

Opportunity for M.Sc. dissertation

Title	Development of an Artificial Intelligence-based Virtual Meter Tool
	for Carbon Capture and Storage Applications
Motivations and	Carbon canture and storage will play a critical role in future
objectives of the research	decarbonisation efforts to meet the Paris Agreement targets and
objectives of the research	mitigate the effects of climate change. The process typically involves
	mangate the effects of children that in the process typically involves
	mass now from a compression station to the injection wells through a
	network system and the safely storing of the CO2 into a depleted oil
	and gas reservoir.
	In this regard, accurate real-time evaluation of the CO2 injection
	rates is critical for allowing an optimal management of the asset
	while guaranteeing environmental safety. However, it is difficult for
	traditional flowmeters to meet the accuracy requirements due to
	the complex properties of CO2 flow. In this context, the aim of the
	thesis work is the development of an Artificial Intelligence (AI) -
	based Virtual Meter for the estimation of CO2 injection rates in a
	Carbon Capture and Storage (CCS) asset.
Activities	PART I:
	Literature review on on Al-based Virtual Meters focusing on
	Oil&Gas industry applications:
	 Definition of synthetic and real case studies:
	 Selection of the Al method for the development of the Virtual
	Selection of the Al method for the development of the virtual
	Meter;
	PARTII:
	Development of the Al-based Virtual Meter.
	 Application to the synthetic and real case studies
Industrial collaborations	ENI
Required competencies	 Interest in developing innovative Artificial Intelligence
and skills	algorithms to tackle real applications;
	Good knowledge of Python programming or a willingness to
	learn before starting the assignment.
Composition of the	Number of Full Professors: 2
research group	Number of postdoctoral researcher: 1
Name of the research	Enrico Zio
director	
Email address	enrico.zio@polimi.it

	piero.baraldi@polimi.it
Web page	lasar.polimi.it
Duration of the dissertation	
Total thesis duration	9 months. At most 1 pending exam