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Abstract:  

This work proposes a method for identifying functional dependencies among components of 

complex technical infrastructures using databases of alarm messages. The developed method is 

based on the representation of the alarm database by a binary matrix, the use of the Apriori 

algorithm for mining association rules and a new algorithm for identifying groups of functionally 

dependent components. The effectiveness of the proposed method is shown by means of its 

application to an artificial case study and a real large-scale database of alarms generated by 

different supervision systems of the complex technical infrastructure of CERN (European 

Organization for Nuclear Research). 

Notation 

 

CTI Complex Technical Infrastructure 

𝑁𝑐  number of CTI components  

𝑐𝑗 generic j-th component 

𝑎𝑗
𝑘 alarm associated to the k-th malfunction of the j-th component 

𝑀𝑗
𝑎𝑙number of types of alarm messages triggered by the j-th component 

𝑀𝑎𝑙 total number of types of alarm messages 

𝐴 = {𝑎𝑗
𝑘} set of all possible alarm types 
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𝑁𝑎𝑙  total number of alarm messages collected in the database 

[𝑡0, 𝑡𝑓] time domain during which the 𝑁𝑎𝑙 alarm messages of the database have been collected 

Z number of time intervals in which the time domain [𝑡0, 𝑡𝑓] is subdivided 

Δ𝑡 time interval length  

𝑠𝑗
𝑘(𝑧) Boolean variable associated to the occurrence of the alarm  𝑎𝑗

𝑘  in the z-th time interval 

𝑐𝑗(𝑧) vector of size 𝑀𝑗
𝑎𝑙  indicating the state of the j-th component in the z-th time interval 

𝒯⃗⃗(𝑧) vector of size 𝑀𝑎𝑙 indicating the state of the CTI in the z-th time interval 

T matrix of size [Z ×𝑀𝑎𝑙] representing the evolution of the CTI state in the time domain [𝑡0, 𝑡𝑓] 

X pattern of alarms 

n(X) number of time intervals in which at least all the alarms of X occur 

S(X) support of the pattern of alarms X  

𝑋𝑓𝑝frequent pattern of alarms 

s% minimum support 

c% minimum confidence 

𝑟𝑙 = {𝑥𝑙
𝑎 ⇒ 𝑥𝑙

𝑎  } generic association rule 

𝐶(𝑥𝑙
𝑎 ⇒ 𝑥𝑙

𝑎) confidence of the l-th association rule 

𝑥𝑎 antecedent of the l-th association rule 

𝑦𝑎 consequent of the l-th association rule 

𝑁𝒑𝑟𝑢𝑙𝑒 number of 𝑟𝑙 , 𝑙 = 1, . . , 𝑁
𝒑
𝑟𝑢𝑙𝑒 association rules 

AR set of the obtained association rules 

𝐶𝑓𝑑
𝑑  d-th group of functionally dependent components 

𝑛𝑔𝑟𝑜𝑢𝑝 number of groups of functionally dependent components 

𝜆𝑗
𝑘 transition rate of component j out of state k 

 

 



 

1. INTRODUCTION  

Complex Technical Infrastructures (CTI) are made by thousands of interconnected components which 

perform diverse functions, utilize technologies belonging to various domains (i.e., mechanics, hydraulics, 

electronics, information and communication technologies) and are organized in complex hierarchical 

architectures (Filip, 2008). CTIs are typically distributed over vast geographic areas and their systems are 

designed and built independently, and assembled considering only their direct physical interfaces. 

Furthermore, CTI systems are continuously modified with respect to their initial design, e.g. they grow in size, 

include new components, and old components are updated as a result of technology advancements, 

consolidations and/or operational needs, and they are operated, managed and maintained by different 

teams of operators, who autonomously control and develop the system and the processes. All these factors 

modify the physical interconnections among the systems and create functional dependencies among 

different sets of components. Therefore, due to the intricated dependencies among the components of the 

CTI and its evolutionary behaviour, it is impossible to model the CTIs using series and parallel structures 

(Billinton and Allan, 1992). 

A local malfunction or perturbation may propagate into a CTI through groups of dependent components, 

originating unexpected cascades of failures across systems, which can lead to large-scale consequences and 

CTI unavailability. Vulnerability and resilience to failures of CTIs is an issue of great concern (Johansson and 

Hassel 2010; Eusgeld et. al. 2011; Kröger and Zio, 2011) strongly related to functional dependencies 

assessment and control (Zio, E. 2016). The identification of functional dependencies relying on classical 

methods of system decomposition and logical analysis cannot be applied since they require deep knowledge 

of the systems, such as their logic and structure function, which is not easy to retrieve for complex and 

evolving CTIs (Billinton and Allan, 1992). 

In this context, the objective of the present work is the identification of functional dependencies among 

components of CTIs using the large amount of alarm messages, which are collected thanks to the recent 

advancement in the sensors, data acquisition, data storage and monitoring technologies. 

Alarm sequences are currently used for purposes different from those of the present work, such as root 

causes analyses, CTI management and malfunctions and failures identification by plant personnel (Mika 

Klemettinen, Mannila, and Toivonen 1999; Amani, Fathi, and Dehghan 2005; Lozonavu, Vlachou-Konchylaki, 

and Huang 2016; Oborski 2014; Wang et al. 2017). However, the large amount of alarm messages collected 

in short periods of time, which is referred to as “alarms flood” (Karoly and Abonyi 2017; Dorgo and Abonyi 

2018), makes the direct use of alarm messages unfeasible. For example, the operation center of a 

telecommunication network receives approximately 1 million alarms every day (Wang et al. 2017), whereas 



the CTI of the particle accelerator of CERN has produced more than 10 million alarms during 2016 (L. Serio 

et. al. 2018). Since most of these alarms do not require any intervention of the operators unless they occur 

within a well-defined critical sequence, it is fundamental to develop methods to process the alarm flood to 

identify the combination of alarms which are critical for the system availability and vulnerability. Alarm 

management systems have been developed for supporting plant personnel in their tasks (Sage and Cuppan 

2001; Amani, Fathi, and Dehghan 2005; Lozonavu, Vlachou-Konchylaki, and Huang 2016; Wang et al. 2017). 

The information content of the available alarm message databases has been used for mining knowledge on 

the monitored system in (Filip 2008; Hatonen et al. 1996; M. Klemettinen, Mannila, and Toivonen 1999; Singh 

et al. 2011; Li and Li 2011). An alarm management system based on the filtering of the alarms and their 

hierarchical grouping has been proposed in (Zarri, 1991). Similarly, dependencies among data are discovered 

in (Priss, 2006; Wille, 2009) by transforming them into a lattice through the application of formal concept 

analysis. Notice that the approaches in (Zarri, 1991), (Priss, 2006; Wille, 2009) assume that the structure 

function of the system is known and they are not applicable to systems characterized by thousands of 

components such as a CTI. 

In this context, the most promising methods are based on the identification of frequent patterns of alarms 

(Witten and Frank 2016), from which information on the correlation and conditional occurrences between 

groups of events is obtained in the form of “if (condition) then (consequence)“ rules (Hu, et al., 1999). For 

example, an Association Rules Mining (ARM) technique has been applied to alarm messages collected from 

telecommunication networks, with the objective of identifying faults involving a large number of correlated 

components (Klemettinen, Mannila, and Toivonen, 1999). A pattern-growth algorithm has been applied in 

(Lozonavu, et al., 2016) for mining sequences of failure alarms causing telecommunication networks faults. 

The obtained results have been used for fault isolation and failure root cause investigation. Also, case-based 

reasoning has been used in (Amani, et al., 2005) for fault isolation in telecommunication network. 

More recently, an Apriori-based algorithm has been developed for identifying alarm suppression rules (Karoly 

and Abonyi 2017) in the chemical industry. The method has been further extended to allow anticipating the 

alarm suppression by predicting the next alarms of the series (Dorgo and Abonyi 2018). The applicability of 

these two methods is restricted to laboratory pilot plants characterized by a relatively small number of 

possible alarms. The approaches proposed in (Amani, Fathi, and Dehghan 2005; M. Klemettinen, Mannila, 

and Toivonen 1999; Lozonavu, Vlachou-Konchylaki, and Huang 2016), based on frequent pattern and 

association rule mining techniques, are more suitable for the analysis of alarm messages generated by 

systems composed of thousands of components. All these studies aim at identifying temporal and/or spatial 

patterns of alarms for faults isolation and root cause analysis, without addressing the issue of identifying 

functional dependencies among components. Other issues that have not been yet addressed and limit the 

applicability of the proposed methods to CTIs are: i) the presence of various supervision systems collecting 

different types of alarm messages with different fields of information; ii) the possible desynchronization of 



the times at which the alarms are recorded by various supervision systems; iii) the repetition of the same 

alarm messages at small time intervals after its first occurrence. 

