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Abstract

Maintenance is fundamental for the safe and profitable operation of many criti-

cal assets, including gas networks. The inherent complexity of these assets and

budgetary constraints pose significant challenges to the decision-making related

to maintenance management, which requires trading-off among conflicting ob-

jectives while respecting technical and normative constraints. The difficulty of

such decision-making is due to incomplete knowledge about the technical pa-

rameters, operating conditions and degradation states of the components. We

address the challenge by proposing a risk-based maintenance framework for sup-

porting decision makers in selecting maintenance plans that are optimal with

respect to the objectives and constraints considered. We apply Robust Portfolio

Modeling (RPM) to identify those maintenance decisions that are most effec-

tive for reducing the severity and likelihood of failures in the gas network. RPM

allows us to handle partial knowledge on the objective values and on the pref-

erences of decision-makers. We lay down the complete steps of the framework,

including the quantification of the likelihood of failures and their consequences

for the population and for the gas network operation. The framework is demon-
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strated on the high pressure natural gas pipeline network of Great Britain. The

results reveal that if there are no constraints on the budget, maintenance actions

are focused on some critical zones, e.g. Scotland and the southernmost part of

England. Instead, if fixed maintenance budgets are allocated to different areas,

the maintenance projects selected are sub-optima and a smaller risk reduction

is achieved over the maintenance horizon.

Keywords: Maintenance, Natural Gas Networks, Robust Portfolio Modeling,

Failure Likelihood and Severity

1. Introduction

High-pressure Natural Gas Networks (NGNs) are complex systems that

transfer natural gas to off-takes spread over vast areas and provide a primary

resource to produce electricity. Failures in the pipelines that transport the

flammable natural gas can compromise the network stability and cause acci-5

dents with significant damages to the surrounding environment and population.

In practice, maintenance budgets are such that they require prioritization of the

maintenance interventions on the different portions of the infrastructure.

To address the problem of maintenance budget allocation, decision makers

(DMs) can rely on Multi-Criteria Decision Making (MCDMs) models. For in-10

stance, Marsaro et al. propose a framework to minimize the impact of accidents

in natural-gas pipeline networks, with respect to human, financial and environ-

mental consequences [1]. Candian et al., apply the Analytic Hierarchy Process

(AHP, [2]) for the prioritization and selection of maintenance plans from a port-

folio of possible ones ([3]). Pilavachi et al., use MCDM models to select the15

least risky technologies among different alternatives for building natural gas and

hydrogen-fired power plants [4]. MCDM models have been applied for pipeline

risk assessment by Jamshidi et al. ([5]), where the relative risk score methodol-

ogy ([6, 7]) and fuzzy logic ([8]) are integrated to treat imprecise information.

In Dey et al. ([9]), the Analytic Hierarchy Process is used to characterize risk20

and allocate maintenance budget. The optimal operating conditions of a nat-
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ural gas network are identified in ([10]) via a multi-objective genetic algorithm

considering three conflicting objectives, i.e. gas delivery flow and line pack, to

be maximized, and operating cost, to be minimized.

Despite the successful application to literature case studies, MCDM models find25

limited use in real gas network contexts, because they are unable to address some

practical problems, i.e.,

• handle the incomplete knowledge of the parameters influencing network

operations and, thus, the values of the projects with respect to the objec-

tives;30

• accommodate the imprecision in the decision maker’s preference state-

ments about the importance of the decision objectives;

• consider synergies among the projects and other mutual inter-dependencies

or constraints (e.g., the minimum amount of projects per area);

• use optimization algorithms capable of identifying non-dominated project35

portfolios from a large (i.e., a few thousands) set of candidate alternatives.

The aforementioned issues can be effectively addressed by the Robust Portfo-

lio Modeling (RPM) technique ([11, 12]), which has been successfully applied

in [13] to select cost-effective portfolios (i.e., sets) of projects in support to

maintenance budget allocation for transportation networks. Moreover, the non-40

deterministic optimization algorithm used therein can identify the subsets of

the portfolio Pareto set, in acceptable computational times [13]. RPM has also

been applied in [14] for maintenance budget allocation in sewerage networks,

where a Risk-Based Maintenance (RBM) approach has been embraced ([9, 15]).

There, the maintenance allocation issue is framed as a two-objective decision45

problem, considering risk and cost: the larger the reduction in the overall asset

risk yielded by maintaining a given network item, the higher the priority of the

maintenance project. By embedding the RBM approach within RPM, resources

can be cost-effectively allocated to provide a high priority to high-risk items,

while still guaranteeing the adequate effort on low-risk items.50
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Building on [14], RPM has been investigated in [16] in support to RBM of

pipelines for a scaled-down model of the National Grid (NG) high-pressure

NGN. This preliminary work makes several simplifying assumptions, which are

overcome in the present work, in an effort to build a full-fledged methodology

in support to maintenance decision making in real gas network maintenance55

management problems.

In this paper, we propose a risk-based maintenance framework to support de-

cision makers in the selection of optimal maintenance plans. The framework

applies RPM to identify those maintenance actions which can most reduce the

severity and likelihood of failures in the gas network. The framework includes60

the quantification of failure probabilities and of failure consequences for the

surrounding population and the operation of the gas network. In details, the

following advancements are introduced: (i) both risk factors (i.e., failure likeli-

hood and failure severity) are thoroughly characterized through the identifica-

tion and characterization of their relevant sub-factors (e.g., external corrosion,65

third party actions for failure probability); (ii) Geographic Information System

(GIS) data are used to estimate the values of the maintenance plans with respect

to some of the identified risk sub-factors; (iii) sequential portfolio selection is

considered on an horizon of multiple years, and with different objectives and

constraints: this allows investigating how the network risk changes over time,70

and correspondingly the maintenance allocation.

