
 

1 

 

Abstract — In this paper, we study the redundancy allocation problem (RAP) for multi-state series-parallel systems (MSSPSs). For 

each multi-state component, the exact values of its state probabilities are assumed to be unknown, due to epistemic uncertainty (EU), 

and only conservative lower and upper bounds of them are given. The objective of the RAP is to simultaneously maximize the 

supremum and infimum of the system’s uncertain availability, under a cost constraint. The problem is two-stage and multi-objective. 

In this work, we: 1. provide a linear-time algorithm to obtain the component state distribution, under which the uncertain system 

availability will be at its supremum or infimum; 2. show that the problem is reducible to one-stage; 3. analyze the landscape of MSSPS 

RAP under EU and propose a modified NSGA-II, with targeted designs of repair and local search operation. The proposed algorithm 

is compared with standard NSGA-II on multiple benchmarks. The results show that the proposed algorithm significantly outperforms 

the standard NSGA-II in both optimality and time efficiency.  

Index Terms— redundancy allocation; multi-state series-parallel systems; epistemic uncertainty; stochastic dominance; approximate 

system availability analysis; repair algorithm; local search. 
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I. INTRODUCTION 

The redundancy allocation problem (RAP) is a well-known combinatorial optimization problem in the field 

of reliability engineering, [1]. Series-parallel structures are typically considered because they are common 

in practice. Traditionally, binary-state reliability models are often used, in which a system and its 

components only have two performance states: perfect functioning and complete failure. In real-world 

engineering systems, however, this binary-state description is often insufficient, and intermediate states 

between the above two extremes have to be considered. For these reasons, the multi-state models have 

become increasingly popular [1, 3~6,34]. 

In recent years, significant research efforts have been devoted to the solution of multi-state series-parallel 

system (MSSPS) RAP [1, 3~6, 31-32], which was first introduced in [30]. Due to the hardness of the 

problem, meta-heuristics [1,3~6] have been often used to solve the problem, even though they can become 

time-consuming, especially on large systems [1].  

On the other hand, theoretical analysis for MSSPS RAP has been lacking. To the authors’ knowledge, 

neither effective exact algorithms nor approximated algorithms with bounded error have been reported in 

MSSPS RAP literature. Meanwhile, theoretical guidance for heuristic design of MSS RAP is also rarely 

reported, whereas it is important because the application of RAP to multi-state models often requires 

exhaustive computational recourses. Indeed, the difficulty of solving MSSPS RAP is not only due to the 

well-known hardness in MSS reliability evaluation, but also to the RAP’s discrete, probabilistic and 

nonlinear nature. 

In reliability theory, the state of a component is often assumed to be aleatory uncertain, i.e., the 

uncertainty is due to the inherent randomness of the component behavior. Aleatory uncertainty is irreducible 

since it is the natural variability of the component. On the other hand, epistemic uncertainty is caused by 

the lack of data or knowledge, which often leads to inaccuracies in the structure/parameters of a 

stochastic/probabilistic model that is built to address aleatory uncertainty. In reliability engineering, such 

inaccuracy is often critical and has to be accounted, especially for those critical systems/components which 

are required to be highly reliable (e.g., the valves and pumps in nuclear plant or aircraft) [2, 12~14,33,36,37]. 

A good example can be found in the illustrated distributed generation system in section VI.B, [37]: firstly, 

it is difficult to estimate the mechanical failure rates in a wind turbine or transformer, due to the lack of data 

or the imprecision of the physical models. The related failure parameters are often elicited from by human 
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experts, given by interval values or only linguistically. On the other hand, stochastic models for wind power 

output are often not satisfyingly accurate, so that the state probability of wind output is often presented as 

interval, in order to provide some distributional robustness. In MSS literature, epistemic uncertainty above 

the MSS and component state distribution has been carried out by interval or fuzzy multi-state models [13, 

14, 33, 37]. Unfortunately, the existing models only produce inexact probabilistic bounds, since the 

interval/fuzzy representations are often in conflict with the law of total probability. 

Traditional MSS RAP aims at obtaining optimal trade-offs between the costs and availability of a multi-

state system. However, when facing epistemic uncertainty on the components’ state distributions, the 

system’s availability becomes uncertain as well, which has to be accounted for in RAP problems. In this 

work, we consider for an MSS RAP in the formulation of availability maximization, i.e., to maximize both 

the supremum and infimum of the system’s uncertain availability under a maximum system cost constraint. 

The exact state probability values are assumed to be unknown, while conservative upper and lower bounds 

of them are given. Now, we see the RAP is a two-stage multi-objective optimization problem: while the 

outer stage problem searches for Pareto-optimal system compositions that maximize both the supremum 

and infimum of the uncertain system availability, the inner stage problem determines the supremum and 

infimum of the uncertain availability of a given system. In this paper, we name this optimization problem 

as MSSPS RAP EU (Epistemic Uncertainty). 

The original contributions of this work are: 

1. We show that, for the studied MSSPS, for each of its component there exists a unique probability 

vector, such that the uncertain system availability will be at its infimum/supremum under the uncertain set, 

if the state probability distributions of all the components are given by these probability vectors. 

2. We show that, each of the above probability vector is the unique optimal solution of a multi-objective 

linear programming problem, and each of the problem is linear time solvable. 

3. We show that, the inner stage problem of the studied MSSPS RAP EU is reducible to a one-stage 

multi-objective optimization problem. 

4. We analyze the landscape of the reduced problem, and discuss some basic principles for its heuristic 

solutions. The principles can also be implemented to related single-objective MSSPS RAPs, if they are 

reducible from the studied MSSPS RAP EU. 

5. We extend NSGA-II [15] to improve its performance on the MSSPS RAP EU. 
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The rest of this paper is organized as follows: in Section II, the formulation of MSSPS RAP EU is 

presented; in Section III, we reduce the studied MSSPS RAP EU into a one stage problem; in Section IV, 

we analyze the landscape of the reduced problem and propose repair and local search operators for its 

heuristic solutions; in Section V, we propose our modified version of NSGA-II, namely co-SP-NSGA-II to 

solve the reduced MSSPS RAP EU; in Section VI, we test the proposed algorithm, competing with the 

standard NSGA-II. For comparison, previous results and benchmarks for single-objective MSSPS RAPs 

are also used/extended in this section, to show that the proposed algorithm can efficiently obtain the 

currently best solutions reported in the single-objective MSSPS RAP literature. In section VII, we conclude 

this work and discuss the advantages, drawbacks of the proposed evolutionary approach, as well as the 

potential extensions for future evolutionary solutions of MSSPS RAPs. 

II. THE STATEMENT OF THE PROBLEM 

Notation 

𝑁 number of subsystems in a MSSPS 

𝑖 index of the subsystems, 𝑖 ∈ {1,2, … ,𝑁}, unless otherwise stated 

𝑛𝑖 number of component versions proposed on the market, for the subsystem 𝑖 

𝑗𝑖 component version index of subsystem 𝑖 

𝑥𝑗𝑖 number of components in version 𝑗𝑖 that installed on the MSSPS 

𝑋𝑗𝑖 the maximum 𝑥𝑗𝑖  that available 

𝑥⃑𝑖 (𝑥1𝑖 , 𝑥2𝑖 , … , 𝑥𝑗𝑖 , … , 𝑥𝑛𝑖𝑁)  

𝒙 (𝑥⃑1, 𝑥⃑2, … , 𝑥⃑𝑖, … , 𝑥⃑𝑁), the system composition vector 

𝑐𝑗𝑖 unit component cost for the components in version 𝑗𝑖 

𝑐𝑖 (𝑐1𝑖 , 𝑐2𝑖 , … , 𝑐𝑗𝑖 , … , 𝑐𝑛𝑖𝑖) 

𝒄 (𝑐1, 𝑐2, … , 𝑐𝑖, … , 𝑐𝑁) 

𝐶𝑖(𝑥⃑𝑖) cost of subsystem 𝑖 

𝐶𝑠(𝒙) cost of the MSSPS 

ℎ𝑗𝑖 index of the components in version 𝑗𝑖 
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𝐺ℎ𝑗𝑖
 performance of the ℎ𝑗𝑖th component in version 𝑗𝑖 

𝐹𝑗𝑖  cumulative probabilistic distribution function of 𝐺ℎ𝑗𝑖
 

𝑘𝑗𝑖 index of performance levels (i.e., state) for components in version 𝑗𝑖 

𝐾𝑗𝑖 number of performance levels for components of version 𝑗𝑖 

𝑔𝑘𝑗𝑖
 𝑘𝑗𝑖th performance level of components in version 𝑗𝑖 

supp𝑗𝑖 {𝑔𝑘𝑗𝑖
}, 𝑘𝑗𝑖 ∈ {1,2, … , 𝐾𝑗𝑖}, the support of 𝐹𝑗𝑖 

𝑝𝑘𝑗𝑖
 Pr (𝐺ℎ𝑗𝑖

= 𝑔𝑘𝑗𝑖
), the state probability for the 𝑘𝑗𝑖th state, of components in version 𝑗𝑖 

𝑝𝑘𝑗𝑖−
 lower bound of 𝑝𝑘𝑗𝑖

 

𝑝𝑘𝑗𝑖+
 upper bound of 𝑝𝑘𝑗𝑖

 

𝑃⃑⃑𝑗𝑖 
(𝑝0𝑖𝑗 , 𝑝1𝑖𝑗 , … , 𝑝𝑘𝑖𝑗 , … , 𝑝𝐾𝑖𝑗) 

