡𝑡

𝑇𝑇

𝑡𝑡=1

(9)

4. Proposed Solution Method
Deep Reinforcement Learning

DRL is a machine learning paradigm where an agent learns to make sequential decisions by interacting with
an environment. In DRL, the agent aims to maximize a cumulative reward by taking actions that influence future
states of the environment. Unlike traditional reinforcement learning (RL), DRL leverages deep neural networks
to approximate the mapping between states and actions in complex, high-dimensional spaces. At each time-step,

the agent observes the current state, selects an action, and receives feedback in the form of a reward, which
quantifies the immediate benefit or cost of the chosen action. The ultimate goal of DRL is to find an optimal
policy, i.e., a mapping from states to actions, which maximizes the expected long-term cumulative reward.

4.1 Q – Learning

Q-Learning (Watkins & Dayan, 1992) is a RL algorithm used for solving sequential decision problems. It focuses
on learning an optimal action-value function, often denoted as Q(𝑠𝑠,  𝑎𝑎) which represents the expected cumulative
reward an agent can achieve by taking action 𝑎𝑎 in state 𝑠𝑠 and following an optimal policy. Q-Learning is described
by the Q-value update equation:

𝑄𝑄(𝑠𝑠𝑡𝑡,𝑎𝑎𝑡𝑡) ← 𝑄𝑄(𝑠𝑠𝑡𝑡,𝑎𝑎𝑡𝑡) + α �𝑟𝑟𝑡𝑡+1 + γmax
𝑎𝑎′

𝑄𝑄 (𝑠𝑠′,𝑎𝑎′) −𝑄𝑄(𝑠𝑠𝑡𝑡,𝑎𝑎𝑡𝑡)� (10)

where,

𝑄𝑄(𝑠𝑠𝑡𝑡,𝑎𝑎𝑡𝑡) : The Q-value for state 𝑠𝑠 and action 𝑎𝑎. It represents the expected cumulative reward.

α : The learning rate that controls the magnitude of the updates. Typically, α ∈ [0,1]

γ : The discount factor (from the SDP).

max
𝑎𝑎

𝑄𝑄 (𝑠𝑠′,𝑎𝑎′) : The Q-value for the next state 𝑠𝑠 after taking the action that maximizes Q-value.

The Q-value update equation reflects the iterative process of Q-Learning. The agent updates its estimate of the
Q-value for a state-action pair based on the observed reward, 𝑟𝑟𝑡𝑡+1, and the maximum expected future reward,
γmax

𝑎𝑎
𝑄𝑄 (𝑠𝑠′,𝑎𝑎′), from the next state. The learning rate, α, controls the step size of these updates, allowing the Q-

values to gradually converge to their optimal values. Q-Learning is well-suited for FDP as it can learn to make
decisions about well drilling, resource allocation, and infrastructure management to maximize long-term rewards.
However, its applicability can be limited by significant memory requirements for storing Q-values when dealing
with large state and action spaces.

4.2 Deep Q – Networks

DQN is a value-based reinforcement learning algorithm that leverages deep learning to approximate the optimal
action-value function 𝑄𝑄∗(𝑠𝑠,𝑎𝑎), enabling the application of value-based approaches to learning optimal policies in
complex, high-dimensional environments characterized by a large number of state-action pairs. To deal with the
instability associated with function approximation in Q-Learning, DQN incorporates two key components: the
replay buffer and the target network.

Replay Buffer: The replay buffer stores experiences as transitions (𝑠𝑠𝑡𝑡,𝑎𝑎𝑡𝑡, 𝑟𝑟𝑡𝑡+1, 𝑠𝑠𝑡𝑡+1). During training, mini-
batches of these transitions are randomly sampled, breaking the correlation between consecutive experiences.
This random sampling stabilizes training by reducing the variance of updates and preventing overfitting to recent
experiences.

Target Network: DQN uses two networks: the online network and the target network. The online network, which
is responsible for learning and updating the Q-values during training, is updated at each step to improve the action-
value estimates. In contrast, the target network, which provides stable target Q-values for the learning process by
holding a fixed copy of the online network's weights for a set number of iterations, is updated less frequently.
This mechanism provides more stability by preventing the action-value estimates from oscillating or diverging.