The remainder of the paper is organized as follows. Section 2 introduces RBM

and RPM. Section 3 describes the risk assessment methodology for NGNs and

details the procedure to estimate the failure probability for the different failure

modes of the pipelines. Section 4 illustrates the approach for the estimation of75

the failure severity. Section 5 presents the quantification of failure severity and

failure probability. Section 6 shows a practical application of the framework to

the case study of the NGN of Great Britain. Section 7 outlines some consid-

erations about the applicability of the methodolgy to other contexts. Finally,

Section 8 concludes the paper.80
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2. Risk-based maintenance of large NGNs

In the RBM framework for NGN maintenance, the risk of failure, R, is con-

sidered as the driving criteria to allocate maintenance efforts on the network.

The factors characterizing risk are: likelihood of the occurrence of the failure

event and severity of the impact of the failure on people, properties, environ-85

ment, safety, production, etc.

To identify the gas network elements impacting most on these two risk factors,

we build on [9], [15] and [16], and propose a framework for selecting the rele-

vant risk sub-factors and estimating their values in the alternative maintenance

projects. Due to incomplete knowledge on the network technical and opera-90

tional parameters, these values are affected by uncertainties, here represented

as intervals of possible values.

In this study, the maintenance action performed on a pipeline corresponds to

its replacement, which reduces the failure probability by removing the effects

of aging and degradation. The cost of a maintenance action depends on the95

length of the replaced pipeline segment. Costs are imprecisely known and their

estimates are also provided as intervals of possible values.

RPM is applied to identify the portfolios of pipeline segments which have the

largest impact on reducing risk at the smallest maintenance costs. Details of

the RPM approach are provided in Appendix A.100

3. Pipeline Failure Probability

According to [17], the pipeline failure probability mainly depends on external

corrosion, internal corrosion and third party actions. In this Section, we outline

a procedure to quantify the contributions of these sub-factors to the failure

likelihood.105

3.1. External Corrosion

External corrosion is caused by the propagation of corrosion defects along the

pipeline wall thickness, which can ultimately lead to gas leakage, burst or asset
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disruption [18]. In this study, we focus on the localized corrosion phenomena,

which result in faster defect growth as compared to generalized corrosion, and,

consequently, pose more severe threats to pipeline asset integrity [19].

Empirical studies show that the localized defects growth is well represented

by a lower-than-one power law trend [18, 20]. Accordingly, the most broadly-

accepted model is the one introduced by [21], which reads

dmax(t) = k(t− t0)a (1)

where dmax(t) is the maximum external defect depth at time t, whereas t0 is

the corrosion starting time. Coefficients k and a can be estimated through

the following weighted sums of parameters related to the properties of the soil,

where the pipe is buried [22, 23]

k = k0 + k1 × rp+ k2 × pH + k3 × re+ k4 × cc+ k5 × bc+ k6 × sc

a = a0 + a1 × pp+ a2 × wc+ a3 × bd+ a4 × ct
(2)

where rp is the soil red-ox potential in mV; pH is the soil pH; re is the soil

resistivity in Ω × m; cc, bc and sc are the chloride, bicarbonate and sulphate

contents of the soil, respectively, measured in ppm. Table 1 shows for different

soil types, the probability distributions with corresponding parameters describ-110

ing the uncertainty in these values [22, 24].

Coefficients k0, ...., k6 depend on the properties of the soil (Table 2).

The empirical relationship for coefficient a in Equation 2 contains pp, i.e. the

pipe-to-soil potential measured in mV, wc, i.e. the percentage water content,

bd, i.e. the soil bulk density in g/mL. These parameters are described by the115

probability distributions in Table 1.

Empirical coefficients a0, ..., a4 are reported in Table 2 ([22, 24]). Finally, ct is

a scoring factor related to the pipe coating type and soil type (Table 3).

The failure probability by external corrosion at time t, PE(t), is estimated

by checking the corrosion depth against three failure thresholds g1, g2 and g3120

[25], which correspond to the safety limits for small leakage, burst and rupture,

respectively. These threshold values are defined as
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Table 1: Soil properties and corresponding probability distributions [22, 24]. Mean and vari-

ance are reported in brackets.

Table 2: Coefficients of Equations 1 and 2 for the four types of soil analyzed in this study

[22, 24].

Table 3: Scoring factors, ct, and coating type frequency by soil category for the four types of

soil examined in this study [22, 24].
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g1 = 0.8th− dmax(t) (3)

g2 = rb(t)− p (4)

g3 = rrp − p (5)

where th is the pipeline wall thickness; p is the pipeline internal pressure; rb

and rrp are the burst and the rupture pressure, respectively. Details on the

threshold models are reported in Appendix B.125

The following Monte Carlo (MC) simulation procedure has been applied for

propagating the epistemic uncertainties on the model parameters related to the

soil type [25] (Table 1) onto the reliability of each pipeline segment:

1. Once the type of soil in which the pipeline is buried is identified, the

parameters related to its properties are sampled from the corresponding130

distributions in Table 1 to estimate parameters k and a (Eq. 2).

2. The propagation of the defect depth in the pipeline wall is simulated

through yearly time steps. The pipeline failure is detected by compar-

ison of the defect depth with the three thresholds g1, g2 and g3. In detail,

the following decision logic is applied [25]:135

(a) Small leakage occurs if g1 ≤ 0 and g2 ≥ 0. This result is not affected

from the value of g3.

(b) Large leakage occurs if g1 > 0, g2 ≤ 0 and g3 > 0.

(c) Rupture occurs if g1 > 0, g2 ≤ 0 and g3 ≤ 0.

The pipelines fail in all other possible situations.140

3. The year in which the failure occurs is recorded and the MC simulation

proceeds to the next iteration.

4. For every time t, the portion of failed pipelines is registered, together with

the 80% confidence interval on the MC estimates.