This work proposes a method for the identification of functional dependencies among sets of components 

of a CTI, relying on a large database of alarm messages collected by various supervision systems. The method 

addresses the issues i), ii) and iii) above and involves three main steps:  

1) Alarm database representation; 

2) Extraction of association rules; 

3) Identification of groups of functionally dependent components. 

The main original contributions of the proposed work are:  

a) the use of databases of alarm messages as a source of information for the identification of functional 

dependencies in complex systems; 

b) the development of a method based on the Apriori algorithm for the extraction of association rules 

involving alarm messages; 

c) the development of a novel algorithm for the identification of groups of functionally dependent 

components from the identified association rules. 

 

The effectiveness of the proposed method is shown by means of its application to i) an artificial case study, 

which mimics the complexity of a real CTI and ii) a real large-scale database of alarms generated by different 

supervision systems of the CTI of CERN, where a particle accelerator composed by thousands of components 

is located along a 27 km circumference ring.  

 

The remainder of the paper is organized as follows: Section 2 describes the problem setting and the concept 

of functional dependencies among components of a CTI. In Section 3, the proposed method is described. 

Section 4 introduces the case studies and discusses the obtained results. Finally, Section 5 draws some 

conclusions and recommends potential future lines of work. 

2. Problem setting 

The aim of the present work is to develop a method for the identification of functional dependencies in CTI 

by the analysis of large databases of alarm messages. The method is required to be robust with respect to 

delays between the time of occurrence of the malfunction and the recording of the affected physical 

measurement in the alarm database, and to possible occurrences of false alarms.  



We consider a CTI composed by a large number of components, 𝑁𝑐 ≫ 1, and we assume to have available a 

database containing a large number of alarm messages, 𝑁𝑎𝑙 >> 1, generated by a CTI during a long period 

of time [𝑡0, 𝑡𝑓]. The generic i-th alarm message is associated to the pair (𝑡𝑖 , 𝑚𝑖), defined by the time 𝑡𝑖 at 

which the alarm occurs and a label 𝑚𝑖 identifying the type of alarm. Assuming that there are 𝑀𝑗
𝑎𝑙 different 

types of alarms associated to the generic j-th component, 𝑐𝑗, we use the label 𝑎𝑗
𝑘 to refer to the k-th type of 

alarm message associated to component 𝑐𝑗.The set containing all the possible types of alarm messages in the 

database is: 

 

 
𝐴 = {𝑎1

1, … , 𝑎1
𝑀1
𝑎𝑙

, … , 𝑎𝑗
1, … 𝑎

𝑗

𝑀𝑗
𝑎𝑙

, … , 𝑎𝑁𝑐
1 , … , 𝑎𝑁𝑐

𝑀𝑁𝑐
𝑎𝑙

} (1) 

 

and the total number of alarm message types: 

 

 

𝑀𝑎𝑙 =∑𝑀𝑗
𝑎𝑙

𝑁𝑐

𝑗=1

 (2) 

Since the aim of the work is to identify functional dependencies that typically involve several CTI components, 

whose malfunction alone can be not critical, all CTI alarms are individually considered, without any apriori 

judgment about the criticality of the process they monitor. Also, approaches based on the grouping of the 

alarms considering their type (e.g., the group of the high pressure alarms) (Zarri, 1991) or the involved 

component (e.g., the group of the alarms involving a given compressor) (Zarri, 1991; Amani, et al., 2005) are 

not considered in this work, since a given type of alarm can be triggered by various components when the 

monitored quantity (e.g., the pression) exceeds a, possibly different, pre-set threshold and the same 

component can be involved in different functional dependencies with different types of malfunctions 

detected by different alarms. 

According to (Estesami et al., 2016), two components of a system are functionally dependent if the operation 

of one is influenced by the operation of the other. Notice that this definition does not consider that there is 

an intrinsic causal unidirectional relationship among functional dependencies, e.g., a compressor requires 

the functioning of the electrical motor to operate, whereas the electrical motor does not require the 

functioning of the compressor to operate, and, therefore, malfunctions and failures triggered by functional 

dependencies are temporally ordered, e.g. the failure of the electrical motor occurs before the failure of the 

compressor. This causal relation, which is not represented by several methods for treating dependent 



failures, such as the beta factor and the binomial failure rate models (Mosleh, 1991; Zio, E. 2009; O'Connor 

and Mosleh, 2016), is not taken into account also in this work. For the identification of causal chains of 

malfunctions, post-processing of the identified groups of functionally dependent components is performed 

by operators and experts of the CTI or with algorithms developed ad-hoc. For example, in (Antonello et al., 

2020) the temporal sequences of the alarms and the possible propagation delays between the events are 

used by an ad-hoc algorithm to automatically reconstruct the causal sequence of the alarms triggered by the 

functional dependencies.  

Considering alarm messages triggered when components have abnormal behaviors or malfunctions, two 

generic components of a CTI, 𝑐𝑗1  and 𝑐𝑗2, are assumed to be functionally dependent if a malfunction of 

component 𝑐𝑗1, revealed by an alarm, causes a malfunction of components 𝑐𝑗2 , revealed by another alarm, 

or vicevesa. Figure 2 shows an example of alarm propagation in a case in which component 𝑐2 is functionally 

dependent from component 𝑐1. The malfunction of component 𝑐1 causes the anomalous behavior of three 

physical quantities (𝑞1
1, 𝑞1

2 and 𝑞1
3), which exceed their predefined alarm thresholds and, therefore, produce 

the sequence of alarms 𝑎1
1, 𝑎1

2 and 𝑎1
3. The functional dependency between components 𝑐1 and 𝑐2 

determines the malfunction of component 𝑐2 with the associated variation of the physical quantity 𝑞2
2, which 

triggers alarm 𝑎2
2 when it exceeds the corresponding threshold. Notice that different types of functional 

dependencies, such as cascades of malfunctions and common cause failures, satisfy this definition of 

functional dependency and can potentially be identified considering databases of alarms. Also, malfunctions 

propagations stopped by safety systems (e.g., UPS systems, which are electrical safety components providing 

emergency power in case of main failure to the electrical system) trigger alarm messages, of whose analysis 

can potentially reveal the corresponding functional dependencies. 

 



 

Figure 1. Example of alarm propagation in case of functional dependency between components 𝑐1 and 𝑐2: (i) signals behaviors; (ii) 

generated alarms. 

The proposed method is based on: 

1) The identification of association rules 𝑟 = {𝑥𝑎 ⇒ 𝑦𝑎  } with 𝑥𝑎and 𝑦𝑎 ⊂ 𝐴  and 𝑥𝑎  ∩  𝑦𝑎 = ∅ describing 

the conditional co-occurrence between the two subsets of disjoint alarm messages  𝑥𝑎and 𝑦𝑎, i.e., if the 

set of alarms 𝑥𝑎 occurs, then the set of alarms  𝑦𝑎 is also expected to occur. 

2) The identification of groups of functionally dependent components, 𝐶𝑓𝑑
𝑑 = {𝑐1

𝑑 , … , 𝑐𝑁𝑑
𝑑 }.  

3. Method  

The proposed method is based on the three phases of alarm database representation, association rules 

extraction and identification of disjoint groups of functionally dependent components, which will be 

described in Sections 4.1, 4.2 and 4.3, respectively. It resorts to the off-line analysis of large-scale databases 

of alarms messages, which are collected over long periods of operation (months/years) to guarantee that 

they include enough information about the CTI behaviour. Since it is expected that every few months of 



operation new databases of alarms containing useful information become available and new dependencies 

can emerge in the CTI, the application of the proposed method should be periodically repeated. 

 

 

3.1. Alarm database representation  

 

The time interval [𝑡0, 𝑡𝑓] during which the 𝑁𝑎𝑙 alarm messages of the database have been collected is 

subdivided into 𝑍 consecutive small time intervals of the same length Δ𝑡 =
𝑡𝑓−𝑡0

𝑍
. A Boolean variable, 𝑠𝑗

𝑘(𝑧), 

is associated to the occurrence of the alarm of type 𝑎𝑗
𝑘 in the z-th time interval: 

 

𝑠𝑗
𝑘(𝑧) ∈ [0,1] with {

𝑠𝑗
𝑘(𝑧) = 1 if alarm 𝑎𝑗

𝑘 occurs at least once in [𝑡0 + (𝑧 − 1) ∙ Δ𝑡, 𝑡0 + 𝑧 ∙ Δ𝑡] 

𝑠𝑗
𝑘(𝑧) = 0 otherwise

   

 

(3) 

 

The state of the generic component 𝑐𝑗 in the generic z-th time interval is represented by the Boolean vector: 

 
𝑐𝑗(𝑧) = [𝑠𝑗

1(𝑧), 𝑠𝑗
2(𝑧),… , 𝑠

𝑗

𝑁𝑗
𝑎𝑙

(𝑧)] ∈ [0,1]𝑀𝑗
𝑎𝑙

 (4) 

 

and that of the CTI by the concatenation of the component state vectors 𝑐𝑗(𝑧): 

 

 𝒯⃗⃗(𝑧) = [𝑐1(𝑧),… , 𝑐𝑁𝑐(𝑧)] ∈ [0,1]
𝑀𝑎𝑙

 (5) 

 

Since the discretization of the time in intervals of lengths Δ𝑡 does not consider the sequence with which the 

alarms are recorded in the time interval, 𝒯⃗⃗(𝑧) is a robust representation of the CTI state with respect to 

possible desynchronizations among the alarms. Furthermore, the use of Boolean vectors allows handling 

possible problems of alarm repetition in the same time interval.  

