

MSc thesis proposal with international collaboration

(In collaboration with University of California, Los Angeles)

Title	Guided probabilistic risk assessment of complex systems using
	reinforcement learning optimization
Motivations and	Probabilistic risk assessment of complex systems is primarily for
objectives of the research	situations characterized by large uncertainties. These situations necessitate the assessment of multiple alternative possible scenarios
	and, occasionally, unknown scenarios. In multiple studies, it has been
	snown that the number of possible alternative scenarios increase over time significantly. This will increase the execution time dramatically
	and in some cases make the problem unsolvable.
	One of the presented efficient methods to control the size of the probabilistic risk model is a supervised probabilistic risk model that generates failure scenarios using optimization methods. This approach can generate and sort failure scenarios in a short execution time. As an example [1, 2], an application of the supervised probabilistic risk model on a dynamic positioning system has been developed. In this application, knowledge of the system is explicitly used in an optimization model to predict possible failure scenarios. A supervised learning algorithm is used to find the optimal solution, which is the desired failure scenario, i.e., instead of focusing on obtaining all possible scenarios.
	In this thesis, a reinforcement learning approach will be developed and used to control the size of probabilistic risk models over time. The proposed methodology will be implemented on a case study to show the effectiveness of the reinforcement learning optimization method.
	References
	Parhizkar, T., Vinnem, J. E., Utne, I. B., & Mosleh, A. (2020).
	Supervised Dynamic Probabilistic Risk Assessment of Complex
	Systems, Part 1: General Overview. Reliability Engineering &
	System Safety, 107406.
	Parhizkar, T., Utne, I. B., Vinnem, J. E., & Mosleh, A. (2021).

	Supervised dynamic probabilistic risk assessment of complex
	systems, part 2: Application to risk-informed decision making,
	practice and results. Reliability Engineering & System Safety,
	208, 107392.
	Hu, Y., Parhizkar, T., & Mosleh, A. (2021). Guided Simulation for
	Dynamic Probabilistic Risk Assessment of Complex Systems:
	Concept, Method, and Application. Reliability Engineering &
	System Safety, 108047.
	Parhizkar, T., Mosleh, A. (2022). Guided Probabilistic Simulation of
	Complex Systems Toward Rare and Extreme Events. The 68th
	Annual Reliability & Maintainability Symposium (RAMS),
	2022, Tucson, Arizona.
	Hamed S Nejad., Parhizkar, T., Mosleh, A. (2021). Simulation Based
	Probabilistic Risk Assessment (SIMPRA): Risk Based Design.
	31st European Safety and Reliability Conference 19-23
	September 2021, Angers, France.
	Parhizkar, T., Utne, I. B., & Vinnem, J. E. (2022). Online Probabilistic
	Risk Assessment of Complex Marine Systems. Springer Series in
	Reliability Engineering.
	Nejad, H. S., Parhizkar, T., & Mosleh, A. (2022). Automatic generation
	of event sequence diagrams for guiding simulation based
	dynamic probabilistic risk assessment (SIMPRA) of complex
· · · • • · •	systems. Reliability Engineering & System Safety, 222, 108416.
Activities	• Literature review on probabilistic risk assessment of complex
	systems, optimization methods, and guided scenario generation.
	• Study of reinforcement learning optimization method.
	Methodology development.
	• Implementation of the algorithms in Python.
	Application and validation of the proposed methodology.
International	University of California, Los Angeles (UCLA)
collaborations	
Required competencies	• Good knowledge of risk assessment and reinforcement learning
and skills	method.
	• Good knowledge of Python programming.
	Engineering undergrad.
Composition of the	Number of Professors: 2
research group	Fueira Zia
Name of the research	Enfico Zio Toronnom Dorbiekor
airector Email adduces	
Eman address	therbizker@g.uele.edu
Web nage	<u>tparmzkan@g.ucia.cuu</u> https://www.risksgianges.ucla.adu/anargy.resiliange.unit
web page	https://www.lisksciences.ucia.cuu/energy-resinence-unit
	Duration of the dissertation
Total thesis duration	8 months At most 2 pending exams
i otal thesis uul ation	o montho. At most 2 pending chams

Title	Resilience assessment and management of power grids in response to
	extreme weather conditions (heat wave, storm, flood, wildfire, etc.)
Motivations and	In the last couple of decades, a large number of climate disasters has
objectives of the research	happened in the world, resulting in overall damage exceeding US3.5 trillion and particularly US\$1.3 trillion in the United States. In recent years, the frequency and intensity of extreme weather and climate-related events have been trending higher. Around 63% of the worldwide disasters has happened after 2010, and seven of the ten costliest storms in U.S. history occurring in the last ten years.
	The considerable rise in both severity and frequency of occurrences of climatological catastrophes, draws attention to a more climate- resilient electricity sector. In recent years, several databases and platforms have been developed to perform resilience assessment of electricity sector in response to extreme weather and climate-related events. In this thesis, a methodology for resilience assessment of power grids in response to extreme weather conditions (heat waves, storm, flood, wildfire, etc.) will be developed. The proposed model will be implemented on a case study to show the effectiveness of the proposed methodology.
	 References Shirvani, R., & Parhizkar, T. (2022). Resilience based Electric Sector Optimization in Response to Extreme Weather Conditions with Distributed Generation Systems. arXiv preprint arXiv:2209.10050. Fang, Y. P., Pedroni, N., & Zio, E. (2016). Resilience-based component importance measures for critical infrastructure network systems. IEEE Transactions on Poliobility (5(2), 502)
	 Fang, Y. P., & Zio, E. (2019). An adaptive robust framework for the optimization of the resilience of interdependent infrastructures under natural hazards. European Journal of Operational Research, 276(3), 1119-1136.
	Rocchetta, R., Zio, E., & Patelli, E. (2018). A power-flow emulator approach for resilience assessment of repairable power grids subject to weather-induced failures and data deficiency. Applied energy, 210, 339-350.
	Fang, Y., Pedroni, N., & Zio, E. (2015). Optimization of cascade- resilient electrical infrastructures and its validation by power flow modeling. Risk Analysis, 35(4), 594-607.
	Abdin, I. F., Fang, Y. P., & Zio, E. (2019). A modeling and optimization framework for power systems design with operational flexibility and resilience against extreme heat waves and drought events. Renewable and Sustainable Energy Reviews, 112, 706-719.
	Fang, Y. P., Pedroni, N., & Zio, E. (2014). Comparing network-centric and power flow models for the optimal allocation of link capacities in a cascade-resilient power transmission network.

	IEEE Systems Journal, 11(3), 1632-1643.
Activities	• Literature review on the effect of extreme events on power
	generation, transmission, storage, and end users.
	Methodology development.
	• Implementation of the algorithms in Python.
	• Application and validation of the proposed methodology.
International	University of California, Los Angeles (UCLA)
collaborations	
Required competencies	• Good knowledge of power grids and optimization methods or a
and skills	willingness to learn.
	• Good knowledge of reliability, risk and resilience or a willingness
	to learn.
	• Good knowledge of Python programming or a willingness to learn.
Composition of the	Number of Professors: 2
research group	
Name of the research	Enrico Zio
director	Tarannom Parhizkar
Email address	enrico.zio@polimi.it
	tparhizkar@g.ucla.edu
Web page	https://www.risksciences.ucla.edu/energy-resilience-unit
	https://www.lasar.polimi.it/
Duration of the dissertation	
Total thesis duration	8 months. At most 2 pending exams