3.2. Internal Corrosion145

Internal corrosion is considered as one of the main causes of pipeline failure

[23]. To quantify its contribution, PI , to failure probability, the approaches
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based on numerical simulations cannot be adopted, due to their computational

burden for large NGNs.

Therefore, the defect growth by internal corrosion is modeled as a function of150

natural gas properties ([26])

dα

dt
= κ× CI × 0.0254× (8.7 + 9.86× 10−3O2 − 1.48× 10−7O2

2

− 1.31pH + 4.93× 10−2φCO2
φH2S

− 4.82× 10−5φCO2 O2 − 2.37× 10−3φH2S O2

− 1.11× 10−3O2 pH)

(6)

where α is the internal defect length (in mm), t is the time (years), κ is the

multiplicative factor related to the corrosion model error, O2 is the oxygen

concentration, in ppm, φz is the partial pressure of compound z ∈ {H2S,CO2}

in the transported gas, pH is, again, the pH of the substance and, finally, CI

is the inhibitor correction factor, which takes into account the introduction of

corrosion preventing agents typically injected into the pipelines for protection.

Specifically, CI is defined as

CI = 1− e(−A
L
L0

) (7)

where, according to [26], A is a multiplication factor obeying a log-normal dis-

tribution with mean -0.1116 and standard deviation 0.4724, L0 = 5Km is the

characteristic length of the inhibitor effects, and L is the distance from the injec-

tion point where the pitting corrosion defect nucleates. This follows a uniform155

probability distribution in [0, L0].

The parameters of the internal-corrosion model related to the natural gas prop-

erties are affected by epistemic uncertainty, which is described by the probability

distributions reported in Table 4 ([26]). The failure probability for internal cor-

rosion over time, PI(t), can be estimated through the Monte Carlo procedure160

used for external corrosion (Section 3.1), where the pipeline failure is identi-

fied by comparing the defect depth to the same failure thresholds g1, g2 and g3

[25, 26].
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Table 4: Natural gas properties distributions originally reported in [26].

3.3. Third Party Action

The importance of third party actions in determining the failure probability

depends on a large spectrum of circumstances related to the activities of third

parties in the proximity of the pipeline. Some authors adopted fault tree anal-

ysis to estimate the probability of failure due to third party activities [27, 28].

Nevertheless, the deep level of detail these models require is not compatible

with the need of making decisions on a large-size network in the presence of

incomplete information.

According to [29], we assume that the failure probability by third party actions,

PTP , follows the constant hazard rate model, i.e. PTP ∼ exp(λTP ), where λTP

reads

λTP = λ(D) ac aw al ap (8)

in which λ(D) is the baseline failure frequency due to third party actions for a165

pipeline of diameter D [29], whereas the following multiplication coefficients are

related to the buried pipeline property: wall thickness aw, location al, depth of

cover ax and installed preventive measures ap. Table 5 provides the values of

the multiplication coefficients estimated in [29].

In this study, the pipeline diameter and the location are precisely known, while170

the remaining two parameters are conservatively assumed as the largest values of
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Table 5 (i.e. 3.3 and 1 for the depth of cover and installed preventing measures,

respectively).

Table 5: Coefficients of the model for failure due to third party actions developed in [29].

4. Failure Severity

Failure severity is considered to depend on two factors, i.e. (i) consequences175

to people and (ii) consequences on the stability of the network operations. The

characterization of these factors is detailed in Sections 4.1 and 4.2, respectively.

4.1. Consequences to People

Due to the large amount of gas transported in the pipelines, their failure may

lead to large releases of flammable substances jeopardizing widespread areas in180

the surrounding.

Based on [30], we consider three main fire phenomena due to pipeline failure:

jet-fire, jf , fireball, fb, and flash fire, ff . For each of them and for each pipeline

segment i ∈ X, we identify, through the Buffer geo-processing tool in ArcMap,

the hazard distance δij , j ∈ {jf, fb, ff} and the corresponding hazard area (i.e.,185

the area located within a distance equal to or smaller than δij from the pipeline).

Then, the population insisting on the hazard area is estimated by identifying the

type of area category LC ∈ {rural, urban, suburban}, whose upper and lower

bounds of the standard population densities, pdLC and pdLC , respectively, are
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Table 6: Fire phenomenon probability given a pipeline failure [30, 32].

Table 7: Standard population densities used in safety assessments [31].

available in [31]. These values are reported in Table 7.190

Finally, the upper and lower bounds, Σi and Σi, respectively, of the severity of

the consequences for people from the failure of pipeline i ∈ X buried in location

category LC, are estimated as

Σi = min
j∈{jf,fb,ff}

ξi
j

Σi = max
j∈{jf,fb,ff}

ξ
i

j

(9)

where ξi
j

= δij × li × pdLC and ξ
i

j = δij × li × pdLC represent the lower and

upper bounds, respectively, of the number of people affected by each of the195

three fire phenomena, being li the length of pipe i ∈ X. The three phenomena

are considered independent on each other. The values of the weights are taken

from [30, 32] and are reported in Table 6.

