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Abstract

Operational flexibility is an integral part of the design of power systems with a high share of

renewable energy sources. Resilience against severe weather is also becoming an important

concern. In this paper, we propose a comprehensive framework for power systems plan-

ning which considers both flexibility and resilience against extreme weather events. A set

of piece-wise linear models are developed to calculate the impact of extreme heat waves

and drought events on the performance of the power generation units and on the system

load. We analyze the results obtained on a case study under real future climate projections

from the Coupled Model Intercomparison Project phase 5 and compare them to those from

conventional planning methods.

Highlights

• A quantitative modeling framework for extreme heat wave and drought events

• An optimization model for resilient power system design against extreme weather im-

pact
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• High shares of renewables improve the system resilience against extreme heat wave

events

• Investigation of the interaction between the flexibility and resilience of power systems
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Nomenclature

Abbreviations

CF Capacity Factor

CLC Closed-Loop Cooling

CMIP5 Coupled Model Intercomparison Project phase 5

CP Conventional Planning

EAC Equivalent Annual Cost

EFS Expected Flexibility Shortfall

HUA Hourly Unit Availability

IGEP Integrated Generation Expansion Planning

IRES Intermittent Renewable Energy Sources

LNS Load Not Served

MILP Mixed Integer Linear Programming

O&M Operation and Maintenance

OTC Once-Through Cooling

PV Photo Voltaic

RCP Representative Concentration Pathway

RP Resilient Planning

VaR Value at Risk

Indexes:

i index of power plant cluster

j index of sub-periods (hours)

w index of sub-periods (weeks)

y index of planning year
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Sets:

I set of power plant per technologies

Inew subset of new power plants technologies available

Ires subset of renewable energy units

Ith subset of thermal and nuclear units

T set of hourly sub-periods

W set of weekly sub-periods

Y set of years in the planning horizon
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Parameters:

Cinv
i investment cost of unit i (Me)

C lns cost of load not served (e/ MWh)

Cmarg
i,y marginal cost of power plant i including the variable O&M and CO2 costs, con-

sidering inflation (e/ MWh)

COM
i fixed O&M costs of power plant i (e)

Cstup
i start-up cost of power plant i (e)

Captmaxi maximum capacity of power plant in technology cluster i (MW)

CFi,y,w,t capacity factor of renewable energy sources i ∈ Ires during hourly sub-period t of

week w, of year y (%)

DRy discount rate for year y (%)

EFORi Expected forced outage rate of power plant i (%)

Loady,w,t system load at hour j, week w in year y (MWh)

Maxbudgety maximum budget available for investment in generation expansion for year y (in

Me)

Mup
i minimum up-time for power plant i ∈ Ith (hours)

Mdn
i minimum down-time of power plant i ∈ Ith (hours)

Pmin
i minimum stable power output of power plant in technology cluster i ∈ Ith

(MW/h)

Penlevel renewable penetration level requirement (%)

Pwrstarti maximum output of power plant i ∈ Ith when started (MW)

Resvmin minimum planning reserve margin (MW)

RmpDnmaxi maximum downwards ramping capability of power plant i ∈ Ith (MW/h)

RmpUpmaxi maximum upwards ramping capability of power plant i ∈ Ith (MW/h)

T consti construction time of power plant i (years)

T lifei expected life-time of new power plant i (years)
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Continuous Variables:

lnsy,w,t load not served at hourly sub-period t of week w, during year y (MW)

pwrgeni,y,w,t energy output of power plant i at hourly sub-period t of week w, during year y

(MWh)

shtdni,y,w,t shut-down decision of unit i during hourly sub-period t of week w in year y

Discrete Variables:

avail unti,y availability (commissioning) state of power plant i in year y

invi,y commissioning decision of power plant i in year y

unt cmti,y,w,t commitment status of power plant i during hourly sub-period t of week w in year

y

strtupi,y,w,t start-up decision of power plant i during hourly sub-period t of week w in year y

1. Introduction

Reliability and security of supply are central considerations for power systems design,

and are key to regional and global energy-related policies [1]. Methods for power systems

planning have typically ensured key reliability aspects under normal operating conditions

and in response to anticipated demand variability and supply disruptions, e.g. due to errors

in load forecasts and to unexpected generation units outages. Solutions have been commonly

built on capacity adequacy and operating reserves requirements.

Recent objectives of environmental sustainability and the threats coming from severe

weather events are challenging in various ways the reliability requirements of power systems

design:

• On one hand, low carbon power systems with a high share of intermittent renewable

energy sources (IRES) are characterized by a sharp increase in inter-temporal net-load

variability. The associated difficulty in anticipating short-term variations brings the

need to consider operational flexibility as a critical design concern of future power sys-

tems [2]. Power systems operational flexibility under a large share of IRES penetration
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have received attention in recent years. Various studies proposed flexibility metrics

[3–6] and planning models [7–11].

• On another hand, increasingly frequent and extreme weather events, such as heat

waves, droughts, floods and storms, significantly affect the operational status of power

systems. Evidence of power generation disruptions due to such events highlights the

fragility of the existing systems. This leads to the need of considering resilience in

the planning of future power systems [12], most notably with respect to events such

as extreme heat waves, which affect both power load and generation units. Heat

waves are among the most worrying weather extremes, due to the expected increase

in their frequency and severity in the 21st century [13, 14]. For example, France

was particularly impacted by the 2003 summer heat wave, which caused an excess of

about 15,000 deaths from 4th to 18th August directly attributable to the heat [15]. By

combining peaks of extreme temperature and severe soil and hydrological droughts, this

event also affected significantly the energy production sector (mainly via the cooling

process of thermal power plants). These last years, numerous regions of the world

experienced severe heat waves with comparable effects: Russia in 2010, Texas in 2011,

Australia in 2012, India and Southern Pakistan in 2015. Therefore, it is of great

importance to design the ability of the energy systems for coping with heat waves in

the future.