Finally, the database of alarms (𝑡𝑖, 𝑚𝑖), 𝑖 = 1,… ,𝑁
𝑎𝑙, is transformed into the Boolean matrix: 

 



 

𝑇 = [
𝒯⃗⃗(1)
…

𝒯⃗⃗(𝑍)

] ∈ [0,1]Z∙×𝑀
𝑎𝑙

 (6) 

 

whose generic z-th row represents the state of the CTI during the z-th time interval. Therefore, T provides a 

dynamic representation of the CTI state evolution in the time interval [𝑡0, 𝑡𝑓]. The overall process of obtaining 

the Boolean matrix T from the alarm database is shown in Figure 2.  

Notice that the time interval length Δ𝑡 is a critical parameter for the database processing phase. Since the 

propagation of a malfunction from a component to another is not instantaneous, Δ𝑡 should be large enough 

to guarantee that the alarm propagation occurs in a single time interval. Furthermore, the larger the Δ𝑡, the 

more efficient the handling of alarm desynchronization and repetition issues. On the other hand, the use of 

a too large Δ𝑡 can unnecessary limit the information content of the dataset by reducing the number of 

extracted vectors 𝒯⃗⃗(𝑧) and can create correlations among independent alarms that occur far away from each 

other. A proper setting of Δ𝑡 requires considering several aspects such as the frequency of occurrence of 

spurious alarms, the delays in the alarm acquisition, and the alarms acknowledgment, i.e., the set of actions 

made by the operators before dealing with the malfunction associated to the alarm (e.g. the alarm repetition 

can be stopped by the operators who alert the supervision system that they are taking responsibility for the 

related malfunction). Therefore, Δ𝑡 should be large enough to guarantee that the cascade of alarms involved 

in the functional dependency is included in the same time interval, but, at the same time, small enough to 

guarantee that spurious alarms, which are not triggered by functional dependencies, do not frequently occur 

in the same time interval causing the identification of false functional dependencies. 



 

Figure 2. Example of representation of an alarm database in a binary matrix. We consider a  case with 𝑁𝑐 = 2 components and 

𝑀1
𝑎𝑙=𝑀2

𝑎𝑙 = 3 alarm types for component. 

 

 

3.2.  Association rules mining 

 

Considering a set of alarms 𝑋 ⊆ 𝐴, an association rule is a probabilistic logical expression of the form 𝑥𝒂  ⇒

 𝑦𝒂, 𝑥𝒂 ⊂ 𝑋, 𝑦𝒂 = 𝑋 − 𝑥𝒂, representing the conditional co-occurrence of the two subsets, 𝑥𝒂 and 𝑦𝒂, of the 

set 𝑋 ⊆ 𝐴, where 𝑥𝒂 and 𝑦𝒂 are referred to as “antecedent” and “consequent” of the rule, respectively (Hui 

et al. 2005; Srikant and Agrawal 1996).  

We introduce the counter n(X) of the number of vectors 𝒯⃗⃗(𝑧) of the databases 𝑇 = [
𝒯⃗⃗(1)
…

𝒯⃗⃗(𝑍)

] characterized by 

the occurrences of at least all the alarms of X (i.e., ∀ 𝑎𝑗
𝑘  ⊂ 𝑋,  𝑠𝑗

𝑘(𝑧) = 1). The probabilistic logic expression 

𝑥𝒂  ⇒  𝑦𝒂 is an association rule if the two following conditions are verified: 

i) the support of X (Srikant and Agrawal 1996):  

 



 
𝑆(𝑋) = 𝑆(𝑥𝒂  ⇒  𝑦𝒂) =

𝑛(𝑥𝒂 ∪ 𝑦𝒂)

𝑍
 (7) 

 

is larger than a minimum support 𝑠%. It means that all the alarms in the two subsets 𝑥𝒂 and 𝑦𝒂 occur 

in the same time interval Δ𝑡 in at least 𝑠% of the Z time intervals. 

ii) The confidence of the rule 𝑥𝒂  ⇒  𝑦𝒂: 

 
𝐶(𝑥𝒂  ⇒  𝑦𝒂) =

𝑛(𝑥𝒂 ∪ 𝑦𝒂)

𝑛(𝑥𝒂)
 (8) 

 

is larger than a minimum confidence 𝑐%. It means that the alarms in 𝑦𝒂 occur in at least 𝑐% of 

the time intervals in which the alarms in 𝑥𝒂 occur. The parameter 𝑐% represents the strength of 

conditionality between the two subsets, 𝑥𝒂, 𝑦𝒂 , i.e. if the set of alarms in 𝑥𝒂 occurs in a Δ𝑡, then 

the set of alarms in 𝑦𝒂 is expected to be present in the same Δ𝑡 with probability of at least 𝑐% 

(Singh et. al. 2011). 

 

Association rules mining (ARM) algorithms have been originally developed in the market basket analysis area 

to analyze the customers purchase information, recorded at points-of-sales in the form of databases of 

transactions (Agrawal et. al. 1993; Srikant and Agrawal 1996; Zaki 2000; Witten and Frank 2016). The purpose 

is to identify hidden customers behaviours, i.e. frequently sold combination of items (e.g. {Milk, cheese, 

bread}, {Laptop, Laptop-bag, web-cam}, etc.), and the association among them in the form of probabilistic 

conditional relationship “if-then”, e.g. if {Milk and bread} are sold, then {bread} is sold. Nowadays, ARM 

techniques have been applied in various domains, such as telecommunication networks, medical and banking 

systems, web- and bio-mining, to extract knowledge from different sources of information, such as log 

events, maintenance reports and signal data (Fayyad et al. 1996; Jain et al. 2000; Hui et al. 2005; Witten and 

Frank 2016; Reder et. al. 2018; Bevilacqua and Ciarapica 2018).  

The following paragraph reviews the applications of ARM techniques to fault detection, predictive 

maintenance and quality control. Martínez-de-Pisón, et al. (2012) proposed a method to analyse sequences 

of log events in industrial processes foe identifying sets of events (e.g., faults, malfunctions and maintenance 

actions) occurring simultaneously or within short periods of time. The method is shown able to improve the 

process efficiency and the product quality. Bastos, et al. (2012) applied an ensemble of data mining 

techniques, such as neural networks, decision trees and ARM algorithms, to maintenance data with the 

objective of extracting rules useful for root cause analyses and failure anticipation. Similarly, Kamsu-Foguem, 

et al. (2013) applied an ARM technique to maintenance data collected from a drill production process with 

the objective of extracting knowledge on operations and information management. Djatna, et al. (2015) 

applied an ARM technique to data collected in a wooden door manufacturing industry. The method 

https://www.scopus.com/authid/detail.uri?authorId=7201475122&amp;eid=2-s2.0-0027621699


investigates the relationships among operational settings and equipment efficiency. Antomarioni, et al. 

(2019) proposed a method based on ARM to investigate the relationship between maintenance operation 

and unexpected plant shutdowns. The method has been applied to an oil refinery plant and the extracted 

association rules are used to the anticipate possible occurrence of components breakdown during 

maintenance. 

In this work, we treat the vector 𝒯⃗⃗(𝑧), 𝑧 = 1,… , 𝑍, describing the CTI state in the z-th time interval as a 

transaction in the market basket analysis framework and the alarm 𝑎𝑗
k, 𝑗 = 1,…𝑁𝑐 , 𝑘 = 1,… ,𝑀𝑗

𝑎𝑙  as an item. 

ARMs are typically based on the two steps of: 

1) Identification of frequent patterns of alarms, 𝑋𝑓𝑝 ⊆ 𝐴 characterized by a support larger than 𝑠%, 

i.e., 𝑆(𝑋𝑓𝑝) > 𝑠%; 

2) Extraction of association rules 𝑥𝒂  ⇒  𝑦𝒂, 𝑥𝒂 ⊂ 𝑋𝑓𝑝, 𝑦𝒂 = 𝑋𝑓𝑝 − 𝑥𝒂 from the frequent patterns of 

alarms identified in 1). An association rule should satisfy the confidence condition 𝐶(𝑥𝒂  ⇒  𝑦𝒂) >

𝑐%. 