Jet-fire. Hazard distances for jet-fire are estimated according to the empirical

formula proposed in [33]

δjf = 19.50 Q0.447 (10)
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where Q is the flammable gas release rate in kg/m2, assumed equal to the

natural gas mass flowing in the pipe [34, 35].200

Fire-ball. The hazard distance for a fireball phenomenon is estimated using the

empirical formula proposed in [33, 36]

PR(x) = PS · F (x)γT (11)

which links the received heat flux PR(x) at a distance x from the point directly

under the fireball to the surface power density, PS , the view factor, F (x) (i.e.,

a parameter related to the fraction of heat received by the receptor body), the

absorptivity of the receptor body, γ, and the atmospheric transmissivity T . In

details,205

PS =
φMHc

π(Dmax)2tfb
(12)

where φ = 0.3 is the radiation fraction, M is the mass of flammable material,

as calculated by the mass flow model, Hc = 50 kJ/g is the heat of combustion

of natural gas, Dmax = 6.48M0.325 is the maximum fireball diameter, tfb =

0.825M0,26 is the fireball duration time. According to [33, 36], the view factor

in Eq. 11 is estimated as210

F =
D2

max

4(x2 +H2)
(13)

where H is the elevation fireball, estimated as H = 0.75Dmax. Finally, the

atmospheric transmissivity is defined as

T = 1.30/(pwRT )0.09 (14)

where pw is the partial pressure of water, hereby assumed as 0.6105, while

RT = (x2 + H2)0.5 − 0.5Dmax is the distance of the receiver from the fireball
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external border.

The hazard distance is defined as

δfb = min{x ∈ <|PR(x) < 5.0 kW/m2} (15)

This is numerically estimated by solving Eq. 11 as a function of the distance x.

Flash Fire. Flash fire is modeled as the well-known Gaussian plume model [37].

Namely, the density of the gas is distributed as a Gaussian from an instantaneous215

point release source [33]. The hazard distance for flash fire δff is defined as the

point at which the natural gas concentration drops below the lower flammability

limit, hereby assumed as 5.0% in volume-volume of air [32, 30]. The distance

is calculated using the Matlab Guassian Plume model ([38]), conservatively

assuming wind speed equal to 10 m/s and gas release from ground level.220

4.2. Consequences on Network Stability

Large pipeline networks are generally equipped with several redundancies

and safety mechanisms for preventing failures to cause severe instabilities. Nonethe-

less, some network elements remain fundamental for the stability of network

operations, because their failures may isolate off-takes or large gas terminals

and cause pressure instabilities that can be compensated only by curtailing the

gas load.

The gas flow in the network is modeled according to [35], which applies Kirchoff

law of networks and computes the pressure at every node of the gas network

[34, 35]. In formulas, this entails that

mk∑
i=1

bki∆ϕi = 0 k = 1, ...,K (16)

where mk is the number of pipelines in loop k, K is the number of closed loops

in the network, bki defines the sign of the pressure difference in pipe i ∈ X of

loop k and ∆ϕi is the pressure drop across pipeline i. Although the removal

of a pipeline in the network is a local phenomenon, it has the potential to225

cause violations of the pressure safety limits in the gas transmission across the
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network. Thus, the loss or the removal of pipelines from the network topology

has a global impact ([34, 35]).

Specifically, to assess whether the failure of a pipeline causes instability, we

remove it from the network structure and solve Eq. 16 to compute the updated230

steady-state flow conditions. These are constrained to the safety requirements

on maximum and minimum pressures in the pipelines. Possible safety pressure

violations, therefore, are mitigated ( i) by adjusting the intake of gas from supply

terminals and storages, and, ( ii) by curtailing some of the gas demand located

close to the pressure violation areas, if the former actions are not sufficient. If235

the system cannot satisfy the entire gas demand following the loss of pipeline

i ∈ X because of off-takes disconnections or curtailments required to reach safe

steady-state conditions [34], the amount of gas demand not served, DNSi, is

used as the indicator of the severity for network stability.

5. Pipeline Failure Risk240

Following the quantification of the pipeline failure probabilities for the three

failure modes detailed in Section 3 and the quantification of the severity of their

consequences to people and NGN operations detailed in Section 4, the failure

likelihood and severity for each pipeline segment i ∈ X are estimated.

Likelihood. The lower and upper bounds of the failure probability of pipeline

section i ∈ X, Pi and Pi, respectively, are estimated by combining the corre-

sponding lower (PI i
, PEi

, PTP i
) and upper (PI i, PEi, PTP i) bounds of the failure

probabilities of the three failure modes. These are assumed to be statistically

independent and the rare event approximation is used for their combination

[39], whereby we can write

Pi = PI i
+ PEi

+ PTP i

Pi = PI i + PEi + PTP i

(17)

Whilst the independence of failure by third party actions on corrosion is245

evident, that of internal and external corrosion deserves a justification. As
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mentioned before, the generalized corrosion phenomenon is here neglected to

focus on localized phenomena [19, 24]. The localized corrosion impacts on a

very small area of the pipeline surface, whereby the probability that two local-

ized phenomena occur in the same location is negligible.250

For a consistent comparison of failure likelihood and severity, the failure prob-

abilities of the pipeline segments are normalized in the [0,1] interval to give the

values of the failure likelihood. These are given by

Li =
Pi − Pmin

Pmax − Pmin

Li =
Pi − Pmin

Pmax − Pmin

(18)

where Pmax = maxi∈X Pi and Pmin = mini∈X Pi

Severity. To take into account the consequences to both people and to NGN255

operations stemming from the failure of pipeline segment i ∈ X, the lower and

upper bounds of the corresponding severity scores are lumped together via the

following formulas

Si = 0.95 Si + 0.05 DNSi

Si = 0.95 Si + 0.05 DNSi
(19)

where

Si =
Σi − Smin

Smax − Smin

Si =
Σi − Smin

Smax − Smin

(20)

where Smax = maxi∈XΣi and Smin = mini∈XΣi . The same normalization

procedure is applied to DNSi.260

This weighted-sum approach allows integrating the severity factors, attributing

a higher importance to the consequence to people (through a weight equal to

0.95) than to the consequences on network stability (weight equal to 0.05).
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Cost. Each maintenance activity is associated to a cost. Following a common265

practical approach, we take the cost of replacing pipeline segment i ∈ X as that

of a brand new pipeline segment; this cost is proportional to a base cost c, the

pipeline diameter Di and the pipeline length li [40, 41]. To give account to

the uncertainties associated with the time and spatial scales of the maintenance

actions, we assume that the specific maintenance cost can range between c and270

c

Ci = c×Di × li

Ci = c×Di × li
(21)

This approach is consistent with the representation of the uncertainty for

failure likelihoods and severities, which are also described by intervals of possible

values.