Recent research has been dedicated to studying the impacts of extreme weather events on

power systems. Rocchetta et al. [16] presents a multi-objective optimization of distributed

power generation systems considering extreme wind and lightning events. Panteli et al. [17]

proposes a probabilistic methodology to assess the resilience degradation of transmission

networks subject to extreme wind events. In Cadini et al. [18], an extreme weather stochastic

model is applied to a realistic cascading failure simulator of power grids, accounting for the

operating conditions that a repair crew may encounter during an extreme weather event. The

impacts of water availability on the generation capacity expansion planning is investigated

in Cohen et al. [19], and the electricity sector growth is compared under different scenarios
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of water rights. Shao et al. [20] proposes an integrated electricity and natural gas planning

model taking into consideration the power grid resilience against storms, earthquakes and

floods. Ke et al. [21] studies the potential impacts of heat waves on power grid operation,

by quantifying the capacity of thermal power plants as a function of ambient temperature.

Whereas most of those studies focus on evaluating the impact of extreme weather threats

on the operation of power systems, there exist very few studies that incorporate resilience

within the power system design problem itself.

With regards to the above, sustainable and resilient power system design calls for 1)

developing integrated flexibility and resilience frameworks for future investment planning on

power systems with a high share of IRES penetration and 2) assessing different strategies

to mitigate the natural threats and improve system performance. With this perspective, in

this work we extend a previously proposed integrated framework for flexible power systems

planning [11] to include resilience against extreme weather events. In particular, we consider

extreme heat waves and droughts events, and propose systematic methods for assessing their

impact on the design and operation of the system. The main contributions of this work are:

• Proposing a set of piece-wise linear models to describe the impact of different scenarios

of extreme heat waves and water availability on the derating of thermal power units

operation, renewable generation production and system load.

• Explicitly incorporating the extreme weather impact in a modified mixed integer lin-

ear programming (MILP) power system planning model to derive adequate system

investment decisions.

• Extending our previously proposed quantitative framework for operational flexibility

assessment of power systems with a high share of IRES penetration (presented in [11])

to also include their resilience against extreme heat waves and drought events.

• Applying the framework to a practical sized power system planning problem with

realistic future climate projections, for demonstrating the relevance of the proposed

planning approach in terms of system costs and technology choices.
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The rest of the paper is organized as follows. In Section (2), the piece-wise linear model for

describing the impact of extreme heat waves and drought events is described and incorporated

into the power system planning problem. A practical size case study generically based on

the southern French power system is presented under different climate projections and IRES

penetration levels in Section (3). The results shown in Section (4) quantify the impact of

the climate change events from the viewpoints of system costs, flexibility and resilience of

energy supply. Section (5) presents concluding remarks.

2. Methodology

Extreme heat waves affect thermal power plants by reducing their efficiency due to the

derating of their cooling capabilities during the event. Load is sensitive to heat waves as it can

significantly increase during periods of high temperatures due to increased air conditioning

usage. The following section describes a set of piece-wise linear models to quantify these

impacts and integrate them within the power system design problem.

2.1. Piece-wise linear models of the impact of extreme weather events (high temperature and

water availability)

2.1.1. Basic model of thermal power plant cooling systems

Different cooling technologies exist for thermal power generation units. In the event of

extreme heat waves, the impact on the different technologies can be different. Since in a

power systems planning model the choice among the different cooling systems is a decision

variable, it is important to model the specific attributes of each technology separately. In

this study, we consider two main cooling technologies:

- Once-through Cooling (OTC) system: the heated cooling water is returned to the water

source. A large volume of water from the water source is required.

- Closed-loop cooling (CLC) system: water is circulated in the cooling loop including a

cooling tower, where a small portion of cooling water evaporates and is released to atmo-

sphere. Only a small volume of water has to be withdrawn from the water source.
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The required volume of cooling water V req for operating a thermal power plant at its

maximum capacity Pmax is proportional to Pmax and inversely proportional to the increase

of the temperature in the cooling water ∆T [22–24], as follows:

V req ∝ Pmax(1− α)

∆T
(1)

∆T = max
(
min

(
T out max − T in w,∆Tmax

)
, 0
)

(2)

where α is the share of waste heat released into air [%]; this share is small for OTC systems

(α→ 0) whereas it is large for CLC systems (α→ 1); the permissible temperature increase

of the cooling water ∆T is limited by: 1) the regulated maximum permissible temperature

increase of the cooling water ∆Tmax, and 2) the regulated maximum permissible temperature

of the discharged cooling water T out max [22].

We can see that when T in w ≤ T out max−∆Tmax, the maximum permissible temperature

increase of the cooling water is only limited by ∆Tmax, and the required volume of cooling

water V req is, thus, a constant value (V req = V ∗) for ∆T = ∆Tmax. However, a high value of

T in w generally leads to an increase in V req for operating the plant at its maximum capacity.

This increase is significant for OTC systems, whereas it is moderate for CLC systems.

For thermal power plants with CLC systems, it is acceptable to assume that such plants

are robust to water shortages and are independent from water availability [22, 23]. Also, the

dependency to source water temperature can be neglected since any rise in the water tem-

perature can be compensated by increasing the volume of cooling water V req [23]. Instead,

CLC systems are mainly affected by the temperature of cooling water circulated back to the

condenser, T in c, which can be assumed to be close to air temperature [23].