 

With respect to 1), a wide spectrum of frequent pattern mining algorithms, such as Apriori (Srikant and 

Agrawal 1996), Frequent Pattern Growth Tree (FP-GT) (Han, Pei, and Yan 2000), Hash-based algorithm (Park, 

J. S. et. al. 1995) and H-Mine (Pei, J. et. al. 2007), have been developed. Among them, the Apriori algorithm 

has been considered in this work since it has shown to require smaller computational effort than the other 

algorithms, when dealing with large-scale datasets made by thousands of items (Witten and Frank 2016) 

(Mannila, Toivonen, and Verkamo 1994; Oswaldo and Monroy 2006). 

Apriori mines the frequent patterns performing a level-wise iterative scanning of the database to identify 

those alarm sets 𝑋 ⊆ 𝐴 with a support larger than 𝑠%. To reduce the enormous number of candidate 

frequent patterns, the Apriori search exploits the “anti-monotone property of the support”, which states that 

the support of a set of alarms never exceeds the support of its subsets: 

 

 ∀ 𝑋, 𝑋′: (𝑋 ⊂ 𝑋′) ⇒ 𝑆(𝑋) ≥ 𝑆(𝑋′)  (9) 

 

Therefore, if a set of alarms X has a support lower than the minimum support, 𝑆(𝑋) < 𝑠%, than, all of its 

supersets, 𝑋′ ⊃ 𝑋, have also a support lower than 𝑠%, 𝑆(𝑋′) < 𝑠%.  

 



Once the frequent patterns of alarms 𝑋𝑓𝑝 have been identified, all the possible subdivisions of each frequent 

pattern  𝑋𝑓𝑝 into non-empty pairs of subsets (𝑥𝒂, 𝑦𝒂), such that  𝑥𝒂𝑋𝑓𝑝, 𝑦𝒂 = 𝑋𝑓𝑝 − 𝑥𝑎 and:   

𝐶(𝑥𝒂  ⇒  𝑦𝒂) =
𝑛(𝑋𝑓𝑝)

𝑛(𝑥𝒂)
> 𝑐% 

are identified (Srikant and Agrawal 1996). 

Although the identification of association rules through the Apriori algorithm is based on the two measures 

of support and confidence, the effectiveness of the generated rules is typically evaluated considering also 

the lift measure, which quantifies the mutual dependency among the alarms in the rule antecedent and 

consequent parts: 

 𝐿𝑖𝑓𝑡(𝑥𝒂  ⇒  𝑦𝒂) =
𝑆(𝑥𝒂∪𝑦𝒂)

𝑆(𝑥𝒂)∗𝑆(𝑦𝒂)
  (9) 

 

Larger the lift, stronger the mutual dependency among 𝑥𝒂 and ya. In particular, values of lift equal to (lower 

than) 1, indicate that the rule antecedent and consequent parts are (negatively correlated) uncorrelated.  

Since several frequent patterns are typically identified in large-scale alarm databases and a single frequent 

pattern formed by k alarms can potentially generate 2𝑘 − 2 rules, thousands of association rules can be 

generated (Zaki 2000; Pasquier et al. 2005). Therefore, we apply a postprocessing phase whose objective is 

to eliminate redundant rules without reducing the overall information content to facilitate the analysis of 

the results. According to (Pasquier et al. 2005), a generic rule 𝑟𝑙: {𝑥
𝒂
𝑙 ⟹ 𝑦𝒂𝑙} is pruned if there is another 

rule 𝑟𝑚: {𝑥
𝒂
𝑚 ⟹ 𝑦𝒂𝑚}, characterized by the same values of support and confidence, i.e. 𝑠(𝑟𝑚) =

𝑠(𝑟𝑙), 𝑐(𝑟𝑙) = 𝑐(𝑟𝑚), that involves all the components of 𝑟𝑙, i.e. (𝑥𝒂
𝑙
∪ 𝑦𝒂𝑙) ⊆ (𝑥

𝒂
𝑚
∪ 𝑦𝒂𝑚), and whose 

antecedent 𝑥𝒂𝑚 is a subset of (or equal to) the antecedent 𝑥𝒂𝑙 of 𝑟𝑙, i.e. 𝑥𝒂𝑚 ⊆ 𝑥𝒂𝑙. It is important to notice 

that all the alarms involved in the initial list of rules are still involved in the pruned list and all pruned rules 

can be retrieved from the non-redundant rules.  

The final set of the 𝑁𝒑𝑟𝑢𝑙𝑒 non-redundant rules obtained by applying the pruning procedure will be referred 

to as 𝐴𝑅 = {𝑥𝑙
𝑎 ⇒ 𝑦𝑙

𝑎 ,   𝑙 = 1,… ,𝑁𝒑𝑟𝑢𝑙𝑒}, with 𝑁𝒑𝑟𝑢𝑙𝑒 indicating the obtained number of rules 

3.3. Identification of groups of functionally dependent components 

 

The objective of this module is the identification of 𝑛𝑔𝑟𝑜𝑢𝑝 groups of functionally dependent components. 

The generic d-th group 𝐶𝑓
𝑑 = {𝑐1

𝑑 , … , 𝑐𝑁𝑑
𝑑 } is formed by 𝑁𝑑 components functionally dependent with at least 

another component of the same group, i.e., ∀ 𝑐𝑗′
𝑑 ∈ 𝐶𝑓

𝑑, it exists another component 𝑐𝑗′′
𝑑 ∈ 𝐶𝑓

𝑑 such that there 

is a pair of alarms (𝑎𝑗′
𝑘′, 𝑎𝑗′′

𝑘′′) generated by the two components  𝑐𝑗′
𝑑 and  𝑐𝑗′′

𝑑 , which belong to the same rule 



{𝑥𝑙
𝑎 ⇒ 𝑦𝑙

𝑎} ∈ 𝐴𝑅. 

In this work, for simplicity, we assume that a component of the CTI can have only one type of malfunction 

which is caused by or causes a malfunction of another component. Therefore, the groups of functionally 

dependent components are disjoint, i.e. 𝐶𝑓
𝑑1 ∩ 𝐶𝑓

𝑑2 = ∅ for any 𝑑1 ≠ 𝑑2 = 1,… , 𝑛
𝑔𝑟𝑜𝑢𝑝. Notice that the case 

in which a component 𝑐𝑗 has two or more types of malfunctions, which are caused by or cause malfunctions, 

in different components, can be treated by fictitiously duplicating the component. 

To identify the groups of functionally dependent components, the association rules 𝑟𝑙 = {𝑥𝑙
𝑎 ⇒ 𝑦𝑙

𝑎  }, 𝑙 =

1,… ,𝑁𝒑𝑟𝑢𝑙𝑒, involving the alarms are transformed into the association rules 𝑟𝑙
𝑐 = {𝑥𝑙

𝑐 ⇒ 𝑦𝑙
𝑐  }  involving the 

corresponding components, by transforming the generic alarm 𝑎𝑗
𝑘 into the component 𝑐𝑗. For example, the 

association rule  {𝑎3
4, 𝑎35

20 ⇒ 𝑎25
31, 𝑎15

26} involving the alarm is transformed into the rule {𝑐3, 𝑐35 ⇒ 𝑐25, 𝑐15} 

involving the components. Then, the subsets 𝐻𝑙
𝑐 = (𝑥𝑙

𝑐 ∪ 𝑦𝑙
𝑐), 𝑙 = 1,… ,𝑁𝒑𝑟𝑢𝑙𝑒, formed by the union of the 

components in the antecedent and consequent of the rule, are identified and the sets 𝐶𝑓
𝑑 are found by 

merging the sets 𝐻𝑙
𝑐 with non-empty intersections, according to the algorithm of Figure 3. 

                              

Figure 3. Algorithm developed for the identification of groups of functionally dependent components. 

INPUT: 𝐻1
𝑐, …, 𝐻𝑁𝒑𝑟𝑢𝑙𝑒

𝑐  

𝐶𝑓
1 = {𝐻1

𝑐} 

𝑁𝑔𝑟𝑜𝑢𝑝 = 1 

For l=2, …, 𝑁𝒑𝑟𝑢𝑙𝑒 

 Group_l= ∅ % sets of groups containing at least one component of 𝐻𝑙
𝑐 

For d=1, …, 𝑁𝑔𝑟𝑜𝑢𝑝 

  If  𝐻𝑙
𝑐 ∩ 𝐶𝑓

𝑑 ≠ ∅ 

Group_l=⌈Group_l, 𝑑⌉ 

End  

 End  

If Group_l=⌈∅⌉: 

  𝑁𝑔𝑟𝑜𝑢𝑝 = 𝑁𝑔𝑟𝑜𝑢𝑝 + 1 

  𝐶𝑓
𝑁𝑔𝑟𝑜𝑢𝑝 = {𝐻𝑙

𝑐} 

Else  

  𝐶𝑓
Group_l(1)

= 𝐶𝑓
Group_l(1)

∪𝐻𝑙
𝑐 

  If size(Group_l)>1: 

   For 𝑑∗=2, …, size(Group_l): 

    𝐶𝑓
Group_l(1)

= 𝐶𝑓
Group_l(1)

∪ 𝐶𝑓
Group_l(𝑑∗)

 

    𝐶𝑓
Group_l(𝑑∗)

= ∅ 

   End 

  End 

 End 

  End 

OUTPUT: 𝐶𝑓
1,…., 𝐶𝑓

𝑁𝑔𝑟𝑜𝑢𝑝  



 

The obtained set of functionally dependent components can be represented by employing a graph-oriented 

visualization technique, where each vertex represents a component and the edges connect all the pairs of 

components in the same rule. Figure  4 shows an example of graphical visualization of groups of functionally 

dependent components. 