6. Case Study: High Pressure Gas Transmission Network of Great275

Britain

6.1. Structural properties

The risk-based portfolio selection methodology is illustrated via a case study

on the British National Grid high pressure NGN, containing 7660 km of pipelines

and delivering natural gas to hundreds of off-takes distributed across Great280

Britain [42].

Building on the model developed in [34] and on the National Grid Gas Ten Years

Statement (GTYS) report from 2015, the network is modeled as a set of 245

nodes and 269 branches [34, 43]. Furthermore, according to the methodology

developed in [34], 60 virtual branches are introduced to estimate the network285

steady-state (see [34] for details).

To spatially embed the NGN within the territory of Great Britain (GB), we

adopt the official GIS dataset. The network branches and nodes can be seen

in Figure 1. Compared to previous studies on the GB NGN where a simplified
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Figure 1: NGN embedded in the Great Britain soil type map; the red dots correspond to the

245 network nodes identified through the GTYS.

network version has been adopted, e.g. [34, 44, 45], our model has a higher290

spatial resolution, number of components, level of detail and complexity, owing

to the use of the GIS dataset.

The GB NGN is managed by five utilities located in different geographic regions,

as indicated in Figure 2.

6.1.1. Failure Likelihood295

The failure likelihood of every pipe is estimated according to the the proce-

dure described in Section 3.

Failure Probability by External Corrosion. To estimate the failure probability by

external corrosion, PE , we identify the soil type in which pipelines are buried by

using the dataset of the British Geological Survey [46]. From this GIS dataset,300

several soil type categories are merged to fit into the categories reported in

Section 3.1 and in [22, 24], i.e. clay, clay loam and sandy clay loam. Soil types

that are not assigned to any of these categories are marked as ”Other” in Table

1 ([22, 24]).
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Figure 2: Overview of the 5 utilities managing the NGN in Great Britain [47].

The intersection of the network topology with the soil GIS dataset is performed305

via the Intersect tool in ArcMap, and leads to the identification of 2730 pipeline

segments. Figure 1 shows how the four soil categories are distributed in Great

Britain. The Monte Carlo procedure described in Section 3.1 is applied to

quantify the failure probability due to external corrosion for these 2730 pipeline

segments.310

Figure 3 shows the mean, the 90-th and the 10-th percentiles of the estimated

failure probability for external corrosion as a function of time, for a pipeline

segment in a clay loam soil with diameter of 900 mm and average pressure of

77 bar. If no maintenance action is performed, the failure probability due to

external corrosion becomes larger than 10−5 after roughly 20 years of pipeline315

operations. Afterwards, external corrosion becomes progressively critical, and

its failure probability increases by two orders of magnitude within two decades,

i.e. between 20 and 40 years after pipeline installation.

Failure Probability by Internal Corrosion. The approach reported in Section

3.2 is used to estimate the failure probability by internal corrosion, PI , for the320

2730 pipeline segments. Similarly to external corrosion, we account for the

uncertainty in the failure probability by internal corrosion by considering the
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Figure 3: Mean, 90-th and 10-th percentiles of the estimated pipeline failure probability by

external corrosion for a sample pipeline (in a clay loam soil with diameter of 900 mm and

average pressure of 77 bar) as a function of time. The failure probability is the result of Monte

Carlo simulations where the soil properties are randomly sampled from the corresponding

distributions in Table 1 and the defect growth in time is modeled using Eq. 1.

80% confidence interval on the MC estimation.

Figure 4 shows the mean, the 90-th and the 10-th percentile of PI(t) for a

pipeline segment with diameter D = 450 mm and average pressure of p = 78 bar.325

The failure by internal corrosion becomes larger than 10−5 after roughly 10 years

of pipeline operations. Afterwards, internal corrosion becomes progressively

critical, and its failure probability increases by three orders of magnitude within

two decades, i.e. between 10 and 30 years after pipeline installation, if no

maintenance action is performed. From the comparison of Figures 3 and 4, we330

notice that internal corrosion proves to grow remarkably quicker than external

corrosion, resulting in a bigger threat to pipeline integrity.

Failure Probability by Third Party Actions. Following the approach described

in Section 3.3, the failure probability by third party actions PTP is estimated

according to Eq. 8.335

20



Figure 4: Pipeline failure probability by internal corrosion along the years for a sample pipeline

(diameter of 450 mm and average pressure of 78 bar). The failure probability is the result of

a Monte Carlo simulation where the natural gas properties are randomly sampled from the

corresponding distributions in Table 4 and the defect growth is modeled in time using Eq. 6.

The pipeline diameter is known for each section. Therefore, λ(D) values are

taken from the latest EGIG publication for each pipe diameter [29, 48]: pa-

rameter al can be estimated from the data of the EU project CORINE, which

provides a high-resolution land-cover data for Great Britain [49]. From the sev-

eral land-cover categories in [49], only three are considered, i.e. urban, suburban340

and rural (Figure 5).

Parameters ac, aw, and ap are not known and, thus, they are conservatively set

to the largest values of Table 5.

The intersection of the entire NGN with the soil dataset and the land-use

dataset results in the identification of 13296 pipeline segments, whose lengths345

span the orders of magnitude of 101 − 103 m. These are reasonable lengths to

set a maintenance plan. Therefore, we associate a maintenance project to each

pipeline segment, and, thus, the maintenance candidate projects set X contains

13296 projects.
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Figure 5: NGN of GB spatially embedded with the CORINE land-cover dataset; the land

cover categories are collapsed within the three macro-categories of Table 5 to infer the pipeline

failure probability by third party actions [49].

