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Abstract 

The digitalization of nuclear power plants, with the rapid growth of information technology, 

opens the door to the development of new methods of condition-based maintenance. In this 

work, a semi-supervised method for characterizing the level of degradation of nuclear power 

plant components using measurements collected during plant operational transients is proposed. 

It is based on the fusion of selected features extracted from the monitored signals. Feature 

selection is formulated as a multi-objective optimization problem. The objectives are the 

maximization of the feature monotonicity and trendability, and the maximization of a novel 

measure of correlation between the feature values and the results of non-destructive tests 

performed to assess the component degradation. The features of the Pareto optimal set are 

normalized and the component degradation level is defined as the median of the obtained 

values. The developed method is applied to real data collected from steam generators of 

pressurized water reactors. It is shown able to identify degradation level with errors comparable 

to those obtained by ad-hoc non-destructive tests.  

 

Keywords: Condition-based maintenance, Degradation assessment, Semi-supervised, Feature 

selection, Nuclear power plant, Steam generator. 



 

1. Introduction 

Since early 1990s the nuclear industry has increased its interest in fault detection, diagnostics 

and prognostics with the objectives of improving the overall safety and efficiency of Nuclear 

Power Plants (NPPs) operation (Tambouratzis et al., 2019). In particular, the data that are 

collected from the plants and the availability of machine learning methods make possible to 

implement Condition-Based Maintenance (CBM) practices (Ayo-Imoru and Cilliers, 2018). 

CBM can contribue to: i) plant safety by reducing the probability of abnormal conditions caused 

by component failures, ii) reducing the number of unplanned corrective maintenance 

interventions, that are typically very expensive and time consuming, iii) increasing the overall 

plant availability, with tangible benefits in terms of production profit, iv) shortening outages 

(Tsang, 1995; Shin and Jun, 2015; Ayo-Imoru and Cilliers, 2018; Uchida et al., 2019). 

In (IAEA, 2008) a detailed description of a variety of established techniques for online 

condition monitoring of NPPs equipment and systems is presented. In (Coble et al., 2012, 2015) 

the current state of monitoring, prognostics, and health management for different NPPs 

components is reviewed. In (Tambouratzis et al., 2019) a review of the computational 

intelligence methodologies developed from 1990 to 2015 for NPPs control, fault detection and 

diagnostics is provided. In (Saeed et al., 2020) a novel fault diagnostic method based on 

principal component analysis, long short-term memory and convolutional neural network is 

proposed. In (Wang et al., 2019) a hybrid fault diagnosis methodology based on support vector 

machine and particle swarm optimization is proposed and applied to NPPs. 

According to the International Energy Agency (IEA), the saving from the digitalization of 

the overall power sector is going to be in the order of $80 billion per year over the period 2016-

2040, or about 5% of the total annual power generation cost (IEA, 2017). Specifically to nuclear 

industry, information technology and digitalization can contribute to address major challenges, 

such as improving operational efficiency, life extension and renewal with new reactor designs 

(Huffeteau, 2016; Faudon, 2018).  

This work falls within the ongoing digital transition of NPPs and the potential transformation 

of maintenance.  

The key quantity of interest in CBM is the degradation level of the nuclear components, 

whose measure, depending on the component and its degradation mechanisms, can be directly 

available, e.g., the length of a crack, the thickness of a deposit, or must be inferred from 



 

monitoring signals, e.g., vibration signals for bearing wear (Shen et al., 2012), capacity for 

battery degradation (Ansean et al., 2017), depolarization current for the degradation of 

polymeric insulation of power cables (Abou-Dakka, Bulinski and Bamji, 2011). Since in 

practice it is difficult to identify a single, directly measurable physical quantity correlated to the 

component degradation level, in this work we develop a method to infer the component 

degradation level from monitored signals. 

The problem of extracting features correlated to the component degradation level from 

monitored signals has been already addressed for various components in different industrial 

applications. Considering, for example, rolling mechanical components such as bearings, 

vibration signals are typically used for inferring their degradation level. For example, in (Qiu 

et al., 2003) a combination of wavelet transform and self-organizing map is used to derive a 

degradation indicator; in (Ben Ali et al., 2015) an artificial neural network, which receives in 

input time-domain features and features obtained by applying the Empirical Mode 

Decomposition (EMD) transform to the energy entropy, is used to identify component 

degradation. The main constraint of these methods is that they require prior knowledge on the 

component degradation level. In (Gomes et al., 2016) several monitored signals are combined 

into a unique degradation indicator for electro-mechanical actuators and auxiliary power units 

through the use of nonparametric density estimation techniques and the Runger’s 𝑈2 method. 

This method requires an adequate estimation of the underlying probability distributions through 

a careful acquisition of data, which is not always possible in practice. In (Kumar et al., 2012), 

a degradation indicator based on the Mahalanobis distance is proposed and applied to electronic 

products. Since this method is based on the assumption that a subset of the monitored signals 

correlated to the component degradation has been a priori identified, its application is limited 

to those systems for which signals related to degradation are known. In (Coble and Hines, 2009) 

a set of metrics evaluating the goodness of a parameter as degradation indicator has been 

proposed and the metrics are used within a Genetic Algorithm (GA) optimization routine to 

identify an optimal degradation indicator for turbofan engines. In (Baraldi, Bonfanti and Zio, 

2018), a method based on the combined use of EMD, Auto-Associative Kernel Regression and 

a multi-objective Binary Differential Evolution (BDE) algorithm is proposed for selecting the 

subset of optimal features for the definition of a degradation indicator for turbofan engines. 



 

In this work, we propose a novel method for the identification of the degradation level of 

industrial components on the basis of the evolution of monitored signals during plant 

operational transients. 

The proposed methodology is based on the three steps of feature extraction, feature 

evaluation and feature selection. In the first step, possible informative features (such as mean, 

variance, wavelet coefficients, wavelet energy, etc.) are extracted from the monitored signals 

collected during operational transients. In the second stage, the goodness of the extracted 

features are systematically evaluated with respect to specific metrics that represent generic, 

preferable properties of degradation indicators (Coble and Hines, 2009; Coble, 2010; He et al., 

2015), namely monotonicity and trendability, and a novel metric of correlation between the 

feature values and the results of the Non-Destructive Tests (NDTs), which is termed 

“correlability”. Then, the problem of selecting the features for the construction of the 

degradation indicator is framed as a multi-objective optimization problem and the features of 

the Pareto optimal set are aggregated taking the median as degradation indicator. 