The loss function used to train the DQN is derived from the Bellman equation and is defined as:

L(θ) = 𝐸𝐸 ��𝑟𝑟(𝑡𝑡+1) + γ max
𝑎𝑎′

𝑄𝑄�𝑠𝑠(𝑡𝑡+1),𝑎𝑎′;𝜃𝜃−� − 𝑄𝑄(𝑠𝑠𝑡𝑡,𝑎𝑎𝑡𝑡; θ)�
2

� (11)

where 𝛾𝛾 is the discount factor, θ are the parameters of the online network, and θ− are the parameters of the target
network. The online network updates its parameters θ to minimize this loss function. The DQN process, as
illustrated in Figure 1, involves the following steps:

1. The agent observes the current state of the environment.

2. The online network predicts the Q-values for all possible actions, selecting the action with the highest
value or, with probability 𝜀𝜀, choosing an exploratory action.

3. After the action is executed, the resulting reward and the next state are observed, and the transition
(𝑠𝑠𝑡𝑡,𝑎𝑎𝑡𝑡, 𝑟𝑟𝑡𝑡+1, 𝑠𝑠𝑡𝑡+1) is stored in the replay buffer.

4. A mini-batch of transitions is sampled from the replay buffer to update the online network based on the
loss function.

5. Periodically, the weights of the target network are updated to match the online network.

Figure 1. DQN dataflow diagram

4.2 Soft-Updating weights

In DQN, the target network is updated by hardly copying the weights from the online network at regular intervals
during training. In contrast, a soft-update mechanism updates the target network gradually. The soft-update blends
the weights of the target network with the online network at each step, instead of performing a hard copy of
weights. This gradual update is defined as:

θ− ← τθ + (1 − τ)θ− (12)

where τ is the soft-update factor, which determines how much of the online network’s weights are blended into
the target network. In the present work, τ is set equal to 0.001, which is the value usually employed to keeps a
satisfactory balance between updating the target network and maintaining stability during the learning process (P.
Zhang et al., 2023).

This soft-update mechanism provides a more stable learning process by ensuring that the target network changes
slowly over time, reducing the risk of large updates that could make the learning process unstable and ensuring

smoother training dynamics. As a result, the target values used for the Q-learning update are more consistent,
leading to better convergence.

5. Experimental Setup
A synthetic case study is considered to reduce the large computational effort required if a full-scale dynamic

simulation of the subsurface is used. Despite the simulated synthetic case is not physics-based, the case study
allows investigating the capability of the proposed method of solving an optimization problem characterized by
a number of possible solutions similar to that of drilling scheduling in a FDP project.

5.1 Simulation of the Environment

Unlike real reservoirs, where pressure propagation follows complex dynamics governed by geological properties,
this work assumes that the pressure at any given reservoir location is the sum of contributions from the
surrounding wells, each one inversely proportional to the distance between the well and the location. Specifically,
the oil production of a well is modeled considering two effects: natural depletion and pressure influence of the
surrounding wells. The oil production of well 𝑖𝑖 during time-step 𝑡𝑡 is:

𝑜𝑜𝑡𝑡,𝑖𝑖 = �𝑜𝑜𝑛𝑛𝑡𝑡,𝑖𝑖 + 𝑝𝑝𝑡𝑡,𝑖𝑖 𝜓𝜓� ℎ𝑡𝑡,𝑖𝑖 (13)

where 𝑜𝑜𝑛𝑛𝑡𝑡,𝑖𝑖 is the oil production of well 𝑖𝑖 during time-step 𝑡𝑡 due to natural depletion, ψ is a geological parameter
which represents the effect of the BHP on oil production and ℎ𝑡𝑡,𝑖𝑖 is a binary variable equal to 1 if the well 𝑖𝑖 is a
producer and equal to 0 otherwise.

The quantity 𝑜𝑜𝑛𝑛𝑡𝑡,𝑖𝑖, representing the oil production by natural depletion of well 𝑖𝑖 in time-step 𝑡𝑡, is assumed to
decrease with constant rate 𝜌𝜌:

𝑜𝑜𝑛𝑛𝑡𝑡+1,𝑖𝑖 = 𝑜𝑜𝑛𝑛𝑡𝑡,𝑖𝑖 ρ (14)

where 𝑜𝑜𝑛𝑛0,𝑖𝑖 is a fixed value representing the initial production of well 𝑖𝑖 and 𝜌𝜌 ∈ (0,1) is a depletion coefficient.