2.1.2. Extreme weather event impact model

We consider extreme heat waves and drought events during summer time (JJAS, 21 June-

20 September) that may force thermal power plants to reduce production owing to scarcity

and high temperature of the cooling water. The intensity of the extreme weather event (ewe)
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of heat wave and drought is modeled by:

ewe = [Tit, Ait],∀i ∈ I, t ∈ T (3)

where Tit is the hourly air temperature at plant i, from which we can calculate the related

stream temperature T in wi based on air-water interaction as follows [24]:

T in wit = tmin +
tmax − tmin

1 + eγ(tip−Tit)
(4)

The parameters for the air/water temperature relationship are derived from the literature

[22, 25, 26]: the minimum stream temperature is assessed to be tmin = 0◦C, the maximum

stream temperature to be tmax = 30.4◦C, the steepest slope to be γ = 0.14 and the air

temperature at the inflection point to be tip = 16.5◦C [27]. The parameter of the extreme

weather event Ait represents the hourly availability (percentage) of intake cooling flow at

plant i, time t and is defined by:

Ait =
min(V src

it , V cpty
i )

V ∗i
(5)

where V src
it is the permissible amount of water flow that can be taken from the water source

at plant i at time t, V cpty
i represents the water extraction capacity of the plant and V ∗i is the

constant amount of the required volume of intake cooling water for plant i when the intake

water temperature T in wit ≤ T out max −∆Tmax, as previously explained in Section (2.1.1).

For thermal power plants using the OTC system, ∀i ∈ I th otc, the ratio of P usable
it to Pmax

i

as a function of Tit and Ait can be expressed by the following piece-wise linear equations for

different ranges of Tit:

zeweit =



P usable
it /Pmax

i = min(1, Ait), T in wit ≤ Thealth

min(1, Ai) ·
[
1− β ·

(
T in w − Thealth

)]
, Thealth ≤ T in wit ≤ Trisk

min(1, Ait) · δ ·
(T out max − T in wit )

∆Tmax
, Trisk ≤ T in wit ≤ Tshutdown

0, T in wit ≥ Tshutdown

(6)

where β is the efficiency degrading rate when T in w is in the range of [Thealth, Trisk] and Trisk

is defined to represent the temperature when the actual maximum discharge of waste of heat
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is equal to the designed value and is given by:

Trisk = T out max −∆Tmax · 1

Ait
(7)

Coefficient δ can be calculated based on the continuation of the piece-wise linear functions

(6) at T in wit = Trisk and is given by:

δ = Ait + β ·∆Tmax − β · Ait · (T out max − Thealth) (8)

The above piece-wise linear equations (6) hold when Trisk ≥ Thealth, i.e., Ai ≥ ∆Tmax/(T out max−

Thealth). For the case where Trisk ≤ Thealth, i.e., Ai ≤ ∆Tmax/(T out max− Thealth) , Ashtgit , we

can simplify the piece-wise linear functions (6) as follows:

zeweit =


min(1, Ait), T in wit ≤ Thealth

min(1, Ait) · Ashtgit · (T out max − T in wit )

∆Tmax
, Thealth ≤ T in wit ≤ Tshutdown

0, T in wit ≥ Tshutdown

(9)

For a thermal plant using the CLC system, ∀i ∈ I th clc, the following piece-wise linear

functions are used to describe the impact of the air temperature (Tit ≈ T in cit ) on the usable

power capacity:

zeweit =

1, Tit ≤ Thealth air

1− ρ · (Tit − Thealth air), Tit ≥ Thealth air

(10)

For renewable generation units, wind power and solar photovoltaic (PV) systems do not

require water to generate electricity and, thus, the capacity of renewable generation will not

be affected largely by an extreme heat wave and drought event. To obtain the future PV and

wind power potential capacity factor (CF), we use the recent CMIP5 data of high-resolution

climate projections (fully described in section (3.2)), together with the wind and PV power

production models proposed in the literature.

Since the wind speed at the turbine height is not a standard output of the climate

projection model, we use near-surface wind speeds at 10 meters V10m and assume a power-

law relationship for extrapolating the vertical wind profile [28, 29]. The velocity at hub
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height H is calculated as:

VH = V10m ·
(
H

10

) 1
7

(11)

Then, the wind speed VH is converted into turbine-generated electric power capacity factor

zit, ∀i ∈ Ires−wind, t ∈ T using a standard power curve, described as follows:

∀i ∈ Ires−windzi =


0, if VH < Vl or VH > V0

V 3
H − V 3

l

V 3
R − V 3

l

, if Vl ≤ VH < VR

1, if VR ≤ VH < V0

(12)

where Vl, VR and V0 are the cut-in, rated and cut-out velocity of a wind turbine, respectively.

Wind power capacity factor is calculated at the grid cell level (defined in the climate projec-

tion model) assuming a unique turbine model for all grid cells (H = 80 m, Vl = 3.5 m/s, VR =

12 m/s, V0 = 25m/s), as in [30, 31]

PV power generation potential depends on solar irradiance, named surface-downwelling

shortwave (i.e., wavelength interval 0.2-4.0 µm) radiation (Rsds) in the climate models, and

other atmospheric variables affecting panel efficiency, i.e., surface air temperature (Tas) and

surface wind velocity (V10m). The PV power generation can be expressed as [32, 33]:

∀i ∈ Ires−pv, zi =
[
1 + γ

(
Tcell − T 0

)]
· Rsds

R0
sds

(13)

where the upper script 0 refers to standard test conditions for which the nominal capacity

of a PV device is determined as its measured power output (R0
sds = 1000 Wm−2, T 0 =

25◦C). Parameter γ is set at -0.005◦C−1, considering the typical temperature efficiency of

monocrystalline silicon solar panels [32]. Finally, the PV cell temperature Tcell is obtained

as:

Tcell = c1 + c2Tas + c3Rsds + c4V10m (14)

where c1 = 4.3◦C, c2 = 0.943, c3 = 0.028◦Cm2W−1 and c4 = -1.528◦Csm−1 [32, 34].

After obtaining the grid cell level renewable (wind and PV) power capacity factors, then,

the regional renewable power potentials can be obtained by averaging all the grid cell levels

inside a given region.
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Power demand is usually sensitive to climatic conditions. To capture this, the power

demand in the extreme weather event is represented by:

Lewet = lt + C l · (T t − T
ref

t ) (15)

where C l is the temperature sensitivity coefficient of power load, e.g., it is around +500MW/+1◦C

during the summer time in France [35]. Here T t and T
ref

t represent the geographical average

values of the projected air temperature and historical reference air temperature, respectively.