The proposed method is applied to the identification of the degradation level of Steam 

Generators (SGs) in Nuclear Power Plants. This is an important task, given that SGs are among 

the most critical components in NPPs, since the power production depends on their functioning. 

The performance of the proposed method is shown using real data collected during 25 years of 

operation of two fleets of SGs in NPPs operated by Électricité de France (EDF). 

The main contributions of the work are: 

1) The use of both the Mann-Kendall test and monotonicity index defined in (Coble and 

Hines, 2009) for the evaluation of the monotonicity of the extracted features; 

2) The definition of the correlability index, based on Spearman correlation coefficient, for 

the evaluation of the correlation between the extracted feature and the results of the 

NDTs; 

3) The combined use of the large amount of (unsupervised) signal monitoring data, as in 

(Coble and Hines, 2009) and in (Baraldi, Bonfanti and Zio, 2018), and of the small 

amount of very informative (supervised) data collected during NDTs for the definition 

of the degradation indicator.  



 

4) the use of plant data collected during operational transients for degradation assessment. 

According to (Sharp, 2012; Girard, 2014), they are more informative about the 

component degradation than data collected during steady state operation; 

5) The application of the developed method to NPP SGs. At the best of our knowledge, no 

degradation indicator based on measurements is currently used in the nuclear industry. 

The rest of the paper is organized as follows. Section 2 introduces the problem of degradation 

of SG in NPPs. Section 3 formulates the problem statement. Section 4 presents the method 

developed for the definition of the degradation indicator. Section 5 describes the validation 

procedure. Section 6 presents the SG case study and the real datasets. Section 7 discusses the 

obtained results. Finally, Section 8 concludes the work. 

2. Steam Generator Degradation and Maintenance 

The SG is one of the most critical components of a NPP. Its main function is to transfer the 

heat generated from the reactor core to the secondary fluid (Prusek et al., 2013; Yang et al., 

2017; Ayodeji and Liu, 2019). SGs of Pressurized Water Reactors (PWRs) are usually formed 

by several U-tubes, kept in position using several Tube Support Plates (TSPs), in which the 

primary fluid flows. The secondary fluid flows through the TSPs in quatrefoil holes surrounding 

the tubes (Girard, 2014). The heat is transferred from the primary water to the secondary fluid 

through the tube, generating the steam that is led to the turbine to produce power. 

A SG malfunctioning can cause major problems to the whole NPP, with consequences that 

may lead to serious outages and radioactive releases (Ayodeji and Liu, 2019; Song et al., 2019). 

The two degradation mechanisms most affecting the SG performance are the TSPs clogging 

and tube fouling (Varrin, 1996; Corredera, Alves-Vieira and de Bouvier, 2008; Sollier and 

Bodineau, 2008; Yang et al., 2017). TSP clogging consists in the progressive reduction of the 

secondary fluid flow area, caused by the unavoidable deposition of particles and dissolved 

species present in the water on the quatrefoil holes of the TSP. The reduction of the flow area 

leads to the formation of high velocity zones that enhance tube vibrations, which may induce 

tube cracking. Tube fouling consists in the deposition of particles and dissolved species on the 

tubes themselves. The formation of deposits along the SG tubes leads to an increment of the 

tube thermal resistance and, as consequence, a reduction of the heat transfer. This causes a 

reduction of the outlet steam pressure and, consequently, of the NPP overall power production. 



 

Two types of maintenance interventions are periodically performed with the objective of 

reducing or removing the SG deposits which cause TSP clogging and tubes fouling (Riznic, 

2017). On one hand, mechanical cleaning, which is based on the use of high-pressure water 

jets, allows removing local deposits from the surfaces inside the SG and it is typically performed 

in one or two days (Riznic, 2017). On the other hand, chemical cleaning is based on the injection 

of a chemical compound into the SG. Differently from mechanical cleaning, it removes deposits 

from the entire SG (private communication, Lacroix, 2012; Weiss, Draxler and Fandrich, 2012; 

Goujon et al., 2017). To obtain optimum cleaning results in SGs, the chemical cleaning 

processes should be adapted to the NPP specific history, e.g. water chemistry, material concept, 

blowdown system design, and the resulting individual prevailing conditions, e.g. deposit 

amount, constitution and distribution (Rufus et al., 2001; Riznic, 2017). It is a long and 

expensive maintenance operation, which causes the unavailability of the SG for several hours, 

can damage some of the SG parts (Prusek, 2012; Girard, 2014) and produces large volumes of 

chemical wastes. Given the high criticality of SGs and the huge cost associated to their chemical 

cleaning, the adoption of condition-based maintenance policies based on the estimation of the 

SG degradation level is crucial (Di Maio, Antonello and Zio, 2018; Hoseyni, Di Maio and Zio, 

2019). To this aim, different types of NDTs, such as televisual and eddy current inspections 

(Corredera, Alves-Vieira and de Bouvier, 2008; Yang et al., 2017; Ayodeji and Liu, 2019), 

have been developed. Televisual inspection (ETV, “Examens TéléVisuels”) (private 

communication, Renaud, 2008) visualizes the deposits using a camera inserted from the top of 

the SG. Its main limitations are that it can be used only to verify the degradation level of the 

upper part of the SG, and it is very expensive and resource consuming. On the other side, eddy 

current inspection, which is based on the use of the principle of electromagnetic induction, is 

faster to be performed and less resource consuming, but it can be applied only if the blockage 

levels are lower than 50% due to signal saturation problems. Also, its results are remarkably 

dependent on the shape, density and composition of the deposit (Corredera, Alves-Vieira and 

de Bouvier, 2008; Cheong et al., 2011; Girard, 2014). 

Other SG degradation monitoring techniques exploit the information content of the Wide 

Range Level (WRL) signal (Girard, 2014), which is a measure of the pressure difference 

between the top and the bottom of the SG downcomer. Clogging causes a reduction of the flow 

area which induces a reduction in the circulation loop flow rate, and, consequently, a smaller 

pressure drop in the downcomer, which results in a larger wide range level  (private 

communication, Pineau, Vasseur and Schwartz, 2016). WRL measurements performed when 



 

the SG is in a stationary or steady-state operational regime have been shown to provide less 

satisfactory diagnostic performances (Girard, 2014) than those obtained considering the WRL 

behavior during operational transients (Varrin, 1996; Girard et al., 2013; Girard, 2014). 