The contribution of a well to the pressure in the 𝑖𝑖𝑡𝑡ℎ location of the reservoir, 𝑝𝑝𝑡𝑡,𝑖𝑖, is assumed to be inversely
proportional to the distance between the well and the location. Therefore, the closer two producing wells are, the
smaller the oil production rate, and, on the contrary, the closer an injection well is located to a production well,
the larger the production. To account for uncertainties in subsurface geological properties, a matrix 𝜙𝜙 = �𝜙𝜙𝑖𝑖,𝑗𝑗�,
𝑖𝑖, 𝑗𝑗 = 1, … ,𝑁𝑁𝑤𝑤, is introduced. The generic element 𝜙𝜙𝑖𝑖,𝑗𝑗 of 𝜙𝜙 represents the uncertainty in the interaction between
wells 𝑖𝑖 and 𝑗𝑗. 𝑁𝑁𝑟𝑟 samples of the matrix, 𝜙𝜙𝑟𝑟, are simulated by randomly sampling each element 𝜙𝜙𝑖𝑖,𝑗𝑗𝑟𝑟 from a
Gaussian distribution with mean 𝜇𝜇 and standard deviation 𝜎𝜎. Then, the pressure in the location of well 𝑖𝑖 during
time-step 𝑡𝑡 is:

𝑝𝑝𝑡𝑡,𝑖𝑖 = �
𝑝𝑝𝑚𝑚𝑡𝑡,𝑗𝑗

𝑑𝑑𝑖𝑖𝑠𝑠𝑡𝑡𝑎𝑎𝑛𝑛𝑐𝑐𝑒𝑒(𝑖𝑖, 𝑗𝑗) ϕ𝑖𝑖,𝑗𝑗
𝑟𝑟

𝑁𝑁𝑤𝑤

𝑗𝑗=1

, 𝑖𝑖 ≠ 𝑗𝑗 (15)

where, 𝑝𝑝𝑚𝑚𝑡𝑡,𝑗𝑗 is a prefixed coefficient that represents the maximum possible pressure contribution of the 𝑗𝑗𝑡𝑡ℎ well
at time-step 𝑡𝑡 on the other wells.

Other assumptions about the environment are:

• The cost of injecting water is considered negligible (𝑣𝑣𝑤𝑤 = 0).

• Drilling of the next well starts immediately after the end of the drilling of the previous well, i.e., without
idle time between completing one well and starting the drilling of the next well.

• Operational well rate capacity and pressure limits are preset.

• The number of available well slots per platform, 𝑁𝑁𝑤𝑤, is equal to 20.

5.2 Experiment Definition

Experiment A

A soft-update mechanism is implemented in the DRL agent algorithm with τ = 0.001. Table 3 describes the
available locations for drilling in Cartesian coordinates. The maximum pressure contribution to other wells, 𝑝𝑝𝑚𝑚𝑡𝑡,𝑖𝑖,
is defined according to Eq. 16 and the geological parameter 𝜓𝜓 is set equal to 1 �𝑂𝑂𝑂𝑂𝑂𝑂 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑂𝑂𝑝𝑝𝑝𝑝 𝑝𝑝𝑝𝑝𝑂𝑂𝑝𝑝

𝑃𝑃𝑝𝑝𝑃𝑃𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝𝑃𝑃 𝑝𝑝𝑝𝑝𝑂𝑂𝑝𝑝 �. The price of oil,
𝑣𝑣𝑜𝑜, has been set equal to 1 monetary unit (mu) per oil produced unit and the depletion coefficient ρ has been set
equal to 0.85. The parameters for the DQN configuration are reported in Table 4. The parameters (μ,σ) defining
the gaussian probability distribution of ϕ𝑖𝑖,𝑗𝑗 are reported in Table 5. At the beginning of each episode, one of the
𝑁𝑁𝑟𝑟 = 50 realizations, ϕ𝑟𝑟, of the matrix ϕ = �ϕ𝑖𝑖,𝑗𝑗�, 𝑖𝑖, 𝑗𝑗 = 1, … ,𝑁𝑁𝑤𝑤 is randomly sampled. The proposed DRL
agent with the soft-update implementation is compared with the DQN agent configuration proposed by (Paola et
al., 2020). The agent is trained 10 times, where each training consists of 1000 episodes.