2.2. Power system planning model with short-term operational constraints

Operational flexibility in long term planning should be accounted for by considering the

short-term technical constraints of the generating units, such as the unit commitment of gen-

eration units, their ramping capabilities and minimum up and down times, to name a few

[11]. We refer to this class of planning models as the integrated generation expansion plan-

ning (IGEP) models, since it combines both long-term investment constraints and short-term

unit commitment constraints within a single optimization. The multi-period IGEP planning

model used here seeks to minimize the total discounted system cost over the whole time

horizon. These costs include: annualized equivalent investment costs, fixed operation and

maintenance costs, and variable operation costs of the power system (fuel cost, start-up costs

and cost of load not served). The plans obtained are subject to long-term constraints in-

cluding the budget limit, adequacy requirement, renewable penetration level, and short-term

constraints including supply-demand balance, generation limits, unit commitment decisions,

ramping limits and minimum up and down times. The model is formulated as a mixed

integer linear program (MILP) considering annual long-term generation expansion planning

constraints and hourly short-term unit commitment decisions.

2.2.1. Objective function

The objective is the minimization of the total discounted costs over the planning horizon.

Equation (16) represents the total investment costs in new units, equation (17) represents the

total production costs including start-up costs and cost of LNS, and equation (18) represents

the fixed operation and maintenance (O&M) costs. It should be noted that the investment
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cost considered in this model is the Equivalent Annual Cost (EAC) that is obtained by using

the AnnuityFactori calculated as: AnnuityFactori =
1− (1 +DR)−T lifei

DR
. This ensures

the proper relationship between the annual investment and operational costs and the correct

evaluation of the different investment options having different life spans T lifei

min
cost

∑
y∈Y

(1 +DR)−y · AnnuityFactori ·
∑
i∈Inew

Cinv
i · Captmaxi · invi,y (16)

+
∑
y∈Y

(1 +DR)−y ·
∑
w∈W

Weight ·
∑
t∈T

[∑
i∈I

(
Cmarg
i,y · pwrgeni,y,w,t

)
+
∑
i∈Ith

(
Cstup
i · stupi,y,w,t

)
+ C lns · lnsy,w,t

]
(17)

+
∑
y∈Y

(1 +DR)−y ·
∑
i∈I

COM
i,y · Captmaxi ·

y∑
l=1

invi,l (18)

2.2.2. Constraints

Since we consider a multi-period planning horizon, Eq. (19) keeps track of the investment

decisions made in year y taking into account the construction time of the unit following:

avail unti,y =

y∑
l=1

invi,l−T consti +1, ∀i ∈ Inew, y ∈ Y \[T consti − 1] (19)

The maximum allowable discounted investment budget is limited in Eq (20) such as:

(1 +DR)−y ·
∑
i∈Inew

Cinv
i · Captmaxi · invi,y ≤Maxbudgety, ∀y ∈ Y (20)

Eq (21) ensures that the adequacy level requirement is met by ensuring enough firm capacity

to satisfy a reserve margin above the maximum predicted load:∑
i∈Ith

(Captmaxi · avail unti,y) ≥
(
1 +Resrvmin

)
·max
w,t

(Loady,w,t), ∀y ∈ Y (21)

The renewable penetration level required in the system is set through Eq (22):∑
i∈Ires

avail unti,y · Captmaxi ≥ Penlevel ·
∑
i∈I

avail unti,y · Captmaxi , ∀y ∈ Y (22)
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Eq (23) ensures the coupling between investment and operational decisions:

unt cmti,y,w,t ≤ avail unti,y ∀i ∈ I thermal, t ∈ T,w ∈ W, y ∈ Y (23)

The hourly supply and demand balance as well as the amount of LNS is constrained by

Eq (24):∑
i∈I

pwrgeni,y,w,t + lnsy,w,t = Loady,w,t ∀t ∈ T,w ∈ W, y ∈ Y (24)

Eq (25) constraints the hourly unit commitment decisions by the startup and shutdown

decisions:

unt cmti,y,w,t − unt cmti,y,w,t−1 = stupi,y,w,t − shtdni,y,w,t, ∀i ∈ I th, t ∈ T/{1},

w ∈ W, y ∈ Y (25)

The hourly maximum and minimum production levels for thermal units are given in Eq (26)

and Eq (27), respectively:

pwrgeni,y,w,t ≤ (1− EFORi)·Captmaxi ·unt cmti,y,w,t, ∀i ∈ I th, t ∈ T,w ∈ W, y ∈ Y (26)

pwrgeni,y,w,t ≥ Pmin · unt cmti,y,w,t ∀i ∈ I th, t ∈ T,w ∈ W, y ∈ Y (27)

The renewable sources production is limited by the hourly capacity factor CF as given in

Eq (28):

pwrgeni,y,w,t ≤ avail unti,y · Captmaxi · CFi,y,w,t, ∀i ∈ Ires, t ∈ T,w ∈ W, y ∈ Y (28)

Eq (29) and Eq (30) constraint the hourly upwards and downwards ramping capabilities for

thermal units, respectively:

pwrgeni,y,w,t − pwrgeni,y,w,t−1 ≤unt cmti,y,w,t−1 ·Rmpupmaxi + strtupi,y,w,t · Pwrstarti ,