However, unexpected WRL measurement jumps caused by sensor recalibration have been 

reported to be common and to render this technique not accurate enough for the purpose of SG 

degradation level identification (Girard, 2014). 

Methods based on physical models have also been developed to estimate the degradation 

level of the SG (private communication, Chip et al., 2009; Prusek, 2012; Girard, 2014). Since 

they usually require the setting of several model parameters, whose values typically vary during 

the component life and are often very expensive in terms of computational costs, they are not 

commonly used in practical real time industrial applications. 

3. Problem Statement  

The objective of the present work is to develop a data-driven methodology for the definition 

of a degradation indicator, d, which quantifies the degradation level of components operating 

in industrial plants. The methodology for the definition of the degradation indicator relies on 

the use of signal measurements collected during plant operation and of the results of NDTs 

periodically performed to assess component degradation. 

The available data includes the evolution of K signals collected during operational transients 

of the same type from Z similar components of a fleet of plants. We indicate with 𝑁𝑧 the number 

of transients collected from the generic z-th component of the fleet, and with 𝑁𝑡𝑜𝑡 =

∑ 𝑁𝑧
𝑍
𝑧=1  the total number of transients collected from the entire fleet. The value of the k-th 

signal measured during the 𝑛𝑧-th transient of the z-th component at time t is indicated by: 

𝑦𝑘
𝑧,𝑛𝑧(𝑡)   ,   

𝑘 = 1,… , 𝐾
𝑧 = 1,… , 𝑍
𝑛𝑧 = 1,… ,𝑁𝑧
𝑡 = 1,… , 𝑇𝑧,𝑛𝑧

      (1)  

 

where 𝑇𝑧,𝑛𝑧 represents the duration of the 𝑛𝑧-th transient of the z-th component of the fleet. Also, 

we indicate with 𝑛𝑑𝑡𝑧 the number of NDTs performed on the z-th component of the fleet and 

with 𝐷𝑧(ℎ),   ℎ = 1,… , 𝑛𝑑𝑡𝑧, the degradation level assessed during the generic ℎ-th NDT 

performed on the z-th component. Notice that 𝑛𝑑𝑡𝑧 is typically much smaller than the number 



 

of operational transients, 𝑁𝑧, experienced by the component during its life, due to economic 

and technical restrictions on performing NDTs.  

Notice that, although the methodology for the definition of the degradation indicator can use 

the NDT results, the final objective of the work is to identify the level of degradation 

𝑑𝑧𝑡𝑒𝑠𝑡
𝐸

(𝑛𝑧𝑡𝑒𝑠𝑡) of a test component using only the signal measurements 𝑦𝑘
𝑧𝑡𝑒𝑠𝑡,𝑛𝑧𝑡𝑒𝑠𝑡(𝑡), 𝑘 =

1, … , 𝐾 collected during an operational transient. 

4. Method 

The method proposed for the definition of a degradation indicator is based on the following 

steps: 

• extraction of a large set of features from the monitored signals. The objective of this 

step is to condensate the time evolution of a signal during a generic transient, into 

lumped quantities independent from the time (Section 4.1); 

• evaluation of the goodness of the extracted features as degradation indicator, 

considering its characteristics of monotonicity, trendability and correlability (Section 

4.2); 

• choice of the most satisfactory features considering a proper trade-off among the 

different characteristics (Section 4.3); 

• construction of the degradation indicator starting from the selected features (Section 

4.4). 

 

4.1. Feature Extraction  

The development of health indicators from the raw measurements 𝑦𝑘
𝑧,𝑛𝑧(𝑡) requires a first 

phase of feature extraction, which aims at extracting 𝐽 different features, 𝑥𝑗,𝑘
𝑧 (𝑛𝑧), 𝑗 = 1,… 𝐽 

from the evolution of signal k during the generic transient 𝑛𝑧 of component 𝑧, 𝑦𝑘
𝑧,𝑛𝑧(𝑡). 

The following features which can potentially contain information on the component 

degradation are considered: 



 

a. statistical metrics (e.g., mean, standard deviation, kurtosis, skewness, quantile, which are 

useful to synthetize the general characteristics of the signals even if they are often not 

suitable for non-stationary signals; 

b. signal transforms in the time-frequency domain (e.g., wavelet energy, max coefficient 

per wavelet component) since this kind of analysis reveals aspects of data often missed 

by other signal analysis techniques, such as trends, breakdown points, discontinuities in 

higher derivative and self-similarity (Burrus, Gopinath and Guo, 1998; Sharp, 2012); 

c. ad-hoc features (e.g., coefficients of the interpolating parabola) selected after a rough 

analysis of the signals of the specific case study. 

Notice that the quantity 𝑥𝑗,𝑘
𝑧 (𝑛𝑧) is explicitly written as a function of the transient 𝑛𝑧 to 

indicate that it describes the component state at the time in which the 𝑛𝑧-th transient occurs. 

4.2. Evaluation of the goodness of the extracted features  

According to (Coble and Hines, 2009; Coble, 2010; He et al., 2015; Baraldi, Bonfanti and 

Zio, 2018), a good degradation indicator is characterized by three major desirable properties: 

i. Monotonicity; since components typically do not exhibit a self-healing behavior, 

degradation can only increase as time passes. Therefore, a good degradation indicator 

is expected to progressively and monotonically increase or decrease with time. 

ii. Trendability; a good degradation indicator is expected to show a similar functional 

evolution during the lives of similar components of the fleet. 

iii. Prognosability; a good degradation indicator is characterized by similar values of the 

feature at the failure times. 

Since run-to-failure trajectories are typically not available for safety critical components, which 

are maintained and repaired to avoid failures, the prognosability of the features cannot be 

evaluated, and, therefore, this property is not considered in this work. 

On the other hand, differently from (Coble and Hines, 2009; Baraldi, Bonfanti and Zio, 

2018), we can exploit the information content of the NDTs for the definition of the degradation 

indicator. To this aim, we introduce the property of: 

iv. Correlability: if NDTs are performed during the life of the component to assess its 

degradation level, a good degradation indicator is expected to be correlated with the 

NDT results. 



 

4.2.1. Monotonicity  

The objective is to assess how much the feature 𝑥𝑗,𝑘
𝑧 (∙) shows a monotonic trend. To this 

aim, two metrics are considered: the first one is based on the Mann-Kendall test (Mann, 1945), 

whereas the second one is taken from (Coble and Hines, 2009).  