Well Location ID Location Initial Capacity1 �𝑜𝑜𝑛𝑛0,𝑖𝑖�

A (1, 2, 5) 0.14

B (5, 0, 5) 0.04

C (5, 2, 5) 0.2

D (3, 2, 5) 0.06

E (4, 1, 5) 0.07

F (1, 0, 5) 0.19

G (0, 5, 5) 0.06

H (2, 4, 5) 0.02

I (5, 5, 5) 0.1

J (4, 0, 5) 0.19

K (5, 1, 5) 0.09

L (2, 2, 5) 0.2

M (1, 1, 5) 0.09

N (4, 3, 5) 0.15

O (0, 4, 5) 0.09

P (2, 3, 5) 0.1

Q (1, 5, 5) 0.17

R (3, 5, 5) 0.18

S (3, 1, 5) 0.11

T (3, 0, 5) 0.16
Table 3. Experiment Parameters

𝑝𝑝𝑚𝑚𝑡𝑡,𝑖𝑖 = �
−0.06, 𝑇𝑇𝑇𝑇𝑝𝑝𝑒𝑒𝑡𝑡,𝑖𝑖 = 1
+0.03, 𝑇𝑇𝑇𝑇𝑝𝑝𝑒𝑒𝑡𝑡,𝑖𝑖 = −1 (16)

γ 0.9
𝑑𝑑 0.3
ε 𝑒𝑒−0.04𝑡𝑡, 𝑡𝑡 ∈ 𝑇𝑇

1 Relative volume per time unit

Table 4. DQN Hyper-Parameters

𝑁𝑁𝑟𝑟 50
μ 1
σ 0.1

Table 5. Realization parameters

Experiment B

The objective of the experiment is to verify the effect of using different numbers of realizations for training DQN
on the performance of the identified policy. To this aim, a set of 𝑁𝑁𝑟𝑟 = 500 realizations, 𝜙𝜙𝑟𝑟, of the matrix 𝜙𝜙 =
�𝜙𝜙𝑖𝑖,𝑗𝑗�, 𝑖𝑖, 𝑗𝑗 = 1, … ,𝑁𝑁𝑤𝑤, has been generated and split into train (80%) and test (20%) sets. Two different scenarios
have been considered, where the number of realizations used for training is 1 and 400, respectively. Each scenario
is then evaluated on the test set. For each scenario, the experiment has been conducted 10 times in order to
consider the variability of the learning process. The parameters of the environment and hyper-parameters of the
agent have been set as in the previous experiment.

6. Results
Experiment A

The agent with the soft-update mechanism is compared to the agent used in (Paola et al., 2020) without soft-
updating. Figure 2 shows that the proposed soft-update mechanism enables the agent to achieve a larger reward
with a smaller standard deviation. This indicates that the soft-update mechanism allows reducing instability during
training, leading to a smoother learning process which enables the agent to identify a policy characterized by
more satisfactory performance and smaller variability. Utilizing a high-performance computing node equipped
with two Intel® Xeon® Gold 6252 CPUs (24 cores per socket, 2.1 GHz base frequency), totaling 48 cores, 190
GiB of system memory, and an NVIDIA Quadro P5000 GPU (16,278 MiB memory, CUDA 11.2) the average
computational time is increased by 8% (from 37s to 40s) when DQN with soft-updates is used instead of standard
DQN. This increase is attributed to the more frequent NN updates required by the soft-update strategy.

Figure 2. Experiment A: Box-plot of the reward.

The analysis of the selected drilling strategies shows that they prioritize the early drilling of the most
productive wells, and then, strategically place injectors wells in the central portion of the reservoir to maximize
the pressure in the reservoir.

Experiment B

[4]

Figure 3 shows that increasing the number of available realizations from 1 to 400 allows to significantly increase
the average reward in the test set.

Figure 3. Experiment B: Box-plot of the reward considering 10 runs of the experiment.

Figure 4 shows the distribution of the rewards over the 100 realizations of the test set in one out of the ten
repetitions of the experiment. It can be noticed that training with several realizations enables the agent to achieve
rewards larger on average (red line) and with lower variability, confirming that increasing the number of
realizations used for training leads to a more robust policy.

Figure 4. Experiment B: Box-plot of the reward in a single run of the experiment.