6.1.2. Failure Severity350

Hazards to People. To assess the hazard distances according to the jet-fire,

fireball and flash fire phenomena, we use the approaches described in Section

4.1.

The hazard distances δij surrounding each of the previously determined |X| =

13296 pipeline segments i ∈ X for each fire phenomenon j ∈ {jf, fb, ff} are355

identified by using the Buffer tool in ArcMap. Figure 6 shows an example of

the overlapped hazard areas determined using this tool for a subset of network

pipelines. The resulting hazard distances range in the order of magnitude of

101 − 103 m, which are consistent with previous studies performed on similar

networks [30, 32] and with historical data, e.g. the Appomatox pipeline failure360

accident reported in [50].

Finally, the amounts of potentially injured people for each of the three fire

phenomena are estimated through Eq. 9 in Section 5 [30, 32].
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Figure 6: Jet fire, fireball and flash fire hazard distances identified using empirical formulas

and Gaussian plume model in Section 4 for a subset of the networks pipelines.

Consequences on Network Operations. The impact of a pipeline failure on the

network stability is assessed through the procedure described in Section 4.2.365

Figure 7 shows the DNS for each network pipeline segment sorted in descending

order. Remarkably, the loss of most of the pipeline segments does not lead to

network instabilities because of the redundancies in the network connectivity.

Nevertheless, approximately 25% of the pipeline segments perform functions

that are critical to network operations, and, therefore, their failures create pres-370

sure instabilities that can be mitigated only by performing large curtailments

of the gas load.

6.2. Pipeline Age Uncertainty and Failure Risk Calculations

The knowledge of the time of pipeline installation is lacking and, therefore,

failure probabilities cannot be evaluated deterministically. To represent the375

corresponding uncertainty, we assign to each pipeline segment an age interval

ranging between 0 (brand new pipeline) and 40 years. This assumption on com-

plete uncertainty about the installation time of the pipelines can be overcome
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Figure 7: Sorted DNS for the 13296 pipeline segments; some pipeline failures lead to instabil-

ities that can be mitigated only by large gas curtailments.

by using real-life data of the asset, if available.

Figures 8 and 9 show the upper and lower bounds of the failure severity and of380

the failure probability for the 13296 pipeline segments (or maintenance projects)

of the network, respectively, sorted in ascending order. Failure severity and fail-

ure probability can vary by several orders of magnitude among the different

segments. Moreover, differences of one or two orders of magnitude also occur

between the upper and lower bounds for the same pipeline segments. There-385

fore, the selection of the RBM projects based on failure probability and severity

is affected by a significant level of uncertainty and fully justifies the proposed

RPM approach.

Finally, with respect to the specific maintenance cost, we assume a minimum

value c = 1970£/km ·mm and a maximum value c = 2290£/km ·mm [41].390

6.3. Results

Following Appendix A, we apply the RPM technique to select the mainte-

nance portfolios in the GB NGN using the three objectives quantified in Section

6, i.e. failure likelihood, severity and project maintenance cost. The weights
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Figure 8: Sorted normalized upper and lower bounds of the failure severity for all the pipeline

segments of the network.

Figure 9: Sorted normalized upper and lower bounds of the failure likelihood for all the

pipeline segments of the network.
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assigned to the optimization objectives of the multi-criteria project portfolio395

selection (see Appendix A) are assumed to have no restrictions, i.e. they can

freely range between 0 and 1, under the constraint that their sum is equal to

1. This selection allows spanning the entire Pareto optimal set and it is in line

with previous studies, in which the maintenance cost is included among the

optimization objectives [12], and leads to the following three extreme points in400

the weights information set Iw [1,0,0], [0,1,0] and [0,0,1].

The developed algorithm runs on the 13296 pipe stretches until 5000 non-

dominated portfolios are identified. The computations are carried out with

the Matlab MILP-solver and take approximately two hours on a Dual-core, 2.2

GHz, 8 GB memory laptop computer.405

One of the key concepts of RPM is the notion of the project-specific Core Index

(CI), defined as the share of non-dominated portfolios that include the project

(see Appendix A). The CI guides the successive interviews with the DM be-

cause all core projects can be surely recommended and all exterior projects

(i.e., projects included in non-optimal portfolios) can be safely rejected. In-410

deed, core projects do and exterior projects do not belong, respectively, to all

non-dominated portfolios even if additional information were given [11]. Then,

efforts to specify additional score information can be focused on the remaining

projects, i.e. borderline projects [11]. This information yields narrower score

intervals, which assign the borderline projects to either the sets of core projects415

or the exterior projects, while not affecting the CI of the previously identified

core and exterior projects.

Recognizing that it can be difficult to choose from the set of non-dominated

portfolios, the choice of the portfolio could be determined according to ap-

propriate decision rules such as the max-min rule (see Appendix A), which420

recommends the portfolio that yields the highest minimum overall benefit. This

rule coincides with the absolute robustness in robust discrete optimization [11].

The results of the decision rules depend on the set of non-dominated portfolios.

This emphasizes the importance of finding as many non-dominated portfolios

as possible.425
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To investigate the network risk reduction as a function of the selection of the

maintenance projects and their location, we perform a series of 5-years RPM

calculations considering (i) a unique budget GBP B = 760 M for the whole

network and (ii) a common overall budget divided among the 5 network subre-

gions in Figure 2, proportionally to their total lengths.430

Each year, a portfolio is selected from the set of non-dominated portfolios iden-

tified by the RPM technique using the max − min criterion as described in

Appendix A.

Maintenance actions, i.e. projects, on a pipeline segment, consist in its complete

replacement, which resets the pipeline segment age to 0 and decreases the failure435

probability to its minimum value. To evaluate a summary metric of the overall

network risk, we consider the indicator Rnet =
∑|X|

i=1Ri, where Ri = Li · Si.