The Mann-Kendall test formulates two hypotheses (Gilbert, 1987; Sonali and Nagesh 

Kumar, 2013; Pohlert, 2015): 

• The null hypothesis, H0, is that the feature values 𝑥𝑗,𝑘
𝑧 (∙), do not have a monotonic 

trend 

• The alternative hypothesis, HA, is that the feature values 𝑥𝑗,𝑘
𝑧 (∙), have a monotonic 

trend. 

The Mann-Kendall test has been chosen since it does not assume any particular probability 

distribution of the data, it is not affected by a possible irregular frequency of measurements or 

by the presence of missing data (Yue and Pilon, 2004). The details of the test are reported in 

Appendix A. 

Considering the j-th feature extracted from the k-th signal during the life of the z-th 

component along all the transients (from the first 𝑛𝑍 = 1 to the last transient 𝑛𝑍 = 𝑁𝑧), 

𝑥𝑗,𝑘
𝑧 (1:𝑁𝑧), the Mann-Kendall test provides a binary outcome, 𝑀𝐾𝑗,𝑘,𝑧 = (0,1), with 1 indicating 

that the feature 𝑥𝑗,𝑘
𝑧   has a monotonic trend and 0 otherwise. The global Mann-Kendall 

monotonicity index, 𝑀. 𝐼.𝑗,𝑘
𝑀𝐾, associated to the generic j-th feature extracted from the k-th signal, 

𝑥𝑗,𝑘, is defined as the average value of the outcome, 𝑀𝐾𝑗,𝑘,𝑧, of the Mann-Kendall test applied 

to all the Z components: 

𝑀. 𝐼.𝑗,𝑘
𝑀𝐾 =

∑ 𝑀𝐾(𝑗,𝑘,𝑧)𝑍
𝑧=1

𝑍
           (2) 

Since 𝑀𝐾𝑗,𝑘,𝑧 can only assume values 0 or 1, a limitation of 𝑀. 𝐼.𝑗,𝑘
𝑀𝐾 is that it can assume 

only the discretized values, 0,
1

𝑍
,
2

𝑍
, … ,1, which can create a difficulty  in the ranking of the 

features when handling data collected from a small number of similar components, Z. 

For this reason, the additional monotonicity index 𝑀. 𝐼.𝑑𝑒𝑟, based on the study of the feature 

discrete derivatives proposed in (Coble and Hines, 2009) is also considered. The derivative-

based monotonicity index is defined by:  

𝑀. 𝐼.𝑗,𝑘,𝑧
𝑑𝑒𝑟 = |

(#𝛥 > 0) − (#𝛥 ≤ 0)

𝑁𝑧−1
|      (3) 

 



 

𝑀. 𝐼.𝑗,𝑘
𝑑𝑒𝑟 = 𝑚𝑒𝑎𝑛𝑍(𝑀. 𝐼.𝑗,𝑘,𝑧 )     (4) 

where #Δ > 0 and #Δ ≤  0  indicate the number of times the discrete difference 𝑥𝑗,𝑘
𝑧 (𝑛𝑧 + 1) −

𝑥𝑗,𝑘
𝑧 (𝑛𝑧) with 𝑛𝑧 = 1,… , 𝑁𝑧 − 1 is positive and negative, respectively, and the denominator in 

Eq.(3) counts the number of times the discrete difference is computed. Differently from the 

Mann-Kendall monotonicity index, 𝑀. 𝐼.𝑗,𝑘
𝑀𝐾, the 𝑀. 𝐼.𝑗,𝑘

𝑑𝑒𝑟 derivative-based monotonicity index 

provides less discretized values within the range [0, 1], being typically 𝑁𝑧 − 1 ≫ 0. Also, in 

this case, 𝑀. 𝐼.𝑗,𝑘
𝑑𝑒𝑟 = 0 indicates a completely non-monotonic behaviour, whereas the value of 

1 indicates an ideal or completely monotonic behaviour. A limitation of the index, already 

noticed in (Coble, 2010), is that it is not fully robust with respect to signal noise.  

4.2.2. Trendability 

In order to measure the trendability of the j-th feature extracted from the k-th signal collected 

from the z-th component, 𝑥𝑗,𝑘
𝑧 (1: 𝑁𝑧), the index suggested by Cobles and Hines ( 2009) is here 

considered:  

𝑇𝑅𝑗,𝑘,𝑧 =
#𝛥 > 0

𝑁𝑧−1
+
#𝛥2>0

𝑁𝑧−2
      (5) 

 

𝑇. 𝐼.𝑗,𝑘= 1 − 𝑠𝑡𝑑𝑍(𝑇𝑅𝑗,𝑘,𝑧)     (6) 

 
 

where  #𝛥2 = 𝑥𝑗,𝑘
𝑧 (𝑛𝑧 + 1) − 2𝑥𝑗,𝑘

𝑧 (𝑛𝑧) + 𝑥𝑗,𝑘
𝑧 (𝑛𝑧 − 1), with 𝑛𝑧 = 2,… ,𝑁𝑧 − 1, is the 

number of second order differences. Notice that 𝑇𝑅𝑗,𝑘,𝑧 is a relative measure of the number of 

the evaluated positive first, 𝛥, (second, 𝛥2) discrete derivatives with respect to the number of 

the total evaluations of first (second) discrete derivatives of the j-th feature extracted from the 

k-th signal collected from the z-th component, while, stdZ represents the standard deviation 

evaluated with respect to the 𝑍 similar components. This metric can assume any value in the 

range [0, 1], where 0 identifies the absence of trendability for the j-th feature and 1 represents 

a perfectly trendable behavior. 

4.2.3. Correlability 

The quantification of the correlability index 𝐶. 𝐼.𝑗,𝑘 between the values of a candidate feature 

and the degradation measurements assessed by means of NDTs is based on: 

• the identification of the operational transients that are temporally closest to the 

performed NDTs. In practice, the h-th NDT performed on the z-th component, with 

𝑧 = 1,… , 𝑍 and ℎ = 1,… , 𝑛𝑑𝑡𝑧, is associated to the operational transient 𝑛𝑧
ℎ which 



 

is temporally closest to it among the operational transients experienced by 

component 𝑧. 