𝑃⃑⃑𝑖 (𝑃⃑⃑1𝑖 , 𝑃⃑⃑2𝑖 , … , 𝑃⃑⃑𝑗𝑖 , … , 𝑃⃑⃑𝑛𝑖𝑖) 

𝑷 (𝑃⃑⃑1, 𝑃⃑⃑2, … , 𝑃⃑⃑𝑖, … , 𝑃⃑⃑𝑁), the system probability vector 

℘ {𝑷|𝑝𝑗𝑖 ∈ [𝑝̃𝑘𝑗𝑖−
, 𝑝𝑘𝑗𝑖+

] , ∑ 𝑝𝑘𝑗𝑖

𝐾𝑗𝑖
𝑘𝑗𝑖

=1 = 1}, the uncertainty set 

𝐺𝑖(𝑥⃑𝑖, 𝑃⃑⃑𝑖) state of subsystem 𝑖 

𝐺𝑠(𝒙,𝑷) state of MSSPS 

𝐷 demand performance of MSSPS 

𝑘𝐷 index of demand performance levels, 𝑘𝐷 = 1,2, … , 𝐾𝐷 

𝐾𝐷 number of demand performance levels 

𝑔𝑘𝐷 𝑘𝐷th performance level of system demand 𝐷 

supp𝐷 {𝑔𝑘𝐷}, 𝑘𝐷 ∈ {1,2, … , 𝐾𝐷}, the support of 𝐷 

𝑝𝑘𝐷 Pr(𝐺𝑠 = 𝑔𝑘𝐷), the probability that the system demand 𝐷 is at its 𝑘𝐷th state  

𝐴(𝒙,𝑷) MSSPS availability 

sup
𝑷∈℘

𝐴(𝒙,𝑷) supremum of the uncertain MSSPS availability 
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inf
𝑷∈℘

𝐴(𝒙,𝑷) infimum of the uncertain MSSPS availability 

𝑷− number of subsystems in a MSSPS 

℘𝑗𝑖
 feasible region of 𝑃⃑⃑𝑗𝑖 , {𝑃⃑⃑𝑗𝑖|𝑝𝑘𝑗𝑖

∈ [𝑝̃𝑘𝑗𝑖−
, 𝑝𝑘𝑗𝑖+

] , ∑ 𝑝𝑘𝑗𝑖

𝐾𝑗𝑖
𝑘𝑗𝑖

=1 = 1} 

𝓕𝑗𝑖 feasible region of 𝑗𝑖, {𝑗𝑖|𝑗𝑖 ∈ {1,2, … , 𝑛𝑖}, 𝑖 ∈ {1,2, …𝑁}} 

𝓕𝑥 feasible region of 𝒙, {𝒙|𝑥𝑗𝑖 ∈ {0,1,2, … , 𝑋𝑗𝑖}, 𝑗𝑖 ∈ 𝓕𝑗𝑖} 

ℐ {𝑖 = 1,2, … ,𝑁}, the set of subsystem indexes 

𝒫 a partition of the subsystem index set ℐ 

𝒫𝑠 the 𝑠th element of 𝒫 

𝒜𝑠 

Pr⁡(min
𝑖∈𝒫𝑠

𝐺𝑖 ≥ 𝐷), the MSSPS availability when the system is only composed of subsystems 

from 𝒫𝑠. 

𝐴𝑖 Pr⁡(𝐺𝑖 ≥ 𝐷), the availability of the 𝑖th subsystem  

𝐴̅(∙) 1 − 𝐴(∙), the unavailability of a system or subsystem indexed by (∙). 

⌊∙⌋, ⌈∙⌉ round-down and round-up operator for non-integer real numbers 

  

A. Deterministic MSSPS RAP 

The MSSPS consists of 𝑁 subsystems in series, where each subsystem consists of several functionally 

equivalent components in parallel (Figure 1). There are 𝑛𝑖 component versions available on the market for 

each subsystem 𝑖, where the state of each component is characterized only by the component’s performance. 

The performance of each multi-state component is a discrete random variable and the performances of the 

components in same version are i.i.d. 

In this paper, we assume the multi-state components’ performances are mutually stochastic-independent. 

For each component version 𝑗𝑖, the maximum number of components available on market 𝑋𝑗𝑖, the unit 

component cost 𝑐𝑗𝑖 and the components’ performance distribution 𝐹𝑗𝑖  are specified. Then, the performance 

of the system is defined as 

 
𝐺𝑠 = min

𝑖=1,2…,𝑁
𝐺𝑖 (1) 
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where 

𝐺𝑖 = ∑ ∑ 𝐺ℎ𝑗𝑖

𝑥𝑗𝑖

ℎ𝑗𝑖
=1

𝑛𝑖

𝑗𝑖=1

 

 
 

Figure 1. The MSSPS 

The MSSPS RAP for availability maximization, then, generally takes the form 

 max
𝒙
𝐴(𝒙,𝑷) = ⁡ Pr⁡(𝐺𝑠 ≥ 𝐷) 

(2) 
s.t. 

𝒄𝑇𝒙 ≤ 𝐶0 

 𝒙 integer, 0 ≤ 𝑥𝑗𝑖 ≤ 𝑋𝑗𝑖 

B. MSSPS RAP under epistemic uncertainty 

Following the previous work [33], we assume that the exact value of each state probability 𝑝𝑘𝑖𝑗  is 

unknown and only a lower and upper bound of it are provided. For each 𝑘𝑗𝑖,  

 𝑝𝑘𝑗𝑖
∈ [𝑝𝑘𝑗𝑖−

, 𝑝𝑘𝑗𝑖+
] 

(3) 
 

∑ 𝑝𝑘𝑗𝑖−

𝐾𝑗𝑖

𝑘𝑗𝑖
=1

≤ ∑ 𝑝𝑘𝑗𝑖

𝐾𝑗𝑖

𝑘𝑗𝑖
=1

= 1 ≤ ∑ 𝑝𝑘𝑗𝑖+

𝐾𝑗𝑖

𝑘𝑗𝑖
=1

 

which describe the uncertain set ℘ . For a fixed system 𝒙𝟎 , to obtain the infimum inf
𝑷∈℘

𝐴(𝒙𝟎, 𝑷)  and 

supremum sup
𝑷∈℘

𝐴(𝒙𝟎, 𝑷) is equivalent to solve the following optimization problems (4) and (5): 
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min
𝑷∈℘

𝐴(𝒙𝟎, 𝑷) 

(4) 

s.t. ℘ = {𝑷|𝑝𝑘𝑗𝑖
∈ [𝑝̃𝑘𝑗𝑖−

, 𝑝𝑘𝑗𝑖+
] , ∑ 𝑝𝑘𝑗𝑖

𝑘𝑗𝑖

𝑘𝑗𝑖
=1

= 1} 

 

 
max
𝑷∈℘

𝐴(𝒙𝟎, 𝑷) 

(5) 

s.t. ℘ = {𝑷|𝑝𝑘𝑗𝑖
∈ [𝑝̃𝑘𝑗𝑖−

, 𝑝𝑘𝑗𝑖+
] , ∑ 𝑝𝑘𝑗𝑖

𝐾𝑗𝑖

𝑘𝑗𝑖
=1

= 1} 

It is noted that the “upper and lower bounds” for the uncertain system availability defined in [33] and 

related interval-sized fuzzy approaches [13], [14] are only approximations of sup
𝑷∈℘

𝐴(𝒙, 𝑷)  and 

inf
𝑷∈℘

𝐴(𝒙,𝑷), and the worst-case approximation error bounds are not guaranteed. Without loss of generality, 

in this paper, we formulate the MSSPS-RAP EU as following: 

 max
𝒙
max
𝑷
𝐴(𝒙, 𝑷) 

(6) 

 max
𝒙
min
𝑷
𝐴(𝒙,𝑷) 

𝑠. 𝑡. 
𝒄𝑇𝒙 ≤ 𝐶0 

 
𝑥𝑗𝑖 ∈ {0,1,2, … , 𝑋𝑗𝑖} 

 
𝑝𝑘𝑗𝑖

∈ [𝑝𝑘𝑗𝑖−
, 𝑝𝑘𝑗𝑖+

] 

 

∑ 𝑝𝑘𝑗𝑖

𝐾𝑗𝑖

𝑘𝑗𝑖
=1

= 1 

III. SOLUTION METHOD TO THE INNER STAGE PROBLEM: A DECOMPOSITION APPROACH 

In this section, we show Problem (6) is reducible into a one stage problem. We first reduce the second-stage 
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problem into small multi-objective linear programming problems, and, then, prove that each of the small 

problems has a unique optimal solution, and the solution is linear-time computable. Finally, we show that 

the optimal solutions are independent of the system composition 𝒙, and reduce the problem into one-stage.  

Definition 3.1 

The usual stochastic order “≼” between two RVs 𝑋 and 𝑌 (or their CDFs 𝐹𝑋, 𝐹𝑌) is defined as 

 𝑋 ≼ 𝑌 iff. ∀𝑡 ∈ ℝ:⁡ 𝐹𝑋(𝑡) ≥ 𝐹𝑌(𝑡) (7) 

where 𝐹𝑋(𝑡)  and 𝐹𝑌(𝑡)  are the cumulative distribution functions (CDFs) of 𝑋  and 𝑌 , respectively. 