∀i ∈ I th, t ∈ T\{1}, w ∈ W, y ∈ Y (29)

pwrgeni,y,w,t−1 − pwrgeni,y,w,t ≤unt cmti,y,w,t−1 ·RmpDnmaxi ,

∀i ∈ I th, t ∈ T\{1}, w ∈ W, y ∈ Y (30)
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Finally, Eq (31) and Eq (32) ensures that the minimum allowable up and down times for

thermal units are respected:

unt cmti,y,w,t ≥
t∑

τ=t−Mup
i

strtupi,y,w,τ ∀i ∈ I th, t ∈ T\[Mup
i ], w ∈ W, y ∈ Y (31)

avail unti,y − unt cmti,y,w,t ≥
t∑

τ=t−Mdn
i

shtdni,y,w,τ , ∀i ∈ I th, t ∈ T\[Mdn
i ],

w ∈ W, y ∈ Y (32)

2.2.3. Integrating resilience requirement into system design

The impact of an extreme weather event to the power generation system is measured by the

decrease of the generation capacity of affected thermal and PV plants, and the increase of

power demand, as given above. Then, the power generation system resilience is evaluated

by a deterministic metric, which is referred to as the total load not served (LNS) during the

period of the extreme weather event, and is defined as:

LSeweyt =

(
Loadeweyt −

∑
i∈I

pwrgeneweiyt

)
, ∀y ∈ Y, t ∈ T ewe (33)

pwrgeneweiyt ≤ zeweiyt · Captmaxi · unt cmtiyt, ∀i ∈ I, y ∈ Y, t ∈ T ewe (34)∑
t∈T ewe

LSeweyt ≤ LSmax, ∀y ∈ Y (35)

where unt cmtiyt is the unit commitment state of generation units of technology i at time t

in year y, and zeweiyt is the efficiency factor of the generation units of technology i during the

extreme weather event, calculated using the above piece-wise linear equations (6)-(14), and

T ewe is the total duration of the event. Equation (33) calculates the total amount of load

shedding LS in each year y during the extreme weather event as the difference between the

hourly demand and the total power generation from all power units. Equation (34) limits

the power generation output pwrgen of generation units of technology i at year y during the

extreme weather event t ∈ T ewe to the efficiency factor zeweiyt . Finally, constraint (35) limits
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the amount of load shedding allowed during the extreme weather event LSeweyt to a maximum

limit LSmax.

It should be noted that the resilience metric used here is focused on the ability of the

power system to mitigate the impact of the extreme heat wave and drought events and not on

the recovery from those events. This is because in these specific extreme weather events the

main action is to reduce the thermal units production levels or to shut them down completely

to avoid overheating and further damages to the units, so that recovery of normal operation

is immediate once weather conditions go back to normal.

2.2.4. Assessing the flexibility of the power system design

High shares of IRES production increase the inter-temporal variability of the remaining

net system load. Enough available thermal units, then, need to be operational and sufficiently

flexible to cope with these variations and ensure production reliability. Proper metrics are

needed to evaluate the operational flexibility of the plans obtained under different weather

and IRES scenarios.

In this work, we adopt the Expected Flexibility Shortfall (EFS) metric presented in [11].

This probabilistic metric takes into account detailed technical and temporal attributes of the

thermal units to quantify the system ability to meet inter-temporal variations. Figure (1)

shows a schematic illustration of the EFS calculation method.
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INPUT: thermal units hourly production, unit availability, 
unit commitment status, technical units characteristics

Calculate actual hourly unit availability (HUA) based on start-up and 
shut-down decisions, and minimum down times

Calculate available flexible resources at each hour based on HUA 
maximum ramping capacity and production limits

Calculate hourly net-load ramping time series as:
Hourly load – IRES production

Calculate the time series of hourly flexibility losses as:
|net load ramping – available flexible resources|

Calculate the Value-at-Risk (VaR) for the losses time series 
at the desired confidence level

Calculate the EFS as the average loss for observations 
exceeding the VaR level, at the respective confidence interval.

INPUT: IRES units hourly 
production, system load

Aggregated for all thermal units Aggregated for the whole planning horizon

Figure 1: EFS calculation

3. Power system characteristics and climate scenarios

3.1. Power system modeling

We consider a multi-annual planning horizon representing the period between the year

2041 to 2046. Linear regression is used to obtain the system hourly load from the historical

electricity load time series of France from the year 2008 to 2012 (publicly available at [36]),

assuming a growth of 1% to 1.5% from the beginning to the end of the planning horizon.

The cost data for the generation technologies considered for the expansion planning are

based on the IEA/NEA Projected Costs of Generating Electricity report (2015) [37]; the

remaining technical characteristics are assumed based on values found in the literature and

are summarized in Table (1).
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Table 1: Technical parameters for power generation technologies

Technology Nuclear Coal CCGT Solar-PV On-shore Wind

Maximum Capacity per installed unit [MW ] 1400 1100 550 60 80

Minimum stable load [MW ] 700 550 165 0 0

Maximum upward ramping [MWh/min] 0.5%Pn/min 1.5%Pn/min 5%Pn/min / /

Maximum downward ramping [MWh/min] 0.5%Pn/min 1.5%Pn/min 5%Pn/min / /

Minimum up time [hours] 12 6 3 / /

Minimum down time [hours] 24 10 5 / /

Start-up cost [ke] 15.0 11.26 7.53 / /

Thermal generation units can be equipped with one of two different cooling technologies,

that have different cost and technical characteristics. Under normal conditions, cooling

towers with recirculating water (CLC) reduce the overall efficiency of power plants by 2−5%

compared to once-through use of water from seas, lakes or large streams (OTC). Thus, these

towers are associated with larger operational/marginal costs compared to OTC systems.

Moreover, the investment costs of CLC systems are around 20% higher than those for OTC

systems. Table (2) summarizes the specific technical and cost parameters of the generation

units equipped with each cooling technology [23, 38, 39].