 

 

Figure 4. Examples of visualization of groups of functionally dependent components: list of components (upper), extracted rules 

(middle), groups of functionally dependent components (bottom). 

 

4. Case studies 

The proposed method is applied to a synthetic alarm database, which mimics occurrences of malfunctions in 

a CTI for which the true functional dependencies are known, and to a real large-scale alarm database 

collected at the CERN’s CTI during 2016. The first application shows that the functional dependencies are 

correctly identified using as input only the database of alarms, without any information on the system 

structure function. The second application, which considers a real CTI for which the functional dependencies 

are not apriori known, investigates the potentiality of the method for the analysis of a real CTI and its 

robustness against spurious alarms and propagation delays. 

 

 



 

4.1.  Application to a synthetic alarm database 

We consider a CTI formed by 𝑁𝑐=300 components. We assume that each CTI component, 𝑐𝑗 , 𝑗 = 1,… ,𝑁𝑐, 

can be in the healthy, 𝑘 = 1, partially degraded, 𝑘 = 2 and very degraded, 𝑘 = 3, state and performs 

transitions among the states at random times. Figure 5 shows the possible stochastic state transitions 

representing component degradation (from state 1 to state 2 and from state 2 to state 3) and repair (from 

state 3 to state 1). Table 1 reports the transition rates, 𝜆𝑗
𝑘, of component,  𝑗 = 1,… ,𝑁𝑐, from the state k to 

the state k+1 if k=1,2 and from state 3 to state 1 if k=3. We assume that the transition rates are constant and 

that the alarm 𝑎𝑗
𝑘 is triggered each time component 𝑐𝑗 performs a state transition out of state k.  

 

Figure 5. State transitions of a CTI component. 

 

 

Table 1. Transition rates in day-1. 

Component 𝑐𝑗  Transition rates 

 𝑗 = 1, … , 100 𝜆𝑗
1 =0.05 𝜆𝑗

2 =0.1 𝜆𝑗
3 =0.02 

 𝑗 = 101,… , 200 𝜆𝑗
1 =0.15 𝜆𝑗

2 =0.2 𝜆𝑗
3 =0.02 

 𝑗 = 201,… , 300 𝜆𝑗
1 =0.015 𝜆𝑗

2 =0.1 𝜆𝑗
3 =0.02 

 

 

We further model twelve different functional dependencies among CTI components, which are divided into 

the three following types: 

1) 10 functional dependencies between pairs of components. They are originated by the transition from 

state 2 (‘degraded’) to state 3 (‘very degraded’) of a component 𝑐𝑗′  with j’≤100, which can cause the 

transition from state 2 to state 3 of a component 𝑐𝑗′′  with 100< j′′ ≤200. The probability of the 

malfunction propagation, i.e., the probability that the transition of component 𝑐𝑗′  from state 2 to 

state 3 causes the same state transition of component 𝑐𝑗′′ , is set to 0.9. The time necessary for the 



propagation of the malfunction is randomly sampled from a uniform continuous distribution in the 

range [1-30] minutes. Table 2 reports the list of functional dependencies of category 1. 

  

Table 2. Functional dependencies of category 1. 

Components 

involved 

Functional 

Dependency  

c1, c101 𝑎1
2 → 𝑎101

2  

c2, c102 𝑎2
2 → 𝑎102

2  

c3, c103 𝑎3
2 → 𝑎103

2  

c4, c104 𝑎4
2 → 𝑎104

2  

c5, c105 𝑎5
2 → 𝑎105

2  

c6, c106 𝑎6
2 → 𝑎106

2  

c7, c107 𝑎7
2 → 𝑎107

2  

c8, c108 𝑎8
2 → 𝑎108

2  

c9, c109 𝑎9
2 → 𝑎109

2  

c1, c110 𝑎10
2 → 𝑎110

2  

 
2) A functional dependency involving four components. It originates when component 𝑐111 performs a 

transition from state 2 to state 3, which can cause an ordered sequence of events leading to the 

transitions of components 𝑐112, 𝑐211 and 𝑐212  from state 2 to state 3 (Table 3). The probability of 

malfunction propagation between two components of the sequence is set to 0.9 and the time necessary 

for the malfunction propagation is randomly sampled from a uniform continuous distribution in the 

interval [1-5] minutes.  

 

Table 3. Functional dependency of category 2. 

Components 

involved 

Functional Dependency  

c111, c112, c211, c212 𝑎111
2 → 𝑎112

2 → 𝑎211
2 → 𝑎212

2  

 

3) A functional dependency involving six components. It originates when component 𝑐11 performs a 

transition from state 2 to state 3 which can cause an ordered sequence of events leading to the 

transitions of components 𝑐12, 𝑐113 𝑐114, 𝑐213and 𝑐214  from state 2 to state 3 (Table 4). The probability 

of malfunction propagation between any two components of the sequence is set to 0.9 and the time 

necessary for the malfunction propagation is randomly generated from a uniform distribution in the 

interval [1-20] minutes.  

 

Table 4. Details of the functional dependency of category 3. 

Components involved Functional Dependency  

c11, c12, c113, c114, c213, c214 𝑎11
2 → 𝑎12

2 → 𝑎113
2 → 𝑎114

2 → 𝑎213
2 → 𝑎214

2  

 



The CTI behaviour is simulated by sampling for each component of the system the sequence of times 

[𝑡1, …… . . , 𝑡𝑖−1, 𝑡𝑖 , 𝑡𝑖+1, …] at which it performs state transitions. The length of the time interval between two 

consecutive transitions, 𝑡𝑖 − 𝑡𝑖−1 is randomly sampled from the corresponding exponential distribution, with 

the constant failure rate values reported in Table 1. Once the i-th  transition is performed, the corresponding 

alarm is generated at time 𝑡𝑖 + 𝜈𝑖, where 𝜈𝑖 is a truncated gaussian noise with positive values and standard 

deviation of 5 minutes, which represents possible delays or desynchronizations in the alarm supervision 

system. The repetition of the alarm is simulated by sampling the number of times, 𝑟𝑖, that the same alarm is 

triggered from a uniform discrete probability distribution in the range [1,10]. The time intervals, 𝛿𝑡1
𝑖 , 𝛿𝑡2

𝑖…, 

𝛿𝑡𝑟𝑖
𝑖  between two consecutive occurrences of the i-th alarm is sampled from a uniform continuous 

distribution in the range [1,15] minutes. 

Since there is the possibility that the failure propagation induced by a functional dependency be stopped, for 

example by the intervention of an operator or a safety system, the probability of malfunction propagation 

between any two components of the sequence is set to 0.9. This is in accordance with the modelling of 

cascading failures, where the failure of a component is typically assumed to cause an increase of the 

probability of failure of other components, which, for example, share common loads or functionalities with 

it (Zio. E. 2009; David A. E., et. al., 2020). Furthermore, the use of a probability of propagation lower than 1 

allows simulating the occurrence of spurious alarms, i.e. alarms triggered without the presence of an actual 

malfunction and that are not causing cascading failures. 

The CTI behaviour is simulated for a period of time [𝑡0, 𝑡𝑓]=[0, 720 days] obtaining 𝑁𝑎𝑙=71807 couples (𝑡𝑖, 𝑎𝑗
𝑘) 

that include the alarm message 𝑎𝑗
𝑘 and its occurrence time 𝑡𝑖. Then, the entire time domain of the analysis 

(720 day) is discretized considering Z=17280 time intervals of length 𝑡 = 60 min and the Boolean matrix, T, 

representing the CTI state in each time interval is computed by applying the procedure of Section 3.1. Notice 

that the matrix T does not distinguish whether an alarm occurs once or several times in the same time 

interval, i.e. the generic element of the matrix corresponding to the z-th time interval and the 𝑎𝑗
𝑘 alarm type 

will be 1, independently on when the alarm of type 𝑎𝑗
𝑘 has occurred and how many times it has been repeated 

within the period of time [𝑡0 + (𝑧 − 1) ∙ Δ𝑡, 𝑡0 + 𝑧 ∙ Δ𝑡]. This modelling choice allows efficiently managing 

the fact that the alarm of type 𝑎𝑗
𝑘 can be repeated and that there is not any synchronization among the 

beginning of the time interval, which is prefixed, and the occurrence of the alarms, which is random. 