Furthermore, we have 

 𝑋 ≺ 𝑌 iff. 𝑋 ≼ 𝑌 ∧ 𝑋 ≠ 𝑌  
(8) 

 𝑌 ≽ 𝑋 iff. 𝑋 ≼ 𝑌 

Lemma 3.2 [16] 

Assume 𝑋1, 𝑋2, … , 𝑋𝑚, 𝑌1, 𝑌2, … , 𝑌𝑚 are independent RVs satisfying 𝑋𝑖 ≼ 𝑌𝑖, 𝑖 = 1,2, … ,𝑚; then 

 ∑𝑋𝑗

𝑚

𝑗=1

≼∑𝑌𝑗

𝑚

𝑗=1

 (9) 

Corollary 3.3 

Assume 𝑷− = (𝑃⃑⃑1−, 𝑃⃑⃑2−, … , 𝑃⃑⃑𝑖−, … 𝑃⃑⃑𝑁−) , is a feasible solution of Problem (4), where 𝑃⃑⃑𝑖− =

(𝑃⃑⃑1𝑖−, 𝑃⃑⃑2𝑖−, … , 𝑃⃑⃑𝑗𝑖−, … , 𝑃⃑⃑𝑛𝑖𝑖−), 𝑃⃑⃑𝑗𝑖− = (𝑝1𝑗𝑖−
, 𝑝2𝑗𝑖−

, … , 𝑝𝑘𝑗𝑖−
, … , 𝑝𝐾𝑗𝑖−

), and it satisfies 

 ∀𝑗𝑖 ∈ 𝓕𝑗𝑖 ⁡ ∀𝑃⃑⃑𝑗𝑖 ∈ ℘𝑗𝑖
: 𝐹𝑗𝑖(𝑃⃑⃑𝑗𝑖−) ≼ 𝐹𝑗𝑖(𝑃⃑⃑𝑗𝑖)  (10)  

then 

 
∀𝒙𝒐 ∈ 𝓕𝑥: inf

𝑷∈℘
𝐴(𝒙𝒐, 𝑷) = 𝐴(𝒙𝒐, 𝑷−)  (11)  

Proof 

For the readers conveniences, in the rest of the paper we will abridge the logic formula “∀(∙) ∈ 𝓕(∙)” into 

“∀(∙)”, where 𝓕(∙) is the feasible region of the variable (∙) in the studied problem. Let us consider a 

MSSPS with arbitrary system composition 𝒙𝒐 and system probability vector 𝑷. With (1), we have 

 ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ Pr(𝐺 ≥ 𝑑) =∏Pr⁡(𝐺𝑖 ≥ 𝑑)

𝑁

𝑖=1

 (12) 

for arbitrary constant 𝑑. Then, with (2) we have 
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 𝐴(𝒙𝒐, 𝑷) = ∑ Pr(𝐺 ≥ 𝑑𝑘𝐷) 𝑝𝑘𝐷

𝐾𝐷

𝑘𝐷=1

= ∑ ∏Pr⁡(𝐺𝑖 ≥ 𝑑𝑘𝐷)𝑝𝑘𝐷

𝑁

𝑖=1

𝐾𝐷

𝑘𝐷=1

 (13) 

Let us define 𝐺𝑖− = 𝐺𝑖(𝑃⃑⃑1𝑖−, 𝑃⃑⃑2𝑖−, … , 𝑃⃑⃑𝑛𝑖𝑖−). According to Lemma 3.2, we have 

 ∀𝑖: 𝐺𝑖− ≼ 𝐺𝑖(𝑃⃑⃑1𝑖 , 𝑃⃑⃑2𝑖 , … , 𝑃⃑⃑𝑛𝑖𝑖) if ∀𝑗𝑖: 𝐺𝑗𝑖(𝑃⃑⃑𝑗𝑖−) ≼ 𝐺𝑗𝑖(𝑃⃑⃑𝑗𝑖) (14) 

thus 

 ∀𝑖∀𝑘𝐷: Pr⁡(𝐺𝑖− ≤ 𝑑𝑘𝐷) ≥ Pr⁡(𝐺𝑖 ≤ 𝑑𝑘𝐷) (15) 

thus 

 ∀𝑖∀𝑘𝐷: ∑ ∏Pr⁡(𝐺𝑖− ≥ 𝑑𝑘𝐷)𝑝𝑘𝐷

𝑁

𝑖=1

𝐾𝐷

𝑘𝐷=1

) ≤ ∑ ∏Pr⁡(𝐺𝑖 ≥ 𝑑𝑘𝐷)𝑝𝑘𝐷

𝑁

𝑖=1

𝐾𝐷

𝑘𝐷=1

) = 𝐴(𝒙𝒐, 𝑷) (16) 

i.e. for the given MSSPS, we have 

 inf
𝑷
𝐴(𝒙𝒐, 𝑷) = ∑ ∏Pr⁡(𝐺𝑖− ≥ 𝑑𝑘𝐷)𝑝𝑘𝐷

𝑁

𝑖=1

𝐾𝐷

𝑘𝐷=1

 
(17) ■ 

 

According to definition 3.1, to verify the existence of 𝑷− is equivalently to verify that the following 

multi-objective LP problem (18) has a unique optimal solution: 

for 𝑘𝑗𝑖 = 1,2, … , 𝐾𝑗𝑖: 
max
𝑃⃑⃑𝑗𝑖~

𝐹𝑗𝑖(𝑘𝑗𝑖 , 𝑃⃑⃑𝑗𝑖~) 

(18) 

s.t. 𝑝𝑘𝑗𝑖~
∈ [𝑝𝑘𝑗𝑖−

, 𝑝𝑘𝑗𝑖+
] 

 ∑ 𝑝𝑘𝑗𝑖~

𝐾𝑗𝑖

𝑘𝑗𝑖
=1

= 1 

where 𝑃⃑⃑𝑗𝑖~ = (𝑝1𝑗𝑖~
, 𝑝2𝑗𝑖~

, … , 𝑝𝑘𝑗𝑖~
, … , 𝑝𝐾𝑗𝑖~

) , and 𝐹𝑗𝑖(𝑡, 𝑃⃑⃑𝑗𝑖~)  is the cumulative state probability 

distribution function for each component in version 𝑗𝑖, when its state probability vector is assumed to be 

𝑃⃑⃑𝑗𝑖 = 𝑃⃑⃑𝑗𝑖~. Without loss of generality, we assume that the state performances for each component version 

𝑗𝑖, i.e., the elements in supp𝑗𝑖 = {𝑔𝑘𝑗𝑖
}, are sorted in ascending order with respect to 𝑘𝑗𝑖. Then, we have 

Theorem 3.4 

A probability vector 𝑃⃑⃑𝑗𝑖
∗ is the unique optimal solution of Problem (18) if it is feasible and satisfies: 
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∃𝑘𝑜 ∈ {1,2, … , 𝐾𝑗𝑖},⁡ s.t. 𝑝𝑘𝑗𝑖
∗ =

{
 
 

 
 

𝑝𝑘𝑗𝑖+
, for⁡ 𝑘𝑗𝑖 < 𝑘𝑜

𝑝𝑘𝑗𝑖−
, for⁡ 𝑘𝑗𝑖 > 𝑘𝑜

1 − ∑ 𝑝𝑘𝑗𝑖+

𝑘𝑜−1

𝑘𝑗𝑖
=1

− ∑ 𝑝𝑘𝑗𝑖−

𝐾𝑗𝑖

𝑘𝑗𝑖
=𝑘𝑜+1

, for⁡ ⁡ 𝑘𝑗𝑖 = 𝑘𝑜

 (19) 

Proof 

Assume 𝑃⃑⃑𝑗𝑖
∗  is feasible and satisfies (19). Let us consider arbitrary feasible solution 𝑃⃑⃑𝑗𝑖~ ≠ 𝑃⃑⃑𝑗𝑖

∗  and 

define 

 
𝑘𝑜
′ = {

𝑘𝑜 , if⁡ 𝑝𝑘𝑜
∗ ≥ 𝑝𝑘𝑜

𝑘𝑜 − 1, if⁡ 𝑝𝑘𝑜
∗ < 𝑝𝑘𝑜

 (20) 

then 

 ∀𝑘 ∈ {1,2, … , 𝐾𝑗𝑖}: {
𝑝𝑘𝑗𝑖
∗ − 𝑝𝑘𝑗𝑖~

≥ 0, if⁡ 𝑘 ≤ 𝑘𝑜
′ ⁡

𝑝𝑘𝑗𝑖
∗ − 𝑝𝑘𝑗𝑖~

≤ 0, if⁡ 𝑘 > 𝑘𝑜
′  (21) 

since 𝑃⃑⃑𝑗𝑖 ≠ 𝑃⃑⃑𝑗𝑖
∗, we have 

 ∀𝑘 ∈ {1,2, … , 𝐾𝑗𝑖}:

{
  
 

  
 
∑ (𝑝𝑘𝑗𝑖

∗ − 𝑝𝑘𝑗𝑖~
)

𝑘

𝑘𝑗𝑖
=1

> 0, if⁡ 𝑘 ≤ 𝑘𝑜
′ ⁡

∑ (𝑝𝑘𝑗𝑖
∗ − 𝑝𝑘𝑗𝑖~

)

𝐾𝑗𝑖

𝑘𝑗𝑖
=𝑘+1

< 0, if⁡ 𝑘 > 𝑘𝑜
′

 (22) 

i.e. 