Table 2: Technical and economic characteristics for the different generation technologies

Technology β/ρ/ Cpv Thealth/Thealth air/T
ref pv Tshutdown Tout max ∆Tmax Cinv

i C
mrgl
i

[i] [%] [◦C] [◦C] [◦C] [◦C] [Me/MW ] [e/MWh]

Nuclear-OTC 0.44 15 32 32 10 3.95 13.84

Nuclear-CLC 0.44 10 / / / 4.74 14.11

Coal-OTC 0.97 15 32 32 10 2.08 38.97

Coal-CLC 0.94 10 / / / 2.60 39.75

CCGT-OTC 0.31 15 32 32 10 1.02 70.16

CCGT-CLC 0.30 10 / / / 1.22 71.50

Solar-PV 0.50 25 / / / 1.5 1.71

On-Shore Wind / / / / / 1.9 2.16

Within the optimization planning framework, the investment decisions are grouped by

technology option using the unit clustering method proposed in [40]. The yearly load is op-

timally approximated by four representative weeks as proposed in [41] and the chronological

order within each week is maintained. This is especially important for correctly capturing the

operational flexibility attributes of the system while ensuring the computational tractability

of the optimization problem. An additional week corresponding to the one containing the
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peak summer load is, then, added to simulate the impact of the heat wave and drought

events during summer time.

3.2. Climate projections data of heat wave and drought events

Historical baseline temperature as well as future temperature projections for the years

2041 to 2046 are based on data obtained from the Coupled Model Intercomparison Project

(CMIP5) experiments [42]. Similarly, wind speeds and solar irradiance data used to calculate

the wind and solar CF are obtained from the CMIP5 experiments, following the models

presented in section (2.1.2). We consider three Representative Concentration Pathways

(RCPs) that cover the impact of different trajectories of greenhouse gas concentration on

future climate, compared to pre-industrial levels. In particular, we consider the RCP 8.5,

RCP 4.5 and RCP 2.6, which represent an increased in radiative forcing of +8.5 Wm−2,

+4.5 Wm−2 and +2.6 Wm−2 respectively, compared to pre-industrial values. Table (3)

summarizes the details of the CMIP5 experiments used for the different climate projections.

Table 3: Details of the experiments used for the historical and projected temperature scenarios

Experiment

type

Modeling Cen-

ter (or group)

Institute ID Model Name Experiment Period Variable Frequency

Historical

(baseline)

Meteorological

Research In-

stitute

MRI MRI-CGCM3 historicalEXT 2008-2012 tas 3hr

Projection Centre Na-

tional de

Recherches

Mtorologiques

CNRM CNRM-CM5 rcp85, rcp45,

rcp26

2041-2046 tas 3hr

Projection Meteorological

Research In-

stitute

MRI MRI-CGCM3 rcp85, rcp45,

rcp26

2041-2046 uas, vas, rsds 3hr

Since we are primarily interested in extreme weather scenarios related to the region of

southern France, the climate data considered have been limited to the geographical scope

of interest: that is, data spanning the longitudinal and latitudinal scope of approximately

(W2◦35′00′′−E8◦10′00′′) and (N46◦06′00′′−N41◦19′00′′), respectively. To quantify the im-

pact of an extreme heat wave, the average temperature time series as well as the average

wind and solar CF are, then, computed for the geographical area considered, for each pro-
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jected climate scenarios. Regarding water availability levels, different water level scenarios

during the heat wave events are assumed to cover: high availability levels (A > 1), normal

levels (A = 1) and low availability levels (A < 1).

4. Results and discussion

4.1. Impact of extreme heat wave and drought events on system load and efficiency of power

generation

We start our investigation with a focus on future climate parameters obtained from

the RCP 8.5 experiments, which is the representative concentration pathway assuming no

decrease in current carbon emission trends throughout the 21st century. Significant temper-

ature increase during the summer period is observed under the Representative Concentration

Pathway (RCP 8.5), compared to the historical baseline scenario. The impact of this tem-

perature increase on the load and power generation units are computed for a typical summer

week for each year of the planning horizon. As an example, Figure (2) illustrates the pro-

jected temperature increase and its impact on system load during the period between the

30th of July and the 6th of August for the year 2041 in southern France, compared to the

historical average levels in the same period and location. The temperature difference is seen

to reach levels of +9.2◦C, while its impact on the system load (calculated as per the proposed

impact model) can increase up to +1840 MWh. Similar order of differences are observed for

the other planning years considered.
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Figure 2: Temperature difference and its impact on system load during the period between the 5th and the

12th of August, for both the baseline and the projected scenarios
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The effect of heat wave and water shortages on the efficiency of thermal units depends

on the cooling technology deployed. We consider three different levels of water availability

and calculate their impact on the efficiency of thermal units during the heat wave event.

Figure (3) illustrates the resulting efficiency for nuclear power plants during a heat wave and

under different water availability levels, using data for the year 2041. It can be seen that

OTC-based generators are highly affected by water shortages, compared with CLC units,

which are impacted by the heat wave but maintain the same efficiency levels regardless of

the water availability level.
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OTC (A=0.75)

Figure 3: Example of nuclear generation units efficiency derating during a heat wave event for different

cooling technologies (OTC and CLC) and under different water availability scenarios (high availability: A

> 1, normal availability: A = 1, low availability A < 1)

4.2. Resilient power system planning vs conventional planning

Resilient power systems planning should account for the impact of extreme weather

events as an integral part of the planning problem, as discussed in the previous sections. We

compare the resilient plans (denoted RP) to conventional plans (CP), obtained assuming no

climate impact on the efficiency of the generation units. CP future investment plans are,

then, used to simulate operation under different realizations of climate scenarios, to assess

operational performance. We focus first on the results obtained under no IRES penetration

level requirements.

The total amount of load not served (LNS) during the heat wave period is taken as the

primary performance measure for the plans obtained. Figure (4) illustrates the resulting

LNS for both RP and CP under the extreme weather events. The results show a significant
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load loss for the conventionally planned systems, that sharply increases with the worsening of

the climate conditions. The loss reaches up to 851 GWh under the worst scenario of climate

impact. This is not the case for the RP, which are shown to suffer an LNS significantly lower

than CP, with a maximum of 17 GWh under the worst scenario of climate impact.
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Figure 4: LNS during different extreme weather events. Comparison between RP and CP under no IRES

penetration.