7. Conclusions
We have developed a method based on DQN for the optimization of the drilling scheduling of a FDP project.

It employs a soft-updating mechanism to reduce training volatility and improve long-term rewards. The
comparison of the proposed method with a traditional DQN on a synthetic case study that emulates the behavior
of a reservoir has shown that the soft-updating mechanism allows obtaining larger rewards with smaller variability
to the uncertainty on the reservoir geological properties. Also, the capacity of DQN to learn and adapt the
scheduling strategy according to the specific geological properties of the reservoir has been demonstrated.

Considering the promising achieved results, future research will focus on using a GPU-enhanced reservoir
simulator for the simulation of the environment and applying it to the Olympus challenge (Fonseca et al., 2020).

References
Barros, E. G. D., Chitu, A., & Leeuwenburgh, O. (2020). Ensemble-based well trajectory and drilling schedule optimization—

application to the Olympus benchmark model. Computational Geosciences, 24(6), 2095–2109. https://doi.org/10.1007/S10596-
020-09952-7/METRICS

Bellman, R. (1957). Dynamic Programming (First). Princeton University Press.
https://press.princeton.edu/books/paperback/9780691146683/dynamic-programming

Bergey, P. (2020). Generative well pattern design—principles, implementation, and test on OLYMPUS challenge field development
problem. Computational Geosciences, 24(6), 2079–2094. https://doi.org/10.1007/S10596-019-09912-W/METRICS

Cárdenas Pantoja, N., Abdin, A., Baraldi, P., Pinciroli, L., & Zio, E. (2024). Deep Reinforcement Learning for Strategic Asset
Management in Oil & Gas Recovery Projects. 2024 8th International Conference on System Reliability and Safety, ICSRS 2024.

Carta, S., Ferreira, A., Podda, A. S., Reforgiato Recupero, D., & Sanna, A. (2021). Multi-DQN: An ensemble of Deep Q-learning agents
for stock market forecasting. Expert Systems with Applications, 164, 113820. https://doi.org/10.1016/J.ESWA.2020.113820

Chang, Y., Lorentzen, R. J., Nævdal, G., & Feng, T. (2020). OLYMPUS optimization under geological uncertainty. Computational
Geosciences, 24(6), 2027–2042. https://doi.org/10.1007/S10596-019-09892-X/METRICS

Ferguson, T. S. (1967). Sequential Decision Problems. In Mathematical Statistics (pp. 309–387). Elsevier. https://doi.org/10.1016/b978-
1-4831-8253-7.50011-x

Fonseca, R. M., Rossa, E. Della, Emerick, A. A., Hanea, R. G., & Jansen, J. D. (2020). Introduction to the special issue: Overview of
OLYMPUS Optimization Benchmark Challenge. Computational Geosciences, 24(6), 1933–1941.
https://doi.org/10.1007/S10596-020-10003-4/METRICS

Halat, S., & Ebadzadeh, M. M. (2021). Modified Double DQN: addressing stability. https://arxiv.org/abs/2108.04115v1
Hart, P. E., Nilsson, N. J., & Raphael, B. (1968). A Formal Basis for the Heuristic Determination of Minimum Cost Paths. IEEE

Transactions on Systems Science and Cybernetics, 4(2), 100–107. https://doi.org/10.1109/TSSC.1968.300136

He, J., Tang, M., Hu, C., Tanaka, S., Wang, K., Wen, X.-H., & Nasir, Y. (2022). Deep Reinforcement Learning for Generalizable Field
Development Optimization. SPE Journal, 27(01), 226–245. https://doi.org/10.2118/203951-PA

Kiran, B. R., Sobh, I., Talpaert, V., Mannion, P., Sallab, A. A. A., Yogamani, S., & Perez, P. (2022). Deep Reinforcement Learning for
Autonomous Driving: A Survey. IEEE Transactions on Intelligent Transportation Systems, 23(6), 4909–4926.
https://doi.org/10.1109/TITS.2021.3054625

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., & Wierstra, D. (2015). Continuous control with deep
reinforcement learning. 4th International Conference on Learning Representations, ICLR 2016 - Conference Track Proceedings.
https://arxiv.org/abs/1509.02971v6

Mirzaei-Paiaman, A., Santos, S. M. G., & Schiozer, D. J. (2022). Iterative sequential robust optimization of quantity and location of
wells in field development under subsurface, operational and economic uncertainty. Journal of Petroleum Science and
Engineering, 218, 111005. https://doi.org/10.1016/J.PETROL.2022.111005