 ∀𝑘 ∈ {1,2, … , 𝐾𝑘𝑗𝑖
}:⁡ 𝐹𝑗𝑖(𝑘, 𝑃⃑⃑𝑗𝑖

∗) > 𝐹𝑗𝑖(𝑘, 𝑃⃑⃑𝑗𝑖~) (23) 

thus, 𝑃⃑⃑𝑗𝑖
∗ is an optimal solution of (18). Meanwhile, according to (23), we see arbitrary feasible solution 

𝑃⃑⃑𝑗𝑖~ ≠ 𝑃⃑⃑𝑗𝑖
∗ is not an optimal solution, thus 𝑃⃑⃑𝑗𝑖

∗ is unique.■ 

Now let us build an algorithm to find 𝑘𝑜 and compute 𝑃⃑⃑𝑗𝑖
∗. Let us first define a decreasing sequence  

 
[𝑎𝑘]:⁡ 𝑎𝑘 = 1 − ∑ 𝑝𝑘𝑗𝑖+

𝑘𝑗𝑖
<𝑘+1

− ∑ 𝑝𝑘𝑗𝑖−
𝑘+1≤𝑘𝑗𝑖

≤𝐾𝑗𝑖

, 𝑘 = 0,1,2,3, … , 𝐾𝑗𝑖  (24) 
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where 𝑎0 ≥ 0, 𝑎𝐾𝑗𝑖
≤ 0 and ∆𝑎𝑘 = 𝑎𝑘+1 − 𝑎𝑘 = −(𝑝𝑘+ − 𝑝k−) ≤ 0. Thus, we can always find a 𝑘𝑠𝑜 ∈

{1 

 

, 2,3, … , 𝐾𝑗𝑖}, such that 

 𝑝𝑘𝑠𝑜+ − 𝑝𝑘𝑠𝑜− ≥ 𝑎𝑘𝑠𝑜−1 ≥ 0, 𝑎𝑘𝑠𝑜 ≤ 0 (25) 

Now let us construct a probability vector 𝑃⃑⃑𝑗𝑖
∗∗ by setting 

 𝑝𝑘𝑗𝑖
∗∗ =

{
 
 

 
 

𝑝𝑘𝑗𝑖+
, for⁡ 𝑘𝑗𝑖 < 𝑘𝑠𝑜

𝑝𝑘𝑗𝑖−
, for⁡ 𝑘𝑗𝑖 > 𝑘𝑠𝑜

1 − ∑ 𝑝𝑘𝑗𝑖+

𝑘𝑠𝑜−1

𝑘𝑗𝑖
=1

− ∑ 𝑝𝑘𝑗𝑖−

𝐾𝑗𝑖

𝑘𝑗𝑖
=𝑘𝑠𝑜+1

, for⁡ ⁡ 𝑘𝑗𝑖 = 𝑘𝑠𝑜

 (26) 

Then we have 

Theorem 3.5 

𝑃⃑⃑𝑗𝑖
∗∗ is the unique optimal solution of Problem (18), i.e. 𝑃⃑⃑𝑗𝑖

∗ = 𝑃⃑⃑𝑗𝑖
∗∗. 

Proof 

From (25) and (26), we see 𝑝𝑘𝑠𝑜
∗∗ = 𝑎𝑘𝑠𝑜 + 𝑝𝑘𝑠𝑜+, thus 𝑝𝑘𝑠𝑜

∗∗ ∈ [𝑝̃𝑘𝑗𝑖−
, 𝑝𝑘𝑗𝑖+

], i.e. 𝑃⃑⃑𝑗𝑖
∗∗ is feasible. As 𝑃⃑⃑𝑗𝑖

∗∗ 

also satisfies (19), it is the unique optimal solution of Problem (18), according to Theorem 3.4. ■ 

As the existence of an integer 𝑘𝑠𝑜 ∈ {1,2,3,… , 𝐾𝑗𝑖}, which satisfies (25), is guaranteed, Theorem 3.5 

guarantees that Problem (18) always has a unique optimal solution 𝑃⃑⃑𝑗𝑖
∗∗. Now we have 

Corollary 3.6 

There exists a unique 𝑷− in Corollary 3.3, which satisfies 

 ∀𝑗𝑖: 𝑃⃑⃑𝑗𝑖− = 𝑃⃑⃑𝑗𝑖
∗∗ (27) 

Proof 

The definition of 𝑷−, as given in Corollary 3.3, requires 𝑷− to be unique if it exists; meanwhile, with 

Theorem 3.5 and (23), we have 

 ∀𝑗𝑖⁡ ∀𝑃⃑⃑𝑗𝑖 ∈ ℘𝑗𝑖
: 𝐹𝑗𝑖(𝑃⃑⃑𝑗𝑖

∗∗) ≼ 𝐹𝑗𝑖(𝑃⃑⃑𝑗𝑖) (28) 

thus the existence of 𝑷− is guaranteed. ■ 



 

13 

 

Let us now analysis the time complexity to construct 𝑷−.To construct 𝑃⃑⃑𝑗𝑖
∗∗, we can iteratively compute 

𝑎𝑘  for 𝑘 = 0,1,2, …  until 𝑎𝑘 ≤ 0 , i.e., when we find a 𝑘𝑠𝑜  that satisfies (25). It takes 𝑂(𝐾𝑖𝑗)  to 

compute 𝑎0, and 𝑂(1) to compute 𝑎𝑘 from 𝑎𝑘−1, since 

 𝑎𝑘 = 𝑎𝑘−1 + (𝑝𝑘𝑗𝑖+
− 𝑝𝑘𝑗𝑖−

) (29) 

To construct 𝑷−, we need to at most compute 𝑃⃑⃑𝑗𝑖
∗∗ for every feasible 𝑗𝑖. Thus the total time complexity 

for computing 𝑷−  is 𝑂 (∑ ∑ 𝐾𝑗𝑖
𝑛𝑖
𝑗𝑖=1

𝑁
𝑖=1 ) . The pseudo-code for computing each 𝑃⃑⃑𝑗𝑖− = 𝑃⃑⃑𝑗𝑖

∗∗  is given in 

Algorithm 1 in Appendix A. 

Corollary 3.7 

Assume 𝐾 ∈ ℕ is an upper bound of 𝐾𝑗𝑖. Then, there exists a 𝑂(𝑛𝐾) time algorithm to compute 𝑷−. 

For sup
𝑷∈℘

𝐴(𝒙𝒐, 𝑷), we have the similar properties (as exhibited from Corollary 3.3 to Corollary 3.7), and 

thus can similarly compute 𝑷+ as shown in the following: 

Theorem 3.8 

Assume 𝑷+ = (𝑃⃑⃑1+, 𝑃⃑⃑2+, … , 𝑃⃑⃑𝑖+, … 𝑃⃑⃑𝑁+)  is a feasible solution of Problem (5), where 𝑃⃑⃑𝑖+ =

(𝑃⃑⃑1𝑖+, 𝑃⃑⃑2𝑖+, … , 𝑃⃑⃑𝑗𝑖+, … , 𝑃⃑⃑𝑛𝑖𝑖+), 𝑃⃑⃑𝑗𝑖+ = (𝑝1𝑗𝑖+
, 𝑝2𝑗𝑖+

, … , 𝑝𝑘𝑗𝑖+
, … , 𝑝𝐾𝑗𝑖+

), and it satisfies 

 ∀𝑗𝑖⁡ ∀𝑃⃑⃑𝑗𝑖 ∈ ℘𝑗𝑖
: 𝐹𝑗𝑖(𝑃⃑⃑𝑗𝑖+) ≽ 𝐹𝑗𝑖(𝑃⃑⃑𝑗𝑖)  (30)  

Then, we have 

a. 

 
sup
𝑷∈℘

𝐴(𝒙𝒐, 𝑷) = 𝐴(𝒙𝒐, 𝑷+)  (31)  

b. each 𝑃⃑⃑𝑗𝑖+ is the unique optimal of the following multi-objective LP 

for 𝑘𝑗𝑖 = 0,1,2, … , 𝐾𝑗𝑖: 
min
𝑃⃑⃑𝑗𝑖~

𝐹𝑗𝑖(𝑘𝑗𝑖 , 𝑃⃑⃑𝑗𝑖~) 

(32) 

s.t. 𝑝𝑘𝑗𝑖~
∈ [𝑝𝑘𝑗𝑖−

, 𝑝𝑘𝑗𝑖+
] 

 ∑ 𝑝𝑘𝑗𝑖~

𝐾𝑗𝑖

𝑘𝑗𝑖
=1

= 1 
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c. A feasible solution 𝑃⃑⃑𝑗𝑖
∗∗ is the optimal solution of Problem (32) if 

∃𝑘𝑜 ∈ {1,2, … , 𝐾𝑗𝑖},⁡ s.t. 𝑝𝑘𝑖𝑗
∗∗ =

{
 
 

 
 

𝑝𝑘𝑗𝑖−
, for⁡ 𝑘𝑗𝑖 < 𝑘𝑜

𝑝𝑘𝑗𝑖+
, for⁡ 𝑘𝑗𝑖 > 𝑘𝑜

1 − ∑ 𝑝𝑘𝑗𝑖−

𝑘𝑜−1

𝑘𝑗𝑖
=1

− ∑ 𝑝𝑘𝑗𝑖+

𝐾𝑗𝑖

𝑘𝑜+1

, for⁡ ⁡ 𝑘𝑗𝑖 = 𝑘𝑜

 (33) 

d. The time complexity to compute 𝑷+ is 𝑂 (∑ ∑ 𝐾𝑗𝑖
𝑛𝑖
𝑗𝑖=1

𝑁
𝑖=1 ).  

The pseudo-code for computing each 𝑃⃑⃑𝑗𝑖+ is given in Algorithm 2 in Appendix A. 