In terms of system costs, RP have overall higher annualized investment and operational

costs compared to CP, as can be seen in Figure (5). This is directly related to the fact

that for RP the extreme weather impact on the power system is taken into account and

so the plan compensates the lower thermal units efficiency by investing in more and better

performing units. The slightly higher investment and operational costs, however, are fully

offset by the reductions in LNS costs, as can be seen in Figure (5). The maximum difference

between the total annualized investment and operation costs of the RP compared to the CP

is equal to 1.23 Be (low water availability scenario in Figure (5)), while the LNS cost saving

for the same scenario is around 9.52 Be.
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Figure 5: Comparison between RP and CP costs subject to different extreme weather events under no IRES

penetration.

Next, we extend the analysis to evaluate the impact of increasing IRES penetration

levels on the system performance. Most notably we consider 0%, 25% and 50% IRES energy

penetration levels (percentages of total system load) and solve the optimization problems

under all extreme weather events, for both the RP and CP.

Figure (6) shows the impact of the increasing share of IRES levels on the LNS of the

system during the extreme weather events, for RP and CP. Higher IRES penetration has a

clear effect on reducing the amount of LNS during the extreme events. RP maintain low

LNS levels in all cases considered, and slightly improves with increasing IRES levels, while

CP show a significant decrease in LNS as IRES power compensates for the lack of system

resilience.
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Figure 6: Impact of high IRES penetration on LNS during different extreme weather events.

Moreover, it is shown that the increased IRES capacity reduces the gap between RP and

CP, in terms of annualized investment and operational costs. For example, the difference in

the total annualized investment and operation costs between the RP and CP plans decreases

from +5.70% to +1.60% under the 0% and 50% IRES levels respectively, under the “Extreme

heat wave - Low water availability” scenario in Table (4). The same trends are also found

under the other extreme weather scenarios considered.

RDPM CPM
Difference 

(% wrt CPM) RDPM CPM
Difference 

(% wrt CPM) RDPM CPM
Difference 

(% wrt CPM)
0% IRES 7.19 6.95 3.52% 14.72 14.54 1.20% 1.38 2.09 -34.07%

25% IRES 9.37 9.37 0.05% 14.12 13.99 0.95% 1.21 1.46 -16.92%
50% IRES 12.92 12.92 0.04% 14.29 14.14 1.03% 0.61 0.89 -32.13%
0% IRES 7.51 6.95 8.02% 14.93 14.55 2.57% 1.20 4.15 -71.19%

25% IRES 9.55 9.37 2.00% 14.13 14.00 0.95% 1.26 2.36 -46.86%
50% IRES 13.05 12.92 0.99% 14.30 14.15 1.04% 0.65 1.61 -59.82%
0% IRES 7.55 6.95 8.63% 15.17 14.55 4.30% 1.18 10.70 -88.95%

25% IRES 9.66 9.37 3.09% 14.30 14.01 2.03% 1.22 6.15 -80.08%
50% IRES 13.17 12.92 1.92% 14.35 14.17 1.32% 0.63 4.37 -85.51%

RP CP
Difference 
(% wrt CP) RP CP

Difference 
(% wrt CP) RP CP

Difference 
(% wrt CP)

0% IRES 7.19 6.95 3.52% 14.72 14.54 1.20% 21.91 21.49 1.95%
25% IRES 9.37 9.37 0.05% 14.12 13.99 0.95% 23.49 23.35 0.59%
50% IRES 12.92 12.92 0.04% 14.29 14.14 1.03% 27.21 27.06 0.56%
0% IRES 7.51 6.95 8.02% 14.93 14.55 2.57% 22.43 21.50 4.33%

25% IRES 9.55 9.37 2.00% 14.13 14.00 0.95% 23.69 23.37 1.37%
50% IRES 13.05 12.92 0.99% 14.30 14.15 1.04% 27.34 27.07 1.01%
0% IRES 7.55 6.95 8.63% 15.17 14.55 4.30% 22.72 21.50 5.70%

25% IRES 9.66 9.37 3.09% 14.30 14.01 2.03% 23.95 23.38 2.46%
50% IRES 13.17 12.92 1.92% 14.35 14.17 1.32% 27.52 27.08 1.60%

LNS Cost [BEuro]

Total inv + op costs 
[BEuro]

 Extreme heat 
wave scenario

Normal water availability

Low water availability

Normal water availability

Low water availability

High water availability

High water availability

 Extreme heat 
wave scenario

Investment Cost [BEuro] Operating Cost [BEuro]

Annualized Investment Cost 
[BEuro]

Operating Cost (excluding LNS) 
[BEuro]

Table 4: Comparison of RP and CP costs under different IRES penetration levels and extreme weather

events.

4.3. Impact of extreme weather events on technology choice and system flexibility

The previous section has illustrated how power system RP cope with the detrimental

impact of extreme weather events, with no significant increase in the system cost. We analyze
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in details the choices in the RP under the different scenarios. Most notably, the generation

technology choice and capacity installed are major contributors to the system performance.

Figure (7) summarizes the investment capacities and technologies choices under the different

extreme weather events and IRES penetration levels. For clarity, the results illustrate the

total capacity installed per each cooling technology type (OTC-based capacity vs CLC-based

capacity) summed over all thermal power plants installed, under each scenario.
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Figure 7: RP technology choice and capacity installed under different IRES penetration levels and extreme

weather events.