• The computation of the Spearman correlation coefficient among all the available 

NDT data, 𝐷𝑧(ℎ), with ℎ = 1,… , 𝑛𝑑𝑡𝑧, 𝑧 = 1, …𝑍, collected in the vector 𝑫 =

[𝐷1(1), 𝐷1(2), … , 𝐷1(𝑛𝑑𝑡1), 𝐷2(1), … , 𝐷𝑍(𝑛𝑑𝑡𝑍)] and the corresponding feature 

values  𝑥𝑗,𝑘
𝑧 (𝑛𝑧

ℎ), collected in the vector 𝒙𝑗,𝑘 =

 [𝑥𝑗,𝑘
1 (𝑛1

1), 𝑥𝑗,𝑘
1 (𝑛1

2),… , 𝑥𝑗,𝑘
1 (𝑛1

𝑛𝑑𝑡1), 𝑥𝑗,𝑘
2 (𝑛2

1),… , 𝑥𝑗,𝑘
𝑍 (𝑛𝑍

𝑛𝑑𝑡𝑍)].  

The Spearman correlation coeffcient allows assessing whether the relationship between the 

two variables 𝐷𝑧(ℎ) and 𝑥𝑗,𝑘
𝑧 (𝑛𝑧

ℎ) can be described by a monotonic function (Spearman, 1904). 

The advantages of using it instead of other correlation indices are that: i) it is relatively 

insensitive to outliers; ii) it can be used with small sample sizes and iii) it is relatively easy to 

apply (Gauthier, 2001). In practice, the Spearman correlation coefficient is computed by sorting 

the data in ascending order, considering the value of the positions in the obtained ranking 

instead of the real value of the data (Myers and Well, 2003), and computing the covariance 

among the obtained ranked values: 

𝐶. 𝐼.𝑗,𝑘 =
𝑐𝑜𝑣(𝑟𝑔(𝒙𝑗,𝑘),   𝑟𝑔(𝑫))

𝑠𝑡𝑑(𝑟𝑔(𝒙𝑗,𝑘)) 𝑠𝑡𝑑(𝑟𝑔(𝑫)) 
    (7) 

where cov is the covariance, 𝑠𝑡𝑑 is the standard deviation and rg is the data ranking. The 

absolute value of the correlability index provides a score in the range [0, 1]: 0 identifies a feature 

not correlated to the NDT results, whereas 1 refers to a perfectly correlated feature. Notice that, 

differently from the other indexes, 𝐶. 𝐼.𝑗,𝑘 is directly computed using the data of all the Z 

components, without the necessity of computing it for each component, z, and, then, averaging. 

This is due to the fact that the NDT measurements are expected to provide degradation level 

assessments that can be compared among different components, i.e. in the same scale for all the 

fleet.  

4.3. Features selection 

The definition of degradation indicators requires the identification among all the 𝐽 ∙ 𝐾 

features 𝑥𝑗,𝑘 of those providing the most satisfactory trade-off among the objectives of 

monotonocity, trendability and correlability. The vector of objective functions 𝑓 =

(𝑓1, 𝑓2, 𝑓3, 𝑓4) defined by the four indexes (𝑀. 𝐼.𝑗.𝑘
𝑀𝐾 , 𝑀. 𝐼.𝑗,𝑘

𝑑𝑒𝑟 , 𝑇. 𝐼.𝑗,𝑘 , 𝐶. 𝐼.𝑗,𝑘 ) is considered and 

the Pareto optimal set of features is identified. A feature 𝑥𝑗𝑃,𝑘𝑃  is said to be Pareto-optimal if it 



 

is non-dominated, i.e. if does not exist another feature 𝑥𝑗′,𝑘′ such that 𝑓(𝑥𝑗′,𝑘′) dominates 

𝑓(𝑥𝑗𝑃,𝑘𝑃) : ∀ 𝑖 ∈ (1, 2, 3, 4) , 𝑓𝑖(𝑥𝑗′,𝑘′) ≥ 𝑓𝑖(𝑥𝑗𝑃,𝑘𝑃)  ∧  ∃ 𝑖̃ ∈ (1, 2, 3, 4) 𝑠. 𝑡. 𝑓𝑖̃(𝑥𝑗′,𝑘′) > 𝑓𝑖̃(𝑥𝑗𝑃,𝑘𝑃)   

(Baumgartner, Magele and Renhart, 2004) (Figure 1). A limitation of considering the raw 

values of the calculated indices is that the Pareto optimal set can include features characterized 

by optimal scores with respect to one index, but very unsatisfactory scores with respect to other 

indices, leading to an increase of the number of selected solutions. Furthermore, this definition 

of optimality assumes that all the objectives are characterized by the same relative importance, 

which is not always necessarily true. Thus, in order to reduce the number of the candidate 

optimal features and eliminate those with unsatisfactory trade-off among the different 

objectives, we identify a subset of the Pareto front by assigning a relative importance to the 

different objectives. In particular,  we associate to each objective function, 𝑓𝑖, a weighted utility 

function (Branke, Kaußler and Schmeck, 2001; Baraldi, Pedroni and Zio, 2009) defined by: 

𝛺𝑖(𝑓) = 𝑓𝑖 + ∑ 𝑎𝑖𝑗 ∙
4
𝑖=1,𝑗≠𝑖 𝑓𝑗  , 𝑖, 𝑗 ∈ (1, 2, 3, 4)     (8) 

where aij quantifies the amount of gain in the j-th objective required to accept a loss of one unit 

in the i-th objective and aii is by definition equal to 1 (see Figure 1). The dominance is, then, 

evaluated with respect to the vectors of objective functions 𝛺 = (𝛺1, 𝛺2, … , 𝛺𝐹) with 𝐹 = 4, 

instead of the vectors 𝑓. Figure 1 shows an example of comparison between the dominance 

regions of the same candidate solution (point A) when the raw values of the indices 𝑓 are used 

(grey region) and when the modified version of the indices 𝛺 is adopted (grey + pink regions), 

considering two generic objective functions, 𝑓1, 𝑓2. It can be easily noticed that the modified 

definition of the indices can be translated in a wider dominance region; in particular, in the 

(𝑓1, 𝑓2)-plane, the slopes of the dashed lines enclosing the grey region are modified such that 

the horizontal line (slope = 0) becomes a line with slope = −1 𝑎12⁄  while the vertical line 

(undefined slope) becomes a line with slope = −𝑎21. The definition of 𝛺 requires the setting of 

𝐹2 −  𝐹 trade-offs on the basis of the relative importance that the analyst gives to each 

objective.  