It is essential to note that, the analysis shown in Corollary 3.3 to Corollary 3.7 and Theorem 3.8 implies 

that the optimal solutions of the inner stage problems in (6) are independent of the system’s composition 

𝒙. Thus, we have 

Theorem 3.9 

For Problem (6), let us define 

 
𝐴−(𝒙) = sup

𝑷∈℘
𝐴(𝒙, 𝑷) = 𝐴(𝒙,𝑷−) 

(34) 

 𝐴+(𝒙) = inf
𝑷∈℘

𝐴(𝒙, 𝑷) = 𝐴(𝒙,𝑷+) 

where 𝑷−, 𝑷+ are constant vectors whose value are already computed from Algorithm 1. and 2. Then, 

Problem (6) is reducible to the following one-stage optimization problem 

 max
𝒙
𝑨(𝒙) = (𝐴−(𝒙), 𝐴+(𝒙)) 

(35) s.t. 𝐶(𝒙) =∑∑ 𝑐𝑗𝑖𝑥𝑗𝑖

𝑛𝑖

𝑗𝑖=1

𝑁

𝑖=1

≤ 𝐶0 

 𝑥𝑗𝑖 = 0,1,2, … , 𝑋𝑗𝑖 

IV. LANDSCAPE OF THE PROBLEM AND OPERATORS DESIGN 

In this section, our goal is to analyze the global landscape of MSSPS RAP EU, as presented in (35), such 

that it could be more efficiently solved in an approximate manner. Since both 𝐴−(𝒙), 𝐴+(𝒙) are MSSPS 

availability functions, we will simply analyze the MSSPS availability function 𝐴(𝒙) to show the common 
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properties they share. 

A. Landscape of problem (35) 

Property 4.1 

The evaluation of 𝐴(𝒙) is #P-hard. 

Property 4.2 monotonicity 

The optimal Pareto-front of MSSPS-EU RAP can be obtained within the set 

 𝐵𝑐 = {𝒙|∀𝑖𝑗𝑖: 𝐶0 − 𝐶(𝒙) < min{𝑐𝑗𝑖|𝑥𝑗𝑖 < 𝑋𝑗𝑖}}  (36)  

Property 4.1 is the direct result of Theorem 2.1 from [7]. It implies that “the less samplings the better” 

for the RAP optimization in the worst case; on the other hand, the true Pareto front could be very hard to 

obtain when the benchmark goes large. Property 4.2 shows that the optimal Pareto front of the problem is 

obtainable at the boundary region, since  

1. both objective functions are monotonically increasing; 

2. the inequality constraints in (35) give rise to a convex set. 

Property 4.2 allows us to use repair algorithms to repair infeasible or feasible solutions into the set 𝐵𝑐. As 

both objective functions are monotonically increasing, the repair algorithm does not have to reduce the 

value of 𝐴−(𝒙)  or 𝐴+(𝒙)  for any feasible solution. In evolutionary computation, repair algorithms 

[17~19,26~28] are often used to achieve such purpose. Although the repair algorithms [17~19,26~28] often 

seem time-consuming, like in knapsack problems, the time complexity of them is in general ignorable 

comparing with #P-hardness. 

Property 4.3 upper availability bound [35] 

Let 𝒫 = {𝒫1, 𝒫2, … , 𝒫𝑠, … , 𝒫𝑁𝒫} be a partition of the subsystem index set ℐ = {𝑖 = 1,2, … ,𝑁}, where 

each 𝒫𝑠 is a subset ℐ. For given 𝒙, assume 𝒜𝑠 = Pr⁡(min
𝑖∈𝒫𝑠

𝐺𝑖 ≥ 𝐷); then, 𝒜𝑠 is an upper bound of 𝐴(𝒙) 

and we have 

 0 ≤
min

𝑠∈{1,2,…,𝑁𝒫}
𝒜𝑠 − 𝐴(𝒙)

1 − 𝐴(𝒙)
≤ 𝑁𝒫  (37)  

where 𝑁𝒫 is the number of partitions. Property 4.3 implies that 𝐴(𝒙) can be approximately optimized 

through a search among the solutions that are near-optimal to the problem max
𝒙∈𝐵𝑐

min
𝑠∈{1,2,…,𝑁𝒫}

𝒜𝑠, which could 

be obtained by constructing local search operators/algorithms in which locality is measured by subsystem 
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availabilities 𝐴𝑖  or 𝒜𝑠 . For MSSPS RAP EU, a local search operator that exploits the subsystem 

availability would also be helpful to expand the Pareto front around/from each currently Pareto optimal 

solution 𝒙, because what is needed is to find solutions which are dominated/non-dominated by the current 

Pareto optimal solutions. 

Property 4.4 approximated concavity in subsystem availability 

  a. Assume 𝑥⃑𝑖, 𝑥⃑𝑖
′ are two feasible vectors for composing the 𝑖th subsystem, where Pr𝐺𝑖(𝑥⃑𝑖 ≥ 𝑑𝐾𝐷) =

𝛼; then, we have 

 
𝐴̅𝑖(𝑥⃑𝑖

′) − 𝐴̅𝑖(𝑥⃑𝑖
′ + 𝑥⃑𝑖)

𝐴̅𝑖(𝑥⃑𝑖
′)

> 𝛼  (38)  

  b. Assume ∆𝑐 = 𝑐𝑖(𝑥⃑𝑖) , 𝐴𝑖𝑚(𝑐)  gives the maximum subsystem availability when the total cost of 

system 𝑖 is restricted to be less than 𝑐. Then, for any ∆𝑐′′ ≥ 2∆𝑐 we have 

 0 <
𝐴𝑖𝑚(𝑐 + ∆𝑐′′) − 𝐴𝑖𝑚(𝑐 + ∆𝑐)

𝐴𝑖𝑚(𝑐 + ∆𝑐) − 𝐴𝑖𝑚(𝑐)
≤
1 − 𝛼

𝛼
⁡ if⁡ 𝐴𝑖𝑚(𝑐 + ∆𝑐) > 𝐴𝑖𝑚(𝑐)  (39)  

  c. When 𝛼 > 0.5, 𝐴𝑖𝑚(𝑘∆𝑐) is concave to 𝑘 ∈ ℕ+. 

Example 4.5 

Assume subsystem 𝑖  is only composed of 𝑥𝑗𝑖  two-state (i.e. 𝐾𝑗𝑖 = 1 ) components from the fixed 

version 𝑗𝑖 = 1. Then 

a. 𝐴𝑖(𝑥𝑗𝑖) is strictly concave to 𝑥𝑗𝑖  when (𝑥𝑗𝑖 + 1)𝑝𝐾𝑗𝑖
≥ 𝑑𝐾𝐷𝑔𝐾𝑗𝑖

;  

b. 𝐴𝑖(𝑥𝑗𝑖∆𝑐) is strictly concave to 𝑥𝑗𝑖 when (𝑥𝑗𝑖 + 1)𝑝𝐾𝑗𝑖
≥ 𝑑𝐾𝐷𝑔𝐾𝑗𝑖

; 

Property 4.4 a. is the direct result of convolution and Property 4.4 b., c. can be directly derived from 

Property 4.4 a., b., respectively. Property 4.4 implies the approximate concavity on each 𝐴𝑖𝑚(𝑐) at the 

global landscape. For example, when 𝐴𝑖𝑚(𝑐) is discretized as 𝐴𝑖𝑚(𝑘∆𝑐) with 𝛼 = 0.9, we observe that 

the terms in the first-order differential equation of 𝐴𝑖𝑚(𝑘∆𝑐) decrease in an exponential ratio which is 

faster than 
1−𝛼

𝛼
, as shown in Property 4.4 b. 

As MSSPS RAP EU is integer and non-convex, to introduce small perturbations on subsystem 

composition is often insufficient (as small perturbations on subsystem availability often require large 

perturbations on subsystem composition, due to the discrete nature of the problem). Property 4.4 implies 

that we can introduce larger perturbations on subsystem availability, while the chance that it causes 



 

17 

 

significant reduction on subsystem availability can be reduced through implementing a compensation 

scheme: if several components are removed, then several components have to be added to the subsystem 

such that the perturbation of the total subsystem cost remains small. When we search within the set 𝐵𝑐, 

both too large decrements/increments on subsystem cost should be carefully avoided during the local search, 

since the subsystem costs are linearly dependent. Details for the local operator design considering the linear 

dependence are introduced in the next sub-section. 

B. Repair and local search operator 

In this section, basic designs of repair and local search operators are proposed according to the previous 

analysis. The pseudo codes of the operators are given in Appendix. 

1. The repair operator 

In general, heuristics are designed to generate off-springs which are close or similar to the currently-

found best solutions under certain distance metrics. According to Property 4.2, it is in general sufficient to 

search within certain relaxed boundary sets such as 

 𝐵̃𝑐 = {𝒙|‖𝐶0 − 𝐶(𝒙)‖ ≤ 𝜀} 
 (40)  

 

For simplicity, in this paper we consider an evolutionary scheme that only searches within the set 𝐵𝑐, 

which has appeared in eq. (36). As MSSPS RAP is strongly non-linear and locally non-convex, we expect 

that the repair algorithm should be stochastic rather than greedy. In principle, we expect to do the repair in 

two steps: first we remove the installed components according to a uniform probability, until the current 

solution satisfies all the inequality constraints. Afterwards, the uninstalled components, whose costs are 

smaller than the absolute value of the difference between the system cost constraint 𝐶0 and the current 

system cost 𝐶(𝒙), should then be added to the system. The components should be added uniformly, with 

respect to their component versions. Such repair procedure terminates when the system is already repaired 

back into 𝐵𝑐. In this paper, the repair algorithm is implemented through the following steps: 

Algorithm 3. The Repair algorithm 

Step 1. repair infeasible solutions to the feasible region F:  

Step 1.1 compute the value 𝑑 = 𝐶0 − 𝒄
𝑇𝒙 for the current system; 

Step 1.2 if 𝑑 < 0, uniformly select one component from the current system design and remove it, and then go back to Step 1.1; 

  otherwise, go to Step 2. 