With respect to the setting of the Apriori parameters minimum support, 𝑠%, and minimum confidence, 𝑐%, 

a small value of s%=0.0005 is used since the occurrence of alarms caused by functional dependencies is rare. 

On the other side, c% is set to a relatively large value to counterbalance the fact that small s% values can lead 

to the identification of frequent patterns formed by alarms occurring in the same time intervals by chance. 



The application of the method leads to the identification of 𝑁𝒑𝑟𝑢𝑙𝑒 =235 non-redundant association rules in 

a computational time of 63 seconds on an Intel core (TM) i7-4790 CPU@ 3.6 GHz, 16 GB RAM. 

Table 5 reports the rules involving the alarms associated to each functional dependency, which provide a 

complete description of all the 12 simulated functional dependencies. Notice that all the functional 

dependencies of type 1 are described by two rules containing alarms triggered by the two functionally 

dependent components 𝑐𝑗′  and 𝑐𝑗′′ : {𝑎𝑗′
2 ⟹ 𝑎𝑗′′

2 } and {𝑎𝑗′′
2 ⟹ 𝑎𝑗′

2 }. This is consistent with the fact that an 

association rule 𝑟 = {𝑥𝑎 ⇒ 𝑦𝑎  } is a logical probabilistic expression and the rule direction, ⇒ , does not imply 

causality among the components in the antecedent and consequent part of the rule. Similarly, the functional 

dependencies of types 2 and 3 are described by rules, whose antecedent and consequent are combinations 

of the alarms triggered by the malfunctions involved in the functional dependency. In these latter cases, 

some of the identified rules do not involve all the dependent components but only a subset of them. It is also 

worth underlining that all the generated rules are characterized by large values of lift (i.e., lift>>1), which 

ensures the mutual dependency among the rule antecedent and consequent parts. 

The robustness of the obtained results with respect to s% and c% parameters setting is discussed in Figures 

6 and 7. Figure 7 shows that s%=0.0005 allows identifying a remarkable larger number of frequent patterns 

than those found with a s%>0.0007, whereas a further reduction of s% does not significantly increase the 

number of frequent patterns. Figure 8 shows the number of non-redundant rules generated considering 

different values of c%, when s% is set equal to 0.0005. Notice that c%=0.6 allows obtaining a compromise 

solution among the objectives of obtaining a set of reliable rules (i.e., rules with large confidence) and a 

complete set of rules, which includes all the CTI functional dependencies. 

 



Figure 6. Number of frequent patterns identified considering different values of s% when the confidence is set equal to 0.6. 

 

Figure 7. Number of rules generated considering different values of c% when s% is set equal to 0.0005. 

 

Table 5. Rules extracted by setting s% =0.0005 and c%=0.6 and corresponding threshold, confidence and lift. 

Simulated 

Functional 

Dependency 

Extracted Rules 

Antecedent 

{alarm 

Identifier} ⇒ 

Consequent 

{alarm 

Identifier} 

Support Confidence Lift 

𝑎1
2 → 𝑎101

2  
{𝑎101

2 } ⇒ {𝑎1
2} 0.00139 0.90 568 

{𝑎1
2} ⇒ {𝑎101

2 } 0.00139 0.855 568 

𝑎2
2 → 𝑎102

2  
{𝑎102

2 } ⇒ {𝑎2
2} 0.00130 0.86 560 

{𝑎2
2} ⇒ {𝑎102

2 } 0.00130 0.81 560 

𝑎3
2 → 𝑎103

2  
{𝑎103

2 } ⇒ {𝑎3
2} 0.00118 0.85 670 

{𝑎3
2} ⇒ {𝑎103

2 } 0.00118 0.93 670 

𝑎4
2 → 𝑎104

2  
{𝑎104

2 } ⇒ {𝑎4
2} 0.00115 0.86 682 

{𝑎4
2} ⇒ {𝑎104

2 } 0.00115 0.91 682 

𝑎5
2 → 𝑎105

2  
{𝑎105

2 } ⇒ {𝑎5
2} 0.00109 0.90 636 

{𝑎5
2} ⇒ {𝑎105

2 } 0.00109 0.75 636 

𝑎6
2 → 𝑎106

2  
{𝑎106

2 } ⇒ {𝑎6
2} 0.00101 0.80 590 

{𝑎6
2} ⇒ {𝑎106

2 } 0.00101 0.701 590 

𝑎7
2 → 𝑎107

2  
{𝑎107

2 } ⇒ {𝑎7
2} 0.000983 0.81 756 

{𝑎7
2} ⇒ {𝑎107

2 } 0.000983 0.92 756 

𝑎8
2 → 𝑎108

2  
{𝑎108

2 } ⇒ {𝑎8
2} 0.000954 0.75 682 

{𝑎8
2} ⇒ {𝑎108

2 } 0.000954 0.87 682 

𝑎9
2 → 𝑎109

2  
{𝑎109

2 } ⇒ {𝑎9
2} 0.000925 0.74 750 

{𝑎9
2} ⇒ {𝑎109

2 } 0.000925 0.91 750 

𝑎10
2 → 𝑎110

2  
{𝑎110

2 } ⇒ {𝑎10
2 } 0.000549 0.63 994 

{𝑎10
2 } ⇒ {𝑎110

2 } 0.000549 0.86 994 



𝑎111
2 → 𝑎112

2 → 

𝑎211
2 → 𝑎212

2  

{
𝑎111
2

𝑎112
2 } ⇒ {

𝑎211
2

𝑎212
2 } 

0.00127 1 734 

{𝑎112
2 } ⇒ {

𝑎211
2

𝑎212
2 } 

0.00130 1 652 

… 

{𝑎112
2 } ⇒ {𝑎212

2 } 0.00133 0.6 474 

𝑎11
2 → 𝑎12

2 →

𝑎113
2 → 𝑎114

2 → 

𝑎213
2 → 𝑎214

2  

{
𝑎213
2

𝑎214
2 } ⇒ 

{
 
 

 
 𝑎11

2

𝑎12
2

𝑎113
2  

𝑎114
2
}
 
 

 
 

 

0.000636 1 1234 

{

𝑎11
2

𝑎113
2

𝑎114
2

} ⇒ {
𝑎213
2

𝑎214
2 } 

0.000752 0.89 1186 

…. 

{𝑎213
2 } ⇒ {

𝑎214
2

𝑎12
2 } 

0.000752 0.76 608 

 

The 𝑛𝑓𝑑=12 groups of functionally dependent components reported in Table 6 have been identified by 

applying the algorithm of Section 3.3 to the obtained set of non-redundant association rules. Notice that they 

completely correspond to the simulated functional dependencies. 

 

Table 6. Identified groups of functionally dependent components 

Set Components 

1 c1, c101 

2 c2, c102 

3 c3, c103 

4 c4, c104 

5 c5, c105 

6 c6, c106 

7 c7, c107 

8 c8, c108 

9 c9, c109 

10 c10, c110 

11 c111, c112, c211, c212 

12 c11, c12, c113, c114, c213, c214 

 

Figures 8 shows the number of groups of functionally dependent components identified using different 

values of the minimum support, 𝑠%, when the minimum confidence, 𝑐%, is set equal to 0.6. As expected, the 

smaller the values of s%, the larger the number of groups of functionally dependent components. Similarly, 



to the considerations made with respect to the number of rules, it appears that small values of minimum 

support (s%<0.0005) allow identifying all the functional dependencies.  

 

Figure 8. Number of groups of functionally dependent components identified considering different values of s% with c% set to 0.6. 

 

Notice that a further reduction of the minimum support threshold, 𝑠%, increases the probability of 

identifying spurious rules, i.e. rules including alarms that do not belong to a real functional dependency. 

Table 7 reports some examples of spurious rules extracted by considering 𝑠%, and 𝑐%, equal to 0.00005 and 

0.01, respectively. Rules 1 and 2, which are spurious rules since they involve two alarms occurring by chance 

in a small portion of the same time intervals, have associated remarkably smaller values of support, 

confidence and lift in comparison to the rules in Table 5, which include only alarms involved in real functional 

dependencies. This result shows that spurious rules can be excluded by applying larger confidence 

thresholds. It is also interesting to consider Rule 3, which includes two alarms that are involved in a functional 

dependency (𝑎101
2 , 𝑎1

2) and another alarm (𝑎252
1 ) that occurs with the other two just by chance in a small 

portion of the same time intervals. This is confirmed by the fact that the rule including only 𝑎101
2  and 𝑎1

2 is 

characterized by a support of 1.39e-03, whereas the rule including 𝑎101
2 , 𝑎1

2  and 𝑎252
1  has a smaller support 

of 8.68e-05 and is characterized by confidence and lift values of the same order of magnitude of the rules in 

Table 6. This is because, given the dependency among alarms 𝑎101
2  and 𝑎1

2, in the time intervals in which 𝑎101
2  

occur by chance with 𝑎252
1 , the alarm 𝑎1

2 is always present. Therefore, this rule can be excluded only 

considering a large value of minimum support. 