The results show a clear shift from (the cheaper) OTC-based capacities to the (more

expensive) CLC-based technology when the heat wave event is accounted for, primarily as

a result of internalizing in the system design the impact of the extreme event. This shift to

CLC-based units further increases considering lower water availability levels during the heat

wave event. The results also show that the total capacity of all technologies installed does

not in fact vary in response to different extreme weather events but is rather significantly

impacted by the amount of IRES penetration in the system, for an average of 39.3GW,
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64.8GW and 101GW for the 0%, 25% and 50% IRES penetration scenarios, respectively,

with low standard deviations of 2.9, 0.5 and 0.08 within each IRES scenario. On the other

hand, the significant increase of capacity installed across different IRES penetration scenarios

is directly attributed to the increased capacity required to satisfy the operational flexibility

needs of the system under these scenarios, as has been discussed in previous work [11].

We finally explore how the operational flexibility of the RP and CP plans are affected

by the different extreme climate events. Table (5) summarizes the EFS results at the 99%

confidence level, for all IRES and climate scenarios. It can be seen that when the extreme

weather events are not taken into account in the planning phase (as per the CP), the op-

erational flexibility shortage is multiple times that of its RP counterpart under the same

extreme weather events. This flexibility shortage difference further increases considering

higher levels of IRES penetration. For instance, the EFS reaches approximately 7355 MW

for CP compared to 27655 MW for RP, during the extreme weather event for a system with

50% share of IRES capacity. The flexibility shortages, however, are significantly lower than

the load losses for the CP due to the lack of resilience, which were shown to be in the order

of several hundred GWh in the previous sections. This is important to note since both RP

and CP accommodate the operational flexibility attribute.

RP CP

High water availability 28.84 3359.03
Normal water availability 785.57 4588.56

Low water availability 1933.98 5375.94
High water availability 752.57 1732.63

Normal water availability 1472.30 5050.12
Low water availability 1621.71 4435.47
High water availability 618.18 1281.81

Normal water availability 1038.70 3981.68
Low water availability 2655.01 7354.27

EFS [MW] 
(99% condifdence level)

Extreme heat wave 
scenario

50% IRES

0% IRES

25% IRES

Table 5: Expected Flexibility Shortfall (EFS) of RP under different IRES penetration levels and climate

scenarios.
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4.4. Sensitivity of the results for different climate projections (RCP8.5, RCP4.5 and RCP2.6)

In the previous sections, we have shown the improvements achieved by RP which account

for extreme heat waves and drought events. Both RP and CP were optimized and/or eval-

uated under the climate parameters of the RCP 8.5, that is the most pessimistic radiative

concentration pathway for the 21st century. In this section, we perform a sensitivity analy-

sis considering other RCP projections from the CMIP5 climate experiments to confirm the

relevance of the planning framework proposed under less pessimistic concentration pathways.

RCP 2.6 and 4.5 climate data are used to calculate future power system operating con-

ditions. Most notably, solar irradiance and wind speed data are used to obtain wind and

solar-PV CF, and temperature data during the summer period are used to simulate the

future heat wave scenarios and their impact on thermal generators. We, then, use the RP

and CP under the RCP 8.5 scenario to check their operational performance under the other

RCP scenarios.

Figure (8) shows the performance of the RP and CP obtained under the RCP 8.5, in

terms of LNS during the extreme heat event under all RCP pathways considered. The

values shown are the average LNS amounts for all water availability scenarios per each RCP.

The results confirm the consistently lower LNS for the RP under all RCP scenarios and for

all IRES penetration levels. In addition, as expected, the LNS decreases as less pessimistic

RCP scenarios are considered. For example, the average LNS for the RP under 0% IRES

penetration decreases from 10 GWh for the RCP 8.5 to 0.05 GWh for the RCP 2.6 scenarios.
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Figure 8: Average amount of LNS under each RCP scenario (8.5, 4.5 and 2.6) and IRES penetration levels

(0%, 25% and 50%). Comparison between the results for RP and CP.

With regards to the operational flexibility, the results reported in Figure (9) show the

average EFS of the plans obtained under all extreme weather events for different IRES

penetration levels. Less obvious trends can be found for the operational flexibility levels of

the obtained plans across the different RCPs, as measured by the EFS metric. It can be

confirmed, however, that RP consistently outperform CP also in terms of flexibility, as can

be seen in the overall lower shortage levels illustrated in Figure (9). The improved flexibility

performance of the RP highlights an important interaction between the resilience of the

system and its flexibility, and the compound impact of failing to consider either aspect in

the power system design phase.
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Figure 9: Average amount of EFS under each RCP scenario (8.5, 4.5 and 2.6) and IRES penetration levels

(0%, 25% and 50%). Comparison between the results for the RP and CP.

5. Conclusions

In this work, we propose a framework for power systems planning considering operational

flexibility and resilience against extreme weather events. Specifically, we propose a set of

piece-wise linear models to quantify the impact of extreme heat waves and drought events,

and propose methods to integrate their impacts within the power system planning models.

We investigate a practically sized case study based on realistic climate projections and

system attributes representatives of the southern French geographical area. Several extreme

climate scenarios related to heat waves and water shortages are investigated and the results

are compared between the resilience-driven planning framework proposed and the conven-

tional planning results.

The results show that significant improvements in terms of load supply during an ex-

treme heat wave and drought events can be achieved under the resilient planning framework

compared to conventional planning. It is also shown that although these improvements

come at higher investment and operational costs, they are fully offset by the economic sav-

ings achieved by reducing the amount of load loss during those events. In terms of system

flexibility, the results further show that although the plans obtained have higher flexibility

shortage levels, they keep at least an order of magnitude lower than the load losses due
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to the lack of system resilience. This further highlights the advantage of adopting such

comprehensive planning framework.

The modeling and optimization framework presented here can be directly extended to

multi-regional planning, to account for the differences in weather conditions across the differ-

ent regions. Moreover, since extreme weather events are uncertain and stochastic in nature,

the presented deterministic framework for resilient power system design can be improved by

accounting for the uncertainties within a probabilistic framework.
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