Step 2. repair feasible solutions to 𝐵𝐶: 
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Step 2.1 compute the value 𝑑 = 𝐶0 − 𝒄
𝑇𝒙 for the current system; 

Step 2.2 initialize the set 𝑉 = {𝑗𝑖: 𝑥𝑗𝑖 < 𝑋𝑗𝑖 , 𝑐𝑗𝑖 ≤ 𝑑}, go to Step 2.4; 

Step 2.3 compute the value 𝑑 = 𝐶0 − 𝒄
𝑇𝒙 for the current system; 

Step 2.4 if 𝑉 is non-empty, uniformly select a component version 𝑗𝑖 from the version index set 𝑉 and add a component of this 

version to the current system design, and, then, go back to Step 2.3; 

otherwise, the algorithm is terminated. 

The time complexity of Algorithm 3 is O(𝑛𝑐 ln 𝑛𝑐). In Step 1, we need to compute 𝑑 in Step 1.1 and to 

perform the uniform selection in Step 1.2 for at most O(𝑛𝑐) times, where 𝑛𝑐 is the number of components 

installed on the system before we run the repair algorithm. In step 2, we need to build the component set 

𝑉 = {𝑗𝑖: 𝑥𝑗𝑖 < 𝑋𝑗𝑖 , 𝑐𝑗𝑖 ≤ 𝑑} and iteratively perform the uniform selection for at most O(𝑛𝑐) times. To build 

𝑉, it requires O(𝑛𝑐 ln 𝑛𝑐) time if we built it as a linked list and sort the index in ascending order, with 

respect to the component cost 𝑐𝑗𝑖; then, to update it, we only need to remove the version of component if 

it becomes: 1.𝑥𝑗𝑖 = 𝑋𝑗𝑖; 2. 𝑐𝑗𝑖 > 𝑑; at this iteration. It requires O(ln 𝑛𝑐) time to update such linked list of 

𝑉, which is the time complexity for searching the cut point after which we have 𝑐𝑗𝑖 > 𝑑 for all the versions 

stored in the list.  

In this paper, the repair operator will be performed after initialization, crossover and mutation for the 

modified NSGA-II. The details of the modified NSGA-II will be introduced in the next subsection. 

2. Local search operator 

  Various literature works exist on the development of specific ‘local search’ techniques for solving 

MSSPS RAPs. For example, in [10] the mutation operator in a genetic algorithm (GA) is designed as a 

(−1,+1) local search operator. In [4], the (−1,+1) operator is used for Tabu search (TS). In [3], PSO is 

mixed with the more sophisticated (−𝑥,+𝑦) local search operators to improve performance. From our 

analysis of the above works, it results that a simple (−1,+1) could be too “naive” to jump out the local 

traps; meanwhile, the local search should also guarantee that the system does not move too far away from 

the set 𝐵𝑐. To address these issues, in this subsection, we propose a local search algorithm which performs 

specifically designed (−𝛼,+𝛽) operators on selected subsystems. Considering Properties 4.3 and 4.4, we 

also expect that the cost of the subsystem should be perturbed “slightly” with respect to the unit costs of 

the installed subsystem components, during each (−𝛼, +𝛽) operation. 
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Also, in our evolutionary algorithm design we will make sure that the system is always in 𝐵𝑐 before 

performing the local search, which can be guaranteed by implementing the repair algorithm. The local 

search is, then, designed to satisfy the following rules: 

a. after the (−𝛼,+𝛽) operator is applied to one subsystem, the current system cost should always be close 

to the system cost constraint, either slightly above or below. 

b. after the (−𝛼,+𝛽) operator is applied to the last perturbed subsystem, the current system cost should 

be just below the system cost constraint, so that Step.1 of the repair algorithm could be avoided if the current 

solution needs to be repaired. 

3. the selected subsystems should be perturbed by the (−𝛼, +𝛽) operator in a random order, since the 

selection procedure of the last perturbed subsystem should be independent of the subsystem index. 

  Now, let us give a more precise description of the (−𝛼,+𝛽) operator performed on each subsystem: 

The operator first selects a component version 𝑗𝑖,𝛼 from the installed component versions with uniform 

probability, and, then, removes 𝛼 components from this version, where the value of 𝛼 is sampled from 

uniform distribution on the discrete set {1,2, … , 𝑥𝑗𝑖,𝛼}  and 𝑥𝑗𝑖,𝛼  is the number of currently installed 

components in version 𝑗𝑖,𝛼 . The operator, then, selects a component version 𝑗𝑖,𝛽  from the component 

versions satisfying 𝑥𝑗𝑖 ≤ 𝑋𝑗𝑖, with uniform probability. To decide the value of 𝛽, the algorithm first sets 

𝑥𝑗𝑖,𝛽 to be the maximum value that allows the system to be feasible; then, if there are still subsystems to be 

perturbed and 𝑥𝑗𝑖,𝛽 < 𝑋𝑗𝑖,𝛽 , then it will set 𝑥𝑗𝑖,𝛽 = 𝑥𝑗𝑖,𝛽 + 1 with 50% chance, such that the current system 

cost could just violate the system cost constraint; otherwise, it will not set 𝑥𝑗𝑖,𝛽 = 𝑥𝑗𝑖,𝛽 + 1, so that the 

system stays feasible and close to the set 𝐵𝑐 (with respect to the component cost 𝑐𝑗𝑖,𝛽) after the local search. 

Algorithm 4 below shows the procedure of the local search operator. 

Algorithm 4. Local Search 

Step 1. take the vector 𝑆𝑣, in which the index of selected subsystems are stored in random order.  

Step 2. for 𝑖 = 1: length(𝑆𝑣)  

Step 2.1 uniformly select a component version 𝑗𝛼 from the version index set {𝑗: 𝑥𝑗𝑖 > 0}; 

Step 2.2 remove 𝛼 components of version 𝑗𝛼 according to the distribution 𝑈(1, 𝑥𝑗𝑖,𝛼);  
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Step 2.3 uniformly select a component version 𝑗𝛽 from the index set {𝑗: 𝑥𝑗𝑖 < 𝑋0}; 

Step 2.4 add 𝛽 components of version 𝑗𝛽 according to the equation 

𝛽 = max {𝑋, 𝑋0 − 𝑥𝑗𝑖,𝛽}) 

where 

𝑋~𝑈 {⌊
𝐶0 − 𝐶(𝑥⃑)

𝑐𝑗𝑖,𝛽
⌋ , ⌈
𝐶0 − 𝐶(𝑥⃑)

𝑐𝑗𝑖,𝛽
⌉} ⁡ if⁡ 𝑖 ≠ length(𝑆𝑣) 

𝑋 = ⌊
𝐶0 − 𝐶(𝑥⃑)

𝑐𝑗𝑖,𝛽
⌋ ⁡ if⁡ 𝑖 = length(𝑆𝑣) 

and 𝐶(𝑥⃑) is the current cost of the system before the 𝛽 components are added; 

Step 2.5 update 𝐶(𝑥⃑); if 𝐶0 − 𝐶(𝑥⃑) > min{𝑐𝑗𝑖: 𝑥𝑗𝑖 < 𝑋𝑗𝑖}, go to Step 2.3; otherwise determinate. 

In this work, the local search operator is performed during the mutation step of our modified NSGA-II. 

V. THE MODIFIED NSGA-II 

In this section, we present our proposed modified MOEA (namely co-sp-NSGA-II), which integrates 

NSGA-II with the previously proposed repair and local search operators. The general scheme of the whole 

Algorithm is presented as below. The details of each step are, then, presented in the Subsections A to E.  

Algorithm 5. co-sp-NSGA-II 

Step 1. Initialization: randomly generate initial population and then repair if necessary; 

Step 2. Parents selection: binary tournament selection of the parent population; 

Step 3. Crossover: select chromosomes to perform uniform crossover on subsystems and, then, repair if necessary; 

Step 4. Mutation: perform the local search operator to distribute slight disturbances on subsystem costs, by modifying its 

composition;  

Step 5. Fitness evaluation: compute the fitness values for the children population;  

Step 6. Elitism Selection: combine the parents and children populations; perform fast non-dominated sorting and local search 

operator to select the next population; 

Step 7. Termination: the algorithm terminates if a maximum number of generations is reached; otherwise go to Step 2. 

A. Encoding 

The MSSPS design is represented in an integer string, i.e., 𝒙 = (𝑥1𝑖 , 𝑥2𝑖 , … , 𝑥𝑗𝑖 , … , 𝑥𝑛𝑖𝑁), where 𝑥𝑗𝑖 is 

the number of components of version 𝑗𝑖 installed. The substring 𝑥⃑𝑖 = (𝑥1𝑖 , 𝑥2𝑖 , … , 𝑥𝑗𝑖 , … , 𝑥𝑛𝑖𝑖) represents 

one subsystem 𝑖.  
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B. Initialization 

In initialization, the initial population is designed to be generated within the set 𝐵𝐶. A randomized integer 

number generator with a repair algorithm is used to generate the initial population.  