Table 7. Examples of spurious rules extracted by setting the Apriori parameters, 𝑠%, and 𝑐%, equal to 0.00005 and 0.01, 

respectively 

Spurious Rules 



 Antecedent 

{alarm 

Identifier} ⇒ 

Consequent 

{alarm 

Identifier} 

Support Confidence Lift 

Rule 1 {𝑎141
1 } ⇒ {𝑎61

1 } 0.000115 0.10 82 

Rule 2 {𝑎39
1 } ⇒ {𝑎77

1 } 0.0000868 0.16 74 

Rule 3 {𝑎101
2 , 𝑎252

1 } ⇒ {𝑎1
2} 0.0000868 1.0 1152 

Rule 4 {𝑎1
2} ⇒ {𝑎101

2 , 𝑎252
1 } 0.0000868 0.1 1152 

 

4.2. CERN complex technical infrastructure  

The CTI of CERN, which is the largest existing particle accelerator, is composed by several systems working 

together for the functioning of the Large Hadron Collider (LHC) (J. Nielsen and L. Serio 2016). It consists of a 

27 Km ring of superconducting magnets and infrastructures, extending over the Swiss and French borders 

and located about 100 m underground. Since in 2016 the CTI component faults contributed to more than 1/5 

of the overall faults downtime (B. Todd et al, 2016), the identification of unknown functional dependencies 

among the CTI components is of paramount importance for improving the accelerators performance and 

availability for physics. The availability of advanced sensor networks and monitoring facilities allows the real-

time collection of information about the operational states of the various CTI assets and the generation of 

alarm messages when key physical quantities exceed prefixed thresholds. 

In this Section, we consider the alarms databases generated during the period [𝑡0, 𝑡𝑓]=[January 1st, 2016; 

December 31st, 2016] by three supervision systems of the LHC point 8, which is a part of the infrastructure 

representative of the overall CTI complexity. The alarms are generated by the cryogenic, the electric and the 

cooling and ventilation systems. 𝑁𝑎𝑙 =253591 alarms reporting 𝑀𝑎𝑙=6800 different types of malfunctions 

caused by 𝑁𝑐 = 2895 components have been collected during the considered period. 

Based on CERN operators and expert knowledge about the malfunction propagation among the components 

and systems, the time interval length is set to 𝑡 = 30 min. Therefore, the one-year period [January 1st, 2016, 

December 31st, 2016] has been divided into 𝑍 = 17500 time intervals. Setting the minimum support, 𝑠%, 

equal to 0.001 and the minimum confidence, 𝑐%, equal to 0.8, the computational time required to apply the 

proposed method on an Intel core (TM) i7-4790 CPU@ 3.6 GHz, 16 GB RAM) has been of 363 seconds. The 

use of 𝑠% values smaller than 0.02, which is expected to allow identifying more association rules, and, 

consequently, more functional dependencies, is not feasible from a computational point of view, given the 

large number of alarms (𝑁𝑎𝑙 =253591) and alarms types (𝑀𝑎𝑙=6800) to be processed by the Apriori 

algorithm. Notice that the fraction of spurious rules identified by the method cannot be evaluated since the 

real dependencies of the CTI are not known. It can, however, be highlighted that the analysis in Section 4.1 

has shown that the larger the value of parameters, 𝑠% and 𝑐%, the lower the risk of identifying spurious 

rules, and that in the real case study here considered 𝑠% and  𝑐% have been set equal to 0.01 and 0.8, 

respectively, which are values larger than those used in the synthetic case study (𝑠% =0.0005 and 𝑐%= 0.6). 



Table 8 reports the numbers of extracted rules, whereas Table 9 reports the distribution of the 202 rules 

among the systems which the components included in the rules belong to. The majority of the rules associate 

components belonging to the same system, whereas 21 rules associate components of two different systems 

and no rules involve components of all the three systems. According to the experts of CERN, the large number 

of rules involving the components of the electric system (163) is caused by the fact that its components are 

intrinsically and hierarchical correlated (e.g., a malfunction of a high voltage electric component typically 

leads to malfunctions of low voltage components). 

Table 8. number of extracted rules and identified groups of functionally dependent components. 

Number of rules extracted 
Before pruning 1112  

After pruning 202  

 

 

Table 9. Distribution of the extracted 202 rules in terms of the systems which the components belong to. 

Involved systems  Number of rules 

Electric 163 

Cryogenic 8 

Cooling and Ventilation 10 

Electric and Cryogenic 2 

Electric and Cooling and Ventilation 2 

Cryogenic and Cooling and Ventilation 17 

 

The analysis of the results will focus on the association rules most interesting for the plant experts, i.e. those 

most difficult to identify using traditional system analysis techniques, such as those involving components of 

different systems and those characterized by values of the lift measure remarkably larger than 1, which 

indicate that the rule antecedent and consequent parts are strongly correlated. 

Table 10 reports some examples of the identified rules. Since the subdivision of the alarms in rule antecedent 

and consequent parts does not imply causality among them, the authors are currently investigating the 

development of a method for the automatic identification of the casual chains of the alarms by considering 

their temporal sequences and the possible delays between the events and the corresponding alarms. In this 

work, the CTI experts have been asked to infer the causal chains of the involved alarms for some of the 

identified association rules. For example, Rule 1, which is characterized by a strong correlation among the 

alarms in the rule antecedent and consequent parts (lift equal to 266), describes the propagation of a 

malfunction triggered by a problem in a cooling tower of the CV system (revealed by the alarms 𝑎1123
2 , 𝑎1124

2 ) 



to the low pressure compressors of the Cryogenic system (revealed by the alarms 𝑎100
3 , 𝑎101

3 , 𝑎102
3 ), which, 

finally, cause faults in the high pressure compressors of the Cryogenic system (revealed by the alarms 𝑎123
4 , 

𝑎124
4 ). The analysis of the major failure events occurred in the past has shown that this chain of malfunctions 

has been responsible of a CTI shutdown occurred in 2016. The identification of this rule confirms the 

capability of the method of identifying real functional dependencies among the CTI components. 

Table 10. Example of the generated association rules. Table 12 reports a description of the involved alarms.  

 Antecedent 

[System] {Alarm Identifier} ⇒ 

Consequent 

{Alarm Identifier} [System] 
Support Confidence Lift 

Rule 1 

[
𝐶𝑟𝑦𝑜𝑔𝑒𝑛𝑖𝑐
𝐶𝑟𝑦𝑜𝑔𝑒𝑛𝑖𝑐

𝐶𝑉

]{

𝑎100
4

𝑎101
4

𝑎1123
2

} ⇒ 

{
 
 

 
 𝑎123

3

𝑎124
3

𝑎102
2

𝑎1124
2

}
 
 

 
 

[

𝐶𝑟𝑦𝑜𝑔𝑒𝑛𝑖𝑐
𝐶𝑟𝑦𝑜𝑔𝑒𝑛𝑖𝑐
𝐶𝑟𝑦𝑜𝑔𝑒𝑛𝑖𝑐

𝐶𝑉

] 

0.0019 1.0 266 

Rule 2 

[
𝐶𝑟𝑦𝑜𝑔𝑒𝑛𝑖𝑐
𝐶𝑟𝑦𝑜𝑔𝑒𝑛𝑖𝑐

] {
𝑎123
4

𝑎124
4 } ⇒ 

{
 
 

 
 𝑎100

4

𝑎102
4

𝑎101
2

𝑎4223
2

}
 
 

 
 

[

𝐶𝑟𝑦𝑜𝑔𝑒𝑛𝑖𝑐
𝐶𝑟𝑦𝑜𝑔𝑒𝑛𝑖𝑐
𝐶𝑟𝑦𝑜𝑔𝑒𝑛𝑖𝑐
𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐

] 

0.0025 0.978 23 

Rule 3 
[
𝐶𝑉
𝐶𝑉
] {
𝑎1324
2

𝑎1374
2 } ⇒ {𝑎1424

2 }[𝐶𝑉] 
0.0020 0.92 80 

Rule 4 [𝐶𝑉]{𝑎1724
2 } ⇒ {𝑎1094

2 }[𝐶𝑉] 0.0017 0.939 532 

Rule 5 

[
 
 
 
 
 
𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐
𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐
𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐
𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐
𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐
𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐]

 
 
 
 
 

{
 
 
 

 
 
 
𝑎3223
2

𝑎3613
2

𝑎3569
2

𝑎4445
2

𝑎4789
2

𝑎2991
2

𝑎3367
2 }

 
 
 

 
 
 

⇒ {

𝑎4523
2

𝑎2451
2

𝑎2937
2

}[
𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐
𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐
𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐

] 

0.0019 1.0 462 

Rule 6 

[
𝐶𝑟𝑦𝑜𝑔𝑒𝑛𝑖𝑐
𝐶𝑟𝑦𝑜𝑔𝑒𝑛𝑖𝑐

] {
𝑎723
4

𝑎793
4 } ⇒ {

𝑎192
3

𝑎561
3

𝑎245
2

} [

𝐶𝑟𝑦𝑜𝑔𝑒𝑛𝑖𝑐
𝐶𝑟𝑦𝑜𝑔𝑒𝑛𝑖𝑐
𝐶𝑟𝑦𝑜𝑔𝑒𝑛𝑖𝑐

] 

0.0418 0.697 16 

 

Once the rules have been found, the procedure of Section 3.3 for the identification of groups of functional 

dependent components has been applied. Table 11 reports a group of components of all three systems, 

describing a cascade of dependent failures which originates from a malfunction in the electric system, 

propagates through the cooling and ventilation system and, finally, affects the cryogenic system. Table 12 

provides the description of the alarms involved in Rule 1 of Table 10 and in the group of functionally 

dependent components of Table 11. The complete list of alarms involved in the dataset cannot be provided 

for confidentiality reasons. 