 

 

Figure 1. Schematic representation of the Pareto dominance region of feature ‘A’ using the raw values 

of the indices 𝑓 (grey) and the modified indices Ω (grey + pink). 

4.4. Construction of the degradation indicator 

The objective of this step is to aggregate the features of the Pareto optimal set found in the 

previous step into a single robust degradation indicator. Since the different features have 

different units of measurement and ranges, they are firstly normalized on the same scale, which 

is taken equal to that of the NDTs. In practice, the normalized value, 𝑑𝑧
𝑗,𝑘(𝑛𝑧), of feature j 

extracted from signal k of component z at time 𝑛𝑧 is defined by: 

𝑑𝑧
𝑗,𝑘(𝑛𝑍) = 𝛼𝑗,𝑘 

𝑧 𝑥𝑗,𝑘
𝑧 (𝑛𝑍) + 𝛽𝑗,𝑘 

𝑧     (9) 

where the parameters 𝛼𝑗,𝑘 
𝑧 , 𝛽𝑗,𝑘 

𝑧  of the linear relationship are independently set for each 

feature 𝑗 extracted from signal 𝑘 of component 𝑧 using the Ordinary Least Squares (OLS) 

method with the objective of minimizing the error between the normalized feature value 

𝑑𝑧
𝑗,𝑘(𝑛𝑧

ℎ) and the NDT results 𝐷𝑧(ℎ), where 𝑛𝑧
ℎ is the operational transient time closest to the 

time of the h-th NDT. The estimation of the parameters 𝛼𝑗,𝑘 
𝑧 , 𝛽𝑗,𝑘 

𝑧  is complicated by the fact that 

the NDT results 𝐷𝑧(ℎ) are affected by a measurement error with respect to the unknown 

ground-truth component degradation. Therefore, the reliable estimation of their values requires 

the availability of at least two well separated NDT results among those obtained before the 𝑛𝑧-



 

th transient. Specifically, 𝛼𝑗,𝑘 
𝑧 , 𝛽𝑗,𝑘 

𝑧  can be estimated only if at least two different NDT results, 

𝐷𝑧(𝑎) and 𝐷𝑧(𝑏), 𝑎, 𝑏 ∈ [1,… , 𝑛𝑑𝑡𝑧], 𝑎 ≠ 𝑏 𝐷𝑧(𝑎) and 𝐷𝑧(𝑏), 𝑎, 𝑏 ∈ [1,… , 𝑛𝑑𝑡𝑧], 𝑎 ≠ 𝑏, 

which satisfy:   

|𝐷𝑧(𝑎) − 𝐷𝑧(𝑏)| > 𝜖     (10) 

are available, where 𝜖 is a preset parameter. The setting of 𝜖 should consider the fact that a too 

small value leads to an unreliable estimation of the parameters 𝛼𝑗,𝑘 
𝑧 and 𝛽𝑗,𝑘

𝑧 , since the variation 

of the NDT results can be the consequence of measurement noise and not of the component 

degradation, whereas a too large value leads to a delay in the degradation assessment, since 

several NDTs should be obtained before the condition in Eq. (10) is met and the parameters can 

be estimated. 

Once the features have been normalized, a degradation indicator that estimates the 

degradation of component 𝑧 at the occurrence time of transient 𝑛𝑧, 𝑑𝑧
𝐸(𝑛𝑧), is defined by 

aggregating their values considering their median: 

𝑑𝑧
𝐸(𝑛𝑧) = 𝑚𝑒𝑑𝑖𝑎𝑛{𝑗,𝑘 ∈𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑝𝑎𝑟𝑒𝑡𝑜 𝑠𝑒𝑡} 𝑑𝑧

𝑗,𝑘(𝑛𝑍)    (11) 

The median operator has been chosen since it has been shown to be more robust to possible 

outliers than other operators such as the mean.  

5. Procedure for the validation of the degradation indicator 

The validation of the proposed methodology requires the use of the results of some NDTs, 

for the evaluation of the degradation indicator accuracy. A 10-folds cross-validation procedure 

has been adopted to avoid using the same NDTs data for both the development (“training”) of 

the degradation indicator and the assessment (“testing”) of its performance. The components, 

and consequently their associated data, are randomly divided into 10 folds, then, in an iterative 

scheme, 9 folds are randomly selected -without repetition- and used for the definition of the 

degradation indicator (Sections 4.1, 4.2, 4.3 and 4.4), while the remaining fold is used for 

estimating its accuracy. As accuracy metric, we consider the absolute error between the 

degradation estimation, 𝑑𝑧
𝐸(ℎ), obtained from the median of the features belonging to the Pareto 

optimal set and the corresponding NDT measurement 𝐷𝑧(ℎ):  

𝑒𝑧(ℎ) = |𝐷𝑧(ℎ) − 𝑑𝑧
𝐸(𝑛𝑧

ℎ)|      (12) 



 

Notice that the parameters 𝛼𝑗,𝑘 
𝑧  and 𝛽𝑗,𝑘 

𝑧 of the model developed for the estimation of the 

component degradation level 𝑑𝑧
𝐸(𝑛𝑧) can be updated each time a new NDT result becomes 

available. The first error, 𝑒𝑧(ℎ), refers to the third NDT, i.e. ℎ = 3, and is based on the 

estimation of the parameters 𝛼𝑗,𝑘 
𝑧  and 𝛽𝑗,𝑘 

𝑧 obtained using the results of the first two NDTs, i.e. 

[𝐷𝑧(1), 𝐷𝑧(2)], for each feature belonging to the Pareto optimal set. Once the third NDT has 

been performed, parameters 𝛼𝑗,𝑘 
𝑧  and 𝛽𝑗,𝑘 

𝑧  are newly estimated using the NDT results including 

the third NDT, [𝐷𝑧(1), 𝐷𝑧(2), 𝐷𝑧(3)]. In this way, the error on the estimation of the 4th NDT 

can be computed as 𝑒𝑧(4) = |𝐷𝑍(4) − 𝑑𝑧
𝐸(𝑛𝑧

4)|. 