Algorithm 6. Initialization 

Step 1. Assign a random integer value to each 𝑥𝑗𝑖 with 

𝑥𝑗𝑖~𝑈(0, 𝑥𝑜) 

where 𝑈(0, 𝑥𝑜) is a uniform distribution on the set {0, 1,…,⁡ 𝑥𝑜}. 

Step 2. if 𝒙 ∉ 𝐵𝑐 , then it is repaired by the algorithm presented in the following section. 

C. Crossover 

To avoid introducing unnecessary significant perturbation to the subsystem costs, we set the crossover 

point only between subsystems. Since the MSSPS availability is independent of the order of subsystem 

index, we perform uniform crossover to exchange subsystems between the parent individuals. After the 

uniform crossover is done, we perform the repair algorithm to retain the MSSPS within the set 𝐵𝑐. 

Algorithm 7 Crossover 

Step 1. select the chromosomes in the current population to perform crossover according to the crossover rate 𝑝𝑐; 

Step 2. decide the number of subsystems, i.e. 𝑐𝑛𝑢𝑚,  that will perform uniform crossover for each paired chromosomes; 

Step 3. for each of the pair, uniformly select the subsystems to perform the crossover according to 𝑐𝑛𝑢𝑚. 

Step 4. perform repair operator on each newly generated individual. 

The pseudo codes of the crossover operator is given in Appendix. 

D. The mutation operator 

In mutation, we select subsystems to perform local search with uniform probability. After local search, 

the repair operator is performed to repair the system back to the set 𝐵𝑐. The pseudo codes of the mutation 

operator are given in Appendix. 

Algorithm 8. Mutation 

for each individual: 

Step 1. select subsystems to perform mutation, with a uniform probability 𝑝𝑚;  

Step 2. check if more than 1 subsystem is selected; if not, randomly select one subsystem to perform the local search.  

Step 3. perform the local search operator on the selected subsystems; 

Step 4. perform the repair operator for the individual. 
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E. Illustration of the modified crossover and mutation operators 

The procedure of the crossover and mutation operator is illustrated in Fig.2. Note that subsystems are 

randomly selected to perform local search during mutation. Meanwhile, (−𝛼,+𝛽) operators are performed 

on the selected subsystems in random order during the local search.  

On the top left it illustrates the procedure of crossover: here the 2nd and 4th subsystem are selected to 

perform the uniform crossover with probability 𝑝𝑐 . In mutation, subsystems are randomly selected to 

perform local search.  

Fig 2. The crossover and mutation operators 

On the top right, it illustrates the (−𝛼,+𝛽) operation. Here the (−𝛼, +𝛽) operator is performed on a 

subsystem with 3 candidate component versions, where the numbers 3, 1, 2 in the grey chromosome given 

the number of components at each version installed on the current system, respectively. According to the 

top right of Figure. 2, the (−𝛼, +𝛽)  operator first randomly sets 𝑗𝑖,𝛼 = 1  and 𝛼 = 2 , such that two 

components in the 1st  version is removed from the system. Afterwards, it randomly selects sets 𝑗𝑖,𝛽 = 2 

and found that it should also set 𝛽 = 2, in order to make sure that the total system cost is just lower than 

𝐶0, after the (−𝛼,+𝛽) operation. If the subsystem is not the last one that performs the (−𝛼,+𝛽) operator 



 

23 

 

during the local search, the (−𝛼, +𝛽) operator will set 𝛽 = 𝛽 + 1 with a probability of 0.5. Such process 

allows the local search to sufficiently exploit around the set 𝐵𝑐, including the infeasible side of the cost 

constraint 𝐶(𝒙) ≤ 𝐶0. 

At the bottom of Fig. 2, it illustrates how the system cost of a child chromosome varies during crossover 

and mutation. The procedure begins with a uniform crossover, during which the system cost is 

unconstrained. Then, the system is repaired into the set 𝐵𝐶 by using the repair operator. After crossover, it 

moves to the procedure of mutation. During the local search, the system’s cost oscillate around the 

maximum system cost 𝐶0, while the (−𝛼,+𝛽) operator is performed on the selected subsystems one after 

another. After the local search is done, the repair operator is used again in order to guarantee the system 

will fall back into the set 𝐵𝐶. 

VI. COMPUTATIONAL EXPERIMENTS 

In this section, a number of benchmarks are generated to test the proposed optimization method. The 

benchmarks are either newly created or extended from the existing ones that are designed for single-

objective MSSPS RAP. To solve the inner stage problem of (6), we use algorithms 1& 2 to obtain the values 

𝑝𝑘𝑗𝑖−
 and⁡ 𝑝𝑘𝑗𝑖+

 for each component version. As the problem is then reduced to (35), we are allowed to 

compare the proposed co-SP-NSGA-II with the standard NSGA-II on each benchmark, to test their 

performances. In the tests, we also combine the near-Pareto optimal solutions to analyze their clustering 

characteristics on subsystem costs and performances. 

A. Benchmark Generation 

1) Creation of a novel benchmark 

In this subsection, we stochastically create a novel MSSPS RAP EU benchmark. The benchmark consists 

of 15 subsystems, where each subsystem has 10 candidate component version, and each component version 

have three states.   

To simulate what might commonly appear in practice, the following properties are considered: 

1. The system and candidate components should be highly reliable; 

2. The uncertainty level should be non-significant. 

To guarantee that the benchmark is “difficult” to solve, we also let the candidates within the same subsystem 

have mutually-similar expected performance/cost ratios while the average component cost of a subsystem 
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differs from one to another. In this benchmark, we set the candidate components satisfying the following 

rules: 

 

0.8 ≤ 𝑔̃𝐾𝑗𝑖−
, 0.9 ≤ 𝑔̃𝐾𝑗𝑖+

 

0.85 ≤∑𝑔̃𝑘𝑗𝑖−
≤ 1 ≤∑𝑔̃𝑘𝑗𝑖+

≤ 1.15 

E𝑔̃𝑗𝑖− + E𝑔̃𝑗𝑖+

𝑐𝑗𝑖
= (1 + 𝜀𝑗𝑖)𝛿𝑖 

 (41)  

where 

 

𝛿𝑖~𝑈(0.2,1) 

𝜀𝑗𝑖~𝑈(0,0.1) 
 (42)  

𝛿𝑖 is the bias for the expected performance/cost ratio at each subsystem 𝑖, and 𝜀𝑗𝑖  is the noise introduced 

for each version 𝑗𝑖. The created benchmark, namely slz-15 is given in Appendix B, where Table 3 gives the 

probability distribution of system demand and Table 4 gives the uncertain candidate components. 

2) Benchmark extension 

In literature, benchmark systems lev-4 [10], [3] and lev-5 [30] have been frequently tested for MSSPS 

RAP problems. For examples, lev-5 has been tested for the availability maximization in [9] and lev-4 has 

only been tested for cost minimization. In this work, we extend them to include epistemic uncertainties by 

adding the interval constraints in (3) to the state probabilities. Since all components are binary-stated, the 

linear dependence between the two states allows us to extend the benchmarks in the following way: 

 𝑝2𝑗𝑖+
= 𝑝2𝑗𝑖𝑜

 

𝑝1𝑗𝑖+
= 𝑝1𝑗𝑖𝑜

+ Ω𝑗𝑖 , Ω𝑗𝑖~U(0,0.2) 

𝑝2𝑗𝑖−
= 𝑝2𝑗𝑖𝑜

− Ω𝑗𝑖 

𝑝1𝑗𝑖−
= 𝑝1𝑗𝑖𝑜

 

(43) 

where 𝑝2𝑗𝑖𝑜
 is the probability that the component functions, in the previous benchmark lev-4 or lev-5, and 

𝑝1𝑗𝑖𝑜
= 1 − 𝑝2𝑗𝑖𝑜

. is the failure probability of the component in version 𝑗𝑖. Then, we immediately have 

 𝑝2𝑗𝑖+
= 𝑝2𝑗𝑖+

; 𝑝1𝑗𝑖+
= 1 − 𝑝2𝑗𝑖+

 (44) 
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𝑝1𝑖𝑗− = 𝑝1𝑗𝑖+
; 𝑝2𝑗𝑖−

= 1 − 𝑝1𝑗𝑖+
 

in respect to Algorithm 1 and 2. Then, (44) allows us to directly solve the MSSPS EU RAP in the 

formulation of Problem (35).  

Now we explain how the optimal solutions of the single-objective MSSPS RAP benchmarks reported in 

literature can be used in comparison with our multi-objective optimization results. Let 𝒙𝒐,𝒎𝒊𝒏𝟒  and 

𝒙𝒐,𝒎𝒂𝒙𝟓  denote the optimal solutions to the benchmarks lev-4 and lev-5 obtained in [10], [3] and [9], 

respectively. For lev-5, we keep the constraints in (35) the same as the ones used in [9] and name our new 

benchmark as lev-5a; for lev-4, since the problem has only been tested in cost minimization form, we set 

the maximum system cost 𝐶𝑜 in (35) to be 𝐶𝑜 = 𝐶(𝒙𝒐,𝒎𝒊𝒏𝟒) and name our new benchmark as lev-4a. 