This indicator sums on both the updated risk values of the projects in the op-

timal portfolio, which are smaller than before, and the remaining ones, which

are more risky because of the increased age. Figure 10 shows the overall effect440

on the risk indicator over time of implementing each year the optimal portfolio

of maintenance projects. We can see that the risk reduction over the years is

less effective if the maintenance budget is constrained to be divided into 5 net-

work subregions, proportionally to the total pipe length insisting on the region,

compared to the results obtained if one unique budget for the entire network is445

considered.

To justify this result, we can consider Figure 11, which reports the optimal

budget allocation in each subregion resulting from the RPM calculations per-

formed on the whole network. Horizontal lines mark the constant budget that

each area receives in the split-budget case. If spatial limitations are not intro-450

duced, maintenance focuses on some subregions more than others, e.g. Area 1

(Scotland) and Area 5 (southernmost part of England) receive strong mainte-

nance during the first two years as compared to the case of constant budget.

Conversely, Area 3 is very weakly maintained in the first year, i.e. a small

amount of critical projects is identified in Area 3, despite containing the largest455

number of pipelines.
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Figure 10: Comparison of the different risk reduction trends for the performed RPM calcula-

tions; dashed lines represent the risk trends recorded, if multiple selection along the years of

the same maintenance projects is not prevented.

Figure 10 shows two dashed lines corresponding to the risk reduction behav-

ior in case the repeated selection of the same maintenance projects in consec-

utive years is not prevented. Indeed, in these RPM calculations, maintenance

actions only decrease the pipeline segments failure probability but do not af-460

fect the other two objective scores, i.e. failure severity and maintenance cost.

Consequently, some maintenance projects may be included consistently in the

optimum portfolio during multiple years due to their high severity and/or low

cost scores. This is because the considered maintenance projects do not include

mitigation actions, which decrease the failure severity and prevent the repeated465

selection of the same project in consecutive years.

Finally, Figure 12 identifies the areas where maintenance actions focus during

the first five years of the probability-severity-cost RPM application. In particu-

lar, Figure 12 identifies Areas A and D as critical, where maintenance is strongly

focused especially during the first two years. The relevance of these areas ex-470

plains the significant maintenance budget allocated during the first 2 years in

Areas 1 and 5 in Figure 11. Similarly, Zones B and C are intensively maintained
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Figure 11: Maintenance budget allocated in each network subregion during the RPM calcu-

lations using as objectives failure probability, severity and cost; solid lines: constant budget

allocation to each subregion; dashed lines: unique network budget variably allocated to each

subregion.

during the first 4 years, even though with a lower intensity compared to Zones A

and D. For all the aforementioned areas, criticality is due to the high impact of

failures on the network stability. Indeed, all the pipeline segments located there475

are required to handle very large mass flows up to hundreds of kilograms per

hour. Zone E (northernmost, within Area 5) is continuously maintained dur-

ing the 5 years, but with a lower intensity compared with the aforementioned

critical zones. Interestingly, Area 5 is identified as critical also in the previous

study on the simplified network described in [16].480

7. Discussion: Applicability to Other Contexts

Owing to its generality and modularity, the developed framework can be

applied to maintenance planning problems of other NGNs and different types of

29



Figure 12: Critical zones where maintenance is focused during the 5 maintenance years pre-

sented in Figure 10.

large-scale infrastructures. Indeed, the proposed methodology is made of three485

general steps, which can be specialized as discussed in the following:

• Identification of the factors defining failure likelihood and severity. These

factors depend on both the specific case study and the DMs. Whilst the

factors identified and applied in the presented case study can be applied to

different NGNs, they need to be re-considered for other types of networks.490

For example, an more detailed value tree has been proposed for the pipe

likelihood in the sewerage system application [14], which considers two

levels. The first hierarchical level includes (a) pipe features, (b) past

events and (c) local circumstances; the second hierarchical level is further

specialized into (a) pipe material, age since last renovation and diameter;495

(b) number of past blockages and flushing; and (c) soil type and traffic

load.

• Assignment of score intervals to every pipe (i.e. project) in the network

with respect to each factor of risk severity and likelihood. The methodol-
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ogy proposed in this work for NGNs is general: it contains all the theo-500

retical details, it gives the possible values of many model parameters with

related uncertainties and it indicates the procedure to identify the data for

the application on any NGN (e.g. usage of Corine dataset for land charac-

terization). For the application of the methodology to different contexts,

the analysts have to adapt specific solutions for carrying out the “Assign-505

ment of score intervals” step. In this respect, the general WING method

has been used in [51] to assign an interval of scores to the projects. For

every risk factor, the best measurement value (i.e. the one impacting the

failure likelihood or severity the most) and the worst one (i.e. the one im-

pacting the failure likelihood or severity the least) are assigned rates 100510

and 0, respectively. Then, elicitation questions are posed by first mapping

out expert opinions on ordinal preferences for quality differences. Specifi-

cally, the expert is asked which ‘swing’ from a specific attribute value to

the best one would result in the largest improvement, the second largest

improvement, and so on.515

• An optimization algorithm to find the optimal portfolios. In this work, the

algorithm proposed in [13] has been adopted, which efficiently identifies a

subset of optimal portfolios. Future works will focus on the development

of methodologies relying on even more efficient algorithms, as for example

the algorithm proposed by Toppila and Salo ([52]).520

8. Conclusion

This paper provides a methodology to identify the optimum risk-based main-

tenance portfolios that can be applied on large networks and, via the RPM tech-

nique, handles uncertainties and partial knowledge deficiencies on the objective

scores and weights.525

The methodology is exemplified with reference to the NGN of Great Britain for

a set of multiple years in order to study how maintenance impacts the overall

network risk level. The main novelties of the work are:
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• Both risk factors are thoroughly characterized through the identification

and characterization of their relevant sub-factors. Namely, failure proba-530

bility is expressed as a combination of three factors corresponding to the

three most impacting pipeline failure modes, whereas failure severity is ex-

pressed as a combination of two factors, consequences of failures to people

and on network operations.