The mean error (Eq. (13)) and the error standard deviation (Eq. (14)) of the degradation 

indicator in the estimation of the degradation of the generic q-th NDT test are: 

𝐸𝑞 =
∑  𝑒𝑧(𝑞)
𝑍𝑞
𝑧=1

𝑍𝑞
      (13) 

𝜎𝑞 = √
∑ (𝑒𝑧(𝑞)−𝐸𝑞)

2𝑍𝑞
𝑧=1

𝑍𝑞
      (14) 

where 𝑍𝑞 indicates the number of test components that have performed at least q NDTs. Then, 

the total mean estimation error is: 

𝐸̅ =
∑ (𝑍𝑞 𝐸𝑞)𝑞

∑ 𝑍𝑞𝑞
       (15) 

6. Application to nuclear power plants steam generators 

We consider two real case studies involving 𝑍1 = 81 SGs of the 900 MW NPP fleet and 

𝑍2 = 76 SGs of the 1300 MW NPP fleet, respectively. All the considered plants are operated 

by EDF. 

The datasets contain the values of K = 15 signals describing the plant and the SGs behavior 

measured within the period 1991-2017 during periodic tests of type EPRGL-4, which are 

characterized by a decreasing power ramp.  



 

 

Figure 2. Time evolutions of a signal during different EPRGL-4 transients in the 900 MW fleet. 

Measurement values, unit and signal name are omitted for confidentiality. 

During each transient, the signals are acquired for a 2 h period at a sampling frequency of 0.5 

Hz. Figure 2 shows the time evolution of a measured signal during various transients. Dataset 

1 contains a total number of 𝑁𝑡𝑜𝑡
1 = 2694 operational transients of type EPRGL-4 and the results 

of 99 NDTs performed on the different SGs of the 900 MW fleet, whereas Dataset 2 contains 

𝑁𝑡𝑜𝑡
2 = 1901 operational transients and the results of 76 NDTs performed on the different SGs 

of the 1300 MW fleet. In both case studies the NDT results, which assess the real SGs 

degradation levels, are obtained by televisual inspection. 

Although the considered power transients (EPRGL-4) usually last for around 2 h, only the 

decreasing power ramp is a well standardized and repeatable process, whereas the signal 

evolution in the remaining part of the transient remarkably depends on the operational 

conditions and on the demand at the grid side. For this reason, we consider the evolution of the 

signals during a period of approximately 1200 s, which begins 20 s before the time at which the 

power starts a decreasing trend and ends 20 s after the time at which it reaches its minimum or 

1200 s after the starting point, in the case in which the minimum is not reached. The 20 s interval 

is added at the beginning and at the end of the period to ensure that the entire transient response 

to the decreasing ramp is used. The main difference between the two case studies is in the 

behavior of some signals. For example, the power decrease velocity in case 2 changes over time 



 

and the transient duration is relatively shorter (private communication, Vasseur, Schwartz and 

Pineau, 2016). 

7.  Results 

J = 93 features have been extracted from each one of the K = 15 signals of interest in both 

case studies. The threshold 𝜖  has been set equal to 0.1, which is an estimation of the degradation 

assessment error of the televisual inspection NDT. 

7.1. 900 MW NPP fleet data  

A Pareto optimal set formed by 250 features (out of the extracted 15×93) is obtained by 

assigning the same relative importance to all the objective functions, i.e. considering the raw 

values of the objective functions, 𝑓. Figure 3-(a) shows the number of Pareto optimal set 

features extracted from each one of the K = 15 monitored signals. Notice that the largest number 

of features is extracted from signals 10 and 14. Specific information about the considered 

signals, including their physical nature and units of measurement, cannot be disclosed for 

confidentiality reasons. 

Considering that similar feature trends in different SGs of the same plant can be caused by 

the fact that they experience the same operational conditions, features with large trendability 

indexes are not necessarily good degradation indicators. For this reason, we have identified the 

Pareto optimal set associated to the weighted utility function reported in Table 1, in which the 

relative importance of the trendability index, 𝑇. 𝐼.𝑗,𝑘, is kept lower than the one of the 

monotonicity (𝑀. 𝐼.𝑗,𝑘
𝑀𝐾, 𝑀. 𝐼.𝑗,𝑘

𝑑𝑒𝑟) and correlability (𝐶. 𝐼.𝑗,𝑘) indices. Furthermore, considering 

that noisy features, which are not satisfactory degradation indicators, can have large values of 

correlability (𝐶. 𝐼.𝑗,𝑘), the relative importance assigned to the monotonicity indices is larger than 

that assigned to the correlability index. Finally, among the two monotonicity indices (𝑀. 𝐼.𝑗,𝑘
𝑀𝐾, 

𝑀. 𝐼.𝑗,𝑘
𝑑𝑒𝑟), higher importance has been given to 𝑀. 𝐼.𝑗,𝑘

𝑀𝐾 since it is based on a statistic test. 

The Pareto optimal set obtained in this case is formed by 13 features extracted from signals 

7 and 10 (Figure 3-(b)). The results have been verified to be robust with respect to small 

perturbations in the range ± 0.05 of the entries of the weighted utility function of Table 1.  

  



 

 

Table 1. Weighted utility function. 

𝑓𝑖    

𝛺𝑖(𝑓) 
𝑀. 𝐼.𝑗,𝑘

𝑀𝐾 𝑀. 𝐼.𝑗,𝑘
𝑑𝑒𝑟 𝑇. 𝐼.𝑗,𝑘 𝐶. 𝐼.𝑗,𝑘 

𝛺𝑀.𝐼.𝑗,𝑘
𝑀𝐾  1 0.1 0.02 0.08 

𝛺
𝑀.𝐼.𝑗,𝑘

𝑑𝑒𝑟 0.12 1 0.02 0.08 

𝛺𝑇.𝐼.𝑗,𝑘 0.12 0.1 1 0.08 

𝛺𝐶.𝐼.𝑗,𝑘 0.1 0.08 0.02 1 

 

 

Figure 3. Distribution of the number of features of the Pareto optimal set extracted from each 

monitored signal assigning the same weights to all the objectives (a) and the weighted utility function 

of Table 1 (b). 

 

Notice that the use of the modified objective functions 𝛺 allows significantly reducing the 

total number of the Pareto optimal set features. 

Figure 4 shows an example of the degradation level estimation obtained using the 

degradation indicator. In this case, 4 calibration NDT points are needed to calibrate the first 

linear model (Figure 4-(a)), since the difference between the first three NDT points is always 

lower than the threshold 𝜖  = 0.1. Notice that when a new NDT is performed (green crosses) the 

coefficients 𝛼𝑗,𝑘 
𝑧  and 𝛽𝑗,𝑘 

𝑧 of the linear model in Eq.(9) are newly estimated and new, updated 



 

estimations of the component degradation levels are obtained (Figure 4-(b, c)). The degradation 

level in Figure 4 is evaluated as percentage of clogging, with 100% indicating the complete 

occlusion of the quatrefoil holes of the TSP. 