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., & Riedmiller, M. (2013). Playing Atari with Deep
Reinforcement Learning. https://arxiv.org/abs/1312.5602v1

Muther, T., Qureshi, H. A., Syed, F. I., Aziz, H., Siyal, A., Dahaghi, A. K., & Negahban, S. (2022). Unconventional hydrocarbon
resources: geological statistics, petrophysical characterization, and field development strategies. Journal of Petroleum Exploration
and Production Technology, 12(6), 1463–1488. https://doi.org/10.1007/s13202-021-01404-x

Nasir, Y. (2020). Deep Reinforcement Learning for Field Development Optimization. https://arxiv.org/abs/2008.12627v1
Nasir, Y., He, J., Hu, C., Tanaka, S., Wang, K., & Wen, X. H. (2021). Deep Reinforcement Learning for Constrained Field Development

Optimization in Subsurface Two-phase Flow. Frontiers in Applied Mathematics and Statistics, 7, 689934.
https://doi.org/10.3389/FAMS.2021.689934/BIBTEX

OpenAI, :, Berner, C., Brockman, G., Chan, B., Cheung, V., Dębiak, P., Dennison, C., Farhi, D., Fischer, Q., Hashme, S., Hesse, C.,
Józefowicz, R., Gray, S., Olsson, C., Pachocki, J., Petrov, M., Pinto, H. P. d. O., Raiman, J., … Zhang, S. (2019). Dota 2 with
Large Scale Deep Reinforcement Learning. https://doi.org/https://doi.org/10.48550/arXiv.1912.06680

Paola, G. De, Ibanez-Llano, C., Rios, J., & Kollias, G. (2020, October 19). Reinforcement Learning for Field Development Policy
Optimization. Proceedings - SPE Annual Technical Conference and Exhibition. https://doi.org/10.2118/201254-MS

Schulze-Riegert, R., Nwakile, M., Skripkin, S., Whymark, M., Baffoe, J., Geissenhoener, D., Anton, A., Meulengracht, C. S., & Ng, K.
J. (2020). Olympus challenge—standardized workflow design for field development plan optimization under uncertainty.
Computational Geosciences, 24(6), 2059–2077. https://doi.org/10.1007/S10596-019-09905-9/METRICS

Silva, V. L. S., Cardoso, M. A., Oliveira, D. F. B., & de Moraes, R. J. (2020). Stochastic optimization strategies applied to the

OLYMPUS benchmark. Computational Geosciences, 24(6), 1943–1958. https://doi.org/10.1007/S10596-019-09854-
3/METRICS

Sutton, R. S., & Barto, A. G. (2018). Reinforcement Learning: An Introduction (2nd ed.). The MIT Press.
https://mitpress.mit.edu/9780262039246/reinforcement-learning/

Wang, L., & Oliver, D. S. (2019). Efficient Optimization of Well-Drilling Sequence with Learned Heuristics. SPE Journal, 24(05),
2111–2134. https://doi.org/10.2118/195640-PA

Wang, L., & Oliver, D. S. (2021). Fast robust optimization using bias correction applied to the mean model. Computational Geosciences,
25(1), 475–501. https://doi.org/10.1007/s10596-020-10017-y

Watkins, C. J. C. H., & Dayan, P. (1992). Q-learning. Machine Learning 1992 8:3, 8(3), 279–292. https://doi.org/10.1007/BF00992698
Yu, K., Jin, K., & Deng, X. (2022). Review of Deep Reinforcement Learning. IMCEC 2022 - IEEE 5th Advanced Information

Management, Communicates, Electronic and Automation Control Conference, 41–48.
https://doi.org/10.1109/IMCEC55388.2022.10020015

Zhang, P., Zhang, J., & Kan, J. (2023). A Research on Manipulator-Path Tracking Based on Deep Reinforcement Learning. Applied
Sciences 2023, Vol. 13, Page 7867, 13(13), 7867. https://doi.org/10.3390/APP13137867

Zhang, Q., Lin, M., Yang, L. T., Chen, Z., & Li, P. (2019). Energy-Efficient Scheduling for Real-Time Systems Based on Deep Q-
Learning Model. IEEE Transactions on Sustainable Computing, 4(1), 132–141. https://doi.org/10.1109/TSUSC.2017.2743704