• The GIS data are used to estimate the values of the maintenance plans535

with respect to some of the identified risk sub-factors. In the case study,

the application of a GIS dataset to infer failure probability by third party

action and by external corrosion via intersection with the NGN dataset

leads to the identification of 13296 pipeline segments, whose lengths range

in the order of magnitude of 101− 103 m and which are associated with a540

corresponding set of 13296 maintenance projects.

• Sequential portfolio selection is considered on an horizon of multiple years,

and with different objectives and constraints. RPM application on this

case study reveals that if no constraints are introduced on the budget

allocation, maintenance actions are focused on some critical zones, e.g.545

Scotland and the southernmost part of England. Furthermore, the alloca-

tion of fixed maintenance budgets to different areas lead to a sub-optimal

selection of the maintenance projects and to a less pronounced risk reduc-

tion over the maintenance horizon.

Further improvements on the methodology entail introducing synergies and550

opportunistic cannibalisms on the maintenance projects, e.g. promoting the

selection of adjacent pipeline segments. Furthermore, despite local pipeline re-

placement is the routine maintenance action on a pipeline, other maintenance

projects may be introduced, e.g. installing third party actions preventing mea-

sures. Finally, the efficiency of the optimization algorithms for identifying the555

subset of optimal portfolios can also be improved.
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Appendix A. Multi-Criteria Project Portfolio Selection

Let X be a set containing m projects xj . Given a set of constraints A for

feasible portfolios, multi-criteria weighting models are routine approaches to

identify the best maintenance projects portfolio p of projects xj ∈ X evaluated

according to a set I0v of n criteria v weighted according to set I0w of weights

w [11, 12]. Among the several feasible portfolios, many authors, e.g. [53, 54],

recommend the selection of the portfolio with the highest sum of the overall

weighted values of the individual projects, briefly called portfolio overall value

V (p, v, w), mathematically defined as:

V (p, w, v) =
∑
xj∈p

V (xj) =
∑
xj∈p

n∑
i=1

wiv
j
i (A.1)

Where portfolio p satisfies all the feasibility constraints, i.e. the set of inequali-

ties described as follows: ∑
xj∈p

C(xj) ≤ A (A.2)

Where C is the feasibility coefficients matrix.
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The portfolio selection criterion suggesting to choose the project portfolio

having the highest overall value V (p, v, w) cannot be applied if part of the infor-

mation set, i.e. the objectives scores and the weights assigned to each objective,705

is not precisely known. In fact, uncertainties on objectives scores v and weights

w lead to uncertainties also on the portfolio overall value V (p, v, w). To han-

dle uncertainties and knowledge deficiencies avoiding ventured assumptions, the

problem aim shifts from the selection of the highest overall value portfolio to

the identification of the non-dominated portfolios set [11, 12, 13].710

According to [11], a portfolio p dominates another portfolio p′ in the in-

complete information set I, defined as the Cartesian product of the incomplete

objects scores set Iv and of the incomplete weights set Iw, if:

V (p, w, v) ≥ V (p′, w, v) ∀(w, v) ∈ I

∃(w, v) ∈ I|V (p, w, v) > V (p′, w, v)
(A.3)

If more than a few hundreds projects are involved, the non-deterministic method-

ology developed in [13] can be applied.

The set of identified non-dominated portfolios is usually called PN . Every

project xj is assigned a Core Index

CI(xj) =
∣∣{p ∈ PN |xj ∈ p

}∣∣ /|PN | (A.4)

On this basis we define the sets of core projects, XC , exterior projects, XE , and

borderline projects, XB

XC =
{
xj ∈ X|CI(xj) = 1

}
XE =

{
xj ∈ X|CI(xj) = 0

}
XB =

{
xj ∈ X|0 < CI(xj) < 1

} (A.5)

To select one portfolio p among the several non-dominated portfolios in

PN , several selection criteria have been developed. In this study, we used the715

min−max criterion, chosen because of the simplicity and clarity of its concept.

The min−max criterion suggests to select the non-dominated portfolio having

the highest minimum overall value V (p, w, v), i.e.:
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Pmin = arg max
p∈PN

min
w∈Sw

V (p, w, v) (A.6)

Where v is the lower bound for the n criteria v and Iw is the set of feasible

weights, a subset of Iw including vectors of weights that satisfy the feasibility720

constraints.

The interested reader can refer to [13, 14] for a more detailed description of

this algorithm.

Appendix B. Parameters of the failure modes for external corrosion

The parameters used in Section 3.1 to identify the failure conditions due to725

external corrosion are explicitly modeled in the following.

The burst pressure for a pipeline is defined as [25]:

rb = χ
2σut

D

[
1− dmax

t

(
1− exp

(
−0.157l√
D(t−dmax)

2

))]
(B.1)

Where χ is a multiplicative error term, σu is the ultimate tensile strength,

dmax is the maximum defect depth, l is the defect length in the longitudinal

direction, D is the pipe diameter and t is the pipe wall thickness.730

The rupture pressure of a pipeline is defined as [25]:

rrp =
2tσf
MD

(B.2)

Where σf is the flow stress, defined as σf = 0.9σu, and M is the Folias

factor, defined as follows:

M =


√

1 + 0.6275 l2

Dt − 0.003375 l4

D2t4
l2

Dt ≤ 50

0.032 l2

Dt + 3.293 l2

Dt ≤ 50
(B.3)
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