Table 2 reports the performance of the degradation indicator obtained using the modified 

utility function, Ω, in the assessment of the component degradation. The mean error in the 

estimation of the q-th NDT performed on the components, 𝐸𝑞 (Eq.(12)), and the total mean 

estimation error, 𝐸̅ (Eq.(14)), are considered as error metrics. It can be noticed that the majority 

of the errors, (𝐸𝑞), is smaller than 10%, which is comparable with the error of the televisual 

inspection, especially when the degradation level is small.  

Table 2. Performance on the 900MW fleet data.  

Minimum no. 

of 

available q 

measurements  

for a unit 

No. of units 

with 

minimum q 

available 

measurements 

(𝑍𝑞) 

 

 

3 7 
𝐸3 11.5 

𝜎3 7.1 

4 6 
𝐸4 3.2 

𝜎4 1.7 

5 5 
𝐸5 3.3 

𝜎5 1.9 

6 5 
𝐸6 4.9 

𝜎6 4.1 

7 2 
𝐸7 10.7 

𝜎7 2.3 

Total mean error (𝐸̅) 6.2 

Total standard deviation 5.4 

 



 

 

Figure 4. Estimation of SG degradation level in correspondence of different NDTs performed during 

its operation. 

7.2. 1300 MW NPP fleet data  

A Pareto optimal set formed by 103 features is obtained by considering the raw values of the 

objective functions, 𝑓, whereas a Pareto optimal set composed of eight features extracted from 

signals 10 and 11 is obtained when considering the weighted utility function, Ω, reported in 



 

Table 1. Table 3 reports the performance of the degradation indicator developed considering 

the weighted utility function in the assessment of the component degradation. Also in this case, 

the majority of the average estimation error, 𝐸𝑞, of the defined degradation indicator is smaller 

than 10%. Figure 5 shows an example of degradation level estimation for one SG of the 1300 

MW NPP. The obtained results confirm the robustness of the developed method, which is able 

to give an accurate estimation of the degradation level of different components in different 

plants operated under different conditions. 

Table 3. Performance on the 1300 MW fleet data.  

Minimum no. 

of 

available q 

measurements  

for a unit 

No. of units 

with 

minimum q 

available 

measurements 

(𝑍𝑞) 

 

 

3 3 
𝐸3 9.9 

𝜎3 7.9 

4 2 
𝐸4 1.7 

𝜎4 1.3 

5 1 
𝐸5 12.5 

𝜎5 - 

Total mean error (𝐸̅) 7.7 

Total standard deviation 7.0 

 

 

Figure 5. Degradation level estimation for a SG of a 1300 MW NPP. 



 

8. Conclusions 

The adoption of CBM in the nuclear industry requires estimating the degradation level of the 

plant components. In this work, a novel method for the definition of a degradation indicator for 

nuclear power plant components is proposed. It allows using two different sources of 

information: 1) the large amounts of monitored signals collected by the plant supervision 

system and 2) the few available results of NDTs performed to directly assess the component 

degradation. The integration of these two sources of information, which is the main 

methodological contribution of the work, has required the definition of a novel criterion for 

assessing the goodness of a feature as degradation indicator, and the framing of the feature 

selection problem as a multi-objective optimization problem. 

The proposed method has been applied to the assessment of the degradation level of NPPs 

SGs, which is currently done by performing very expensive and resource consuming NDTs. 

The results obtained on real data show its capability of estimating the component degradation 

level using monitored signals with an error comparable to that of NDTs. 
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Appendix A 

The Mann-Kendall test statistic characterizing the j-th feature extracted from the k-th signal 

collected from the z-th component, 𝑆𝑗,𝑘,𝑧, is calculated according to: 

𝑆𝑗,𝑘,𝑧 = ∑ ∑ 𝑠𝑔𝑛 (𝑥𝑗,𝑘
𝑧 (𝑛𝑧

𝑎) − 𝑥𝑗,𝑘
𝑧 (𝑛𝑧

𝑏))
𝑁𝑧
𝑛𝑧
𝑏=𝑛𝑧

𝑎+1

𝑁𝑧−1
𝑛𝑧
𝑎=1    (16) 

where 𝑛𝑧
𝑎 and 𝑛𝑧

𝑏 identify any two transients among the 𝑁𝑧 available for the z-th component and 

the 𝑠𝑔𝑛(𝑥) function is: 

𝑠𝑔𝑛(𝑥) = {

1  𝑖𝑓 𝑥 > 0
0  𝑖𝑓 𝑥 = 0
−1  𝑖𝑓 𝑥 < 0

      (17) 



 

According to (Gilbert, 1987; Sonali and Nagesh Kumar, 2013; Pohlert, 2015), the mean of 

𝑆𝑗,𝑘,𝑧 is zero, i.e. 𝐸[𝑆𝑗,𝑘,𝑧] = 0 and the variance, 𝜎𝑗,𝑘,𝑧
2 , is given by: 

 𝜎𝑗,𝑘,𝑧
2 =

𝑁𝑧 (𝑁𝑧−1)(2𝑁𝑧+5)−∑ 𝑡𝑝(𝑡𝑝−1)(2𝑡𝑝+5)
𝑞
𝑝=1

18
    (18) 

where 𝑡𝑝 is the number of ties for the p-th value and q is the number of tied values. By applying 

the z-transformation (Eq.(19)), a normal distributed variable is obtained. 

𝜁𝑗,𝑘,𝑧 =

{
 
 

 
 
𝑆𝑗,𝑘,𝑧−1

𝜎𝑗,𝑘,𝑧
    𝑖𝑓 𝑆𝑗,𝑘,𝑧 > 0

0    𝑖𝑓 𝑆𝑗,𝑘,𝑧 = 0
𝑆𝑗,𝑘,𝑧+1

𝜎𝑗,𝑘,𝑧 
   𝑖𝑓 𝑆𝑗,𝑘,𝑧 < 0

     (19) 

For every component under consideration, this statistic test gives an output, 𝑀𝐾𝑗,𝑘,𝑧, of value 

1 if the null hypothesis is rejected at the α significance level, i.e. data follow a monotonic trend, 

or 0 if there is insufficient evidence to reject the null hypothesis. 