According to the CTI experts and engineers, the analysis of the groups of functional dependent components 

provides practical indications useful to: 

i) modify the planning of the periodic maintenance interventions and the spare parts management. 

For example, increase the frequency of the inspections of the components triggering the chains of 

malfunctions, with the objective of reducing the probability of their occurrences; 



ii) develop plans to upgrade the most critical components of the identified groups and the system 

architecture, e.g. by implementation of new redundancies; 

iii) identify emerging functional dependencies caused by uncontrolled changes and ageing of 

equipment, that result in new operating conditions and performances; 

iv) facilitate root cause analysis by focusing the investigation on the identified groups of functionally 

dependent components. In particular, the traditional a posteriori analysis techniques, such as those 

based on oscilloperturbography and on the analysis of the trends of the key signals, can benefit from 

a preselection of the groups of functionally dependent components and the corresponding alarms; 

Also, notice that:  

i) although the proposed method has not been designed to support control room operators in real 

time, it can be useful to off-line develop operational strategies to be performed when the first alarms 

of the identified chains are triggered to stop the cascade of failures and mitigate its consequences. 

In particular, additional alerts (automatic or semi-automatic) can be implemented to warn the 

operators to anticipate preventive interventions. This is particularly important for the cryogenic 

system, which is a downtime amplifier due to the large inertia and thermal capacity of its 

components and cooling fluids. Therefore, any preventive alert which allows anticipating the 

recovery can significantly contribute to reduce the downtime of the system of the CTI; 

ii) This will significantly reduce the down time of the system by stopping the chain of events and/or 

anticipating the recovery mode.  

iii) the use of a time interval length (𝑡) of 30 minutes allows identifying both groups of components 

which frequently fail together in a short period of time due to common cause failures and cascading 

failures characterized by delay in the propagation of the malfunctioning. The proper setting of the 

time interval length should consider the characteristics of the chains of events of interest. In this 

case study, since the LHC main components are large and heavy metal based superconducting 

magnets with significant thermal inertia coupled with large volume of cooling fluids, the time 

interval to be used has to be long enough to allow the propagation of the malfunctioning.  

 

Table 11. Example of a group of functionally dependent components identified by the method. The 

description of the involved alarm is reported in Table 12 

Component System 

𝑐4728 Electric 

𝑐100 Cryogenic 

𝑐101 Cryogenic 



𝑐102 Cryogenic 

𝑐123 Cryogenic 

𝑐124 Cryogenic 

𝑐1123 
Cooling and 

Ventilation 

𝑐1124 
Cooling and 

Ventilation 

𝑐1161 
Cooling and 

Ventilation 

𝑐1163 
Cooling and 

Ventilation 

𝑐1165 
Cooling and 

Ventilation 

𝑐1553 
Cooling and 

Ventilation 

𝑐1554 
Cooling and 

Ventilation 

𝑐1555 
Cooling and 

Ventilation 

 

Table 11. Description of the alarm involved in the rule of Table 9 and in the group of functionally dependent components of Table 

10. 

System Alarm ID Component ID Component type Alarm Description 

Electric 𝑎4728
6  𝑐4728 

UPS 

 

Uninterruptible 

Power Supply Fault 

Cryogenic 𝑎100
3  𝑐100 Low pressure compressor Water flow not ok  

Cryogenic 𝑎101
3  𝑐101 Low pressure compressor Water flow not ok 

Cryogenic 𝑎102
3  𝑐102 Low pressure compressor Water flow not ok 

Cryogenic 𝑎123
4  𝑐123 High pressure compressor Water flow not ok 

Cryogenic 𝑎124
4  𝑐124 High pressure compressor Water flow not ok 

Cooling and Ventilation 𝑎1123
2  𝑐1123 Cooling Tower Malfunction  

Cooling and Ventilation 𝑎1124
2  𝑐1124 Cooling Tower Malfunction  

Cooling and Ventilation 𝑎1161
1  𝑐1161 

Ventilator  Short circuit 

ventilation cycle 



Cooling and Ventilation 𝑎1163
1  𝑐1163 

Ventilator  Short circuit 

ventilation cycle 

Cooling and Ventilation 𝑎1165
1  𝑐1165 

Ventilator  Short circuit 

ventilation cycle 

Cooling and Ventilation 𝑎1553
3  𝑐1553 Pump  Short circuit pump 

Cooling and Ventilation 𝑎1554
3  𝑐1554 Pump  Short circuit pump 

Cooling and Ventilation 𝑎1555
3  𝑐1555 Pump  Short circuit pump 

 

5. Conclusions and future work 

CTIs are complex systems vulnerable to failures cascading through the dependencies among their sub-

systems and components. The identification of functional dependencies among malfunctions of components 

is, however, very challenging considering traditional approaches of system decomposition and functional 

logic analysis. In this work, a method for identifying functional dependencies among components of a CTI 

relying on large scale alarm databases has been proposed. It is based on a novel procedure for the 

representation of the alarm database using a binary matrix, the application of the Apriori algorithm for rule 

mining and a novel algorithm for the identification of groups of functionally dependent components.  

The application of the proposed method to a synthetic case study and a large scale database collected at 

CERN CTI has shown: i) its capability of identifying the functional dependencies among the components; ii) 

the need of using small values of the minimum support parameter of the Apriori algorithm for the 

identification of all the functional dependencies; iii) the fact that the association rules represent probabilistic 

relations among the occurrence of the alarms, which cannot be interpreted as causal relations among the 

alarms in the rule antecedent and consequent; iv) the finding that the most interesting groups of functionally 

dependent components are those involving components of different systems of the CTI, which are often 

unknown to plant experts.  

The identified functional dependencies can be exploited for enhancing the CTIs safety. In particular, when 

considering vulnerability and resilience analyses, the identified functional dependencies are useful to: i) 

analyse the propagation of cascades of malfunctions and the recovery from them; ii) identify unknown 

combinations of failures, which can lead to the shutdown of the CTI; and iii) capture the dynamics of the CTI 

during accidental scenarios.  

For future work, one direction lies in improving the capability of the method in identifying very rare functional 

dependencies. This requires the use of very small minimum support values, which can be unfeasible for the 

Apriori algorithm due to the computational effort required. Finally, methods based on formal concept 



analysis to transform data in lattices will be considered to discover relationships and dependencies in alarm 

databases. 

It is worth highlighting that CTIs are typically equipped with monitoring systems measuring the time evolution 

of the signals related to their operation. Given the high information content of these numerical data, a 

natural continuation of this work is their use for the identification of functional dependencies in CTIs. This is 

expected to allow the identification of functional dependencies from data collected in normal operating 

conditions, without requiring occurrences of failures and malfunctions, which are typically rare events in CTIs. 

Also, the identification of functional dependencies among physical quantities can be very useful for 

anticipating and diagnosing the occurrence of chains of malfunctions.  

The use of signal data to this purpose is challenged by the following technical and methodological issues:  

1) large CTIs are made by tens of thousands of components, each of which is constantly monitored at 

high frequency by sensors measuring various signals such as temperature, pressure, vibrations etc. 

This requires to acquire and store very large quantities of data for a long period of time. This demands 

the use of complex and expensive Information Technology (IT) architectures (Hu et al., 2018; Kabir 

et al., 2019).  

2) The identification of functional dependencies and the reconstruction of the resulting chains of 

malfunctions from hundreds of thousands of signals requires the development of complex 

algorithms able to explore their correlations. 

 

Given the fast development of IT technologies for data acquisition and storage, and the growing capability of 

Artificial Intelligence (AI) algorithms in the extraction of information from increasingly large datasets, the 

authors will explore this research line. 
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