Now, it is obvious that 𝐴(𝒙𝒐,𝒎𝒊𝒏𝟒)  is the current known best solution for the objective function 

max𝐴+(𝒙) on lev-4a and so is 𝐴(𝒙𝒐,𝒎𝒂𝒙𝟓) for lev-5a. In this paper, we use 𝐴(𝒙𝒐,𝒎𝒊𝒏𝟒) and 𝐴(𝒙𝒐,𝒎𝒂𝒙𝟓) 

to validate the Pareto optimality of the results by the proposed algorithm on the new benchmarks. The 

uncertain components in the extended benchmarks are given in Table 5, Appendix B. 

B. Benchmark Test 

We test the proposed algorithm in comparison with standard binary-coded NSGA-II on the three 

benchmarks. The algorithm parameters settings are presented in in Table 1. 

To measure the performance of the multi-objective optimization algorithms, the following metrics are 

used:  

1. The two extreme values of the Pareto front, i.e., 𝐴−𝑜𝑝𝑡, 𝐴+𝑜𝑝𝑡; 

2. The number of solutions located on the Pareto front across all tests ‖𝑝𝑓𝑎𝑙𝑙‖. 

The former is used to measure the convergence property of each algorithm and the latter is used to 

identify the best parameter setting and the best single run of the tested algorithms.  

When use the above metrics, it is possible that we have multiple best parameters and best runs. In this 

paper, we will illustrate only one of them in Table 2. test results. 

 algorithm 𝑝𝑐 ∆𝑝𝑐 𝑝𝑚 ∆𝑝𝑚 size max gen. repetition 𝐶𝑜 

slz-15 
Co-SP-NSGA-II [0.1, 1] 0.1 [0.1, 1] 0.1 20 5000 5 27 

NSGA-II [0.1, 1] 0.1 [0.0025 0.025] 0.0025 20 5000 5 27 

lev-4a 
Co-SP-NSGA-II [0.1, 1] 0.1 [0.1, 1] 0.1 20 1000 5 8.18 

NSGA-II [0.1, 1] 0.1 [0.01, 0.2] 0.01 20 1000 5 8.18 

lev-5a Co-SP-NSGA-II [0.1, 1] 0.1 [0.1, 1] 0.1 20 2000 5 16 
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NSGA-II [0.1, 1] 0.1 [0.01, 0.2] 0.01 20 5000 5 16 

Table 1 parameter settings of all algorithms on each benchmark 

 algorithm 𝐴−𝑜𝑝𝑡 𝐴+𝑜𝑝𝑡 ‖𝑝𝑓𝑎𝑙𝑙‖ para ‖𝑝𝑓𝑝𝑎𝑟_𝑎𝑙𝑙‖ 𝐴−𝑝𝑎𝑟 𝐴+𝑝𝑎𝑟 ‖𝑝𝑓𝑏𝑠𝑡_𝑠𝑖𝑛𝑔𝑙𝑒‖ gen 

mux-15 
Co-SP-NSGA-II 0.9219 0.9808 16 (0.7,0.1) 8 0.9211 0.9806 8 (66,71) 

NSGA-II 0.8318 0.9319 2 (0.7,0.005) 1 0.8318 0.9262 1 / 

lev-5a 
Co-SP-NSGA-II 0.9850 0.9970 10 (0.6,0.2) 10 0.9326 0.9915 10 (30,30) 

NSGA-II 0.9779 0.9859 16 (0.8,0.05) 7 0.9702 0.9859 6 / 

lev-4a 
Co-SP-NSGA-II 0.9326 0.9915 9 (0.6,0.4) 9 0.9326 0.9915 9 (14,12) 

NSGA-II 0.9326 0.9862 7 (0.8,0.2) 4 0.9326 0.9837 4 / 

Table 2 test results 

 
(a)                                       (b) 

 
(c)                                      (d) 

Fig. 3 test results in mux-15 



 

27 

 

 
(a)                                       (b) 

 

(c)                                      (d) 

Fig. 4 test results in lev-5a 

 
(a)                                       (b) 
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(c)                                       (d) 

Fig. 5 test results in lev-4a 

Firstly, for each of the two competing algorithms, we have the Pareto front of all the feasible solutions 

obtained during the experiment. In Fig. 3a, Fig. 4a and Fig. 5a, we compare the above Pareto fronts obtained 

by the two algorithms. To look into the details, In Fig. 3c, Fig. 4c and Fig. 5c, we give the details of Pareto 

front obtained by Co-SP-NSGA-II at different parameters and the best run. In these figures, PFset-opt gives 

the Pareto front of all the feasible solutions, PFpar-opt gives the combination of the solutions from the Pareto 

fronts obtained at all the best parameters, and PFind-par gives the Pareto front obtained at one of the best 

single-runs. We also give the details of Pareto front obtained by NSGA-II, in Fig. 3d, Fig. 4d and Fig. 5d. 

To compare the results, in Table 2 we also exhibit the following results for each algorithm: the extreme 

values for the Pareto front of all the solutions found during the whole experiment 𝐴−𝑜𝑝𝑡 , 𝐴+𝑜𝑝𝑡 ; the 

extreme values for the Pareto front of all the solutions found at the best cross over/mutation parameter, 

⁡ 𝐴−𝑝𝑎𝑟 and 𝐴+𝑝𝑎𝑟; the number of solutions for the Pareto front containing all the solutions found during 

the whole experiment ‖pf𝑎𝑙𝑙‖ ; the number of solutions on each Pareto front found with the best 

crossover/mutation parameters ‖pf𝑝𝑎𝑟_𝑎𝑙𝑙‖; the size of the Pareto front, at the best single run under the best 

parameters ‖pf𝑏𝑠𝑡_𝑠𝑖𝑛𝑔𝑙𝑒‖; and one pair of the best parameters, i.e. the best crossover rate 𝑝𝑐 and the best 

mutation rate 𝑝𝑚. These results clearly show that the proposed algorithm outperforms NSGA-II, in both 

Pareto-dominance and the diversity of Pareto front. 

For convergence analysis, unavailability - iteration plots, of the extreme values averaged of 5 runs are 

drawn for the two algorithms at their best parameter settings in Fig. 3b, Fig. 4b, Fig. 5b, respectively. It is 

clear that:  
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1. The proposed algorithm has better final performance; 

2. The proposed algorithm outperforms NSGA-II’s final results at very early iterations.  

To quantify such observation, in Table 2 we also record the following metric 

𝑔𝑒𝑛 = (𝑔𝑒𝑛1, 𝑔𝑒𝑛2) 

where 

∀𝑔𝑒𝑛′ ≥ 𝑔𝑒𝑛1: 𝑙1(𝑔𝑒𝑛′) ≤ 𝑙3(𝑚𝑎𝑥𝑔𝑒𝑛) 

∀𝑔𝑒𝑛′ ≥ 𝑔𝑒𝑛2: 𝑙2(𝑔𝑒𝑛′) ≤ 𝑙4(𝑚𝑎𝑥𝑔𝑒𝑛) 

𝑙1(𝑔𝑒𝑛′)⁡ and⁡ 𝑙2(𝑔𝑒𝑛′) are the average values of 𝐴̅+ and 𝐴̅− obtained by our proposed algorithm at its 

best crossover and mutation rates at the iteration 𝑔𝑒𝑛1′ and 𝑔𝑒𝑛2′, respectively, and 𝑙3(𝑚𝑎𝑥𝑔𝑒𝑛) and 

𝑙4(𝑚𝑎𝑥𝑔𝑒𝑛) are those average values of 𝐴̅+ and 𝐴̅− obtained by NSGA-II at the maximum generation. 

With such metric, we observe that the proposed algorithm takes less than 2% of the total generations (or 

even much fewer) to achieve better performances than NSGA-II. 

From the above analysis, we can confirm the significant advantages of the proposed algorithm in terms 

of Pareto-dominance, diversity and speed of convergence. 

C. Comparing with previously published results in single-objective MSSPS RAP 

In the above we have compared the testing results of the proposed algorithm with NSGA-II. Now let us 

compare the results of the proposed algorithm with the best results published in the previous literature. The 

problem type (cost minimization/availability maximization), the parameter settings, and the optimal 

solutions are presented in Table 3. (Note that the total number of evaluations required for different 

algorithms cannot be directly used for comparing the efficiency of the compared algorithms, since they 

were running in different environments, although the MO problem is in general the more difficult one.) The 

following remarks are obtained: for lev-5a, the proposed algorithm finds solutions that dominate the best 

one in [9], with fewer evaluations; for lev-4a, the proposed algorithm finds the same optimal solution in 

[3,4] with very high probability and costed only a few evaluations. 

D. Subsystem performance distribution 

The above experiments generate near-optimal solutions, which allow us to test the correctness of the 

analysis in Chapter IV Section A. Note that in the proposed algorithm, each individual is generated 

considering limited intensity of cost perturbation on each subsystem, whereas NSGA-II treats each 

component equally without taking into account subsystems’ cost-performance relationships. Figs. 5 to 7 
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depict the scatter plots of availability and cost of each subsystem of the near-Pareto optimal solutions in 

slz-15, lev-5a, and lev-4a, respectively. It is clear that the proposed algorithm achieves relatively ‘tighter’ 

bounds for the cost values and certain concavity between the subsystem availability and costs, while certain 

level of tightness in bounds and concavities can also be obtained from the near-optimal solutions of standard 

NSGA-II. 

 

(a) NSGA-II 

 

(b) Co-SP-NSGA-II 
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Fig. 6 subsystem performance distributions on slz-15 

  

     (a) NSGA-II                                  (b) Co-SP-NSGA-II 

Fig. 7 subsystem performance distributions on lev-5a 

 

(a) NSGA-II                                  (b) Co-SP-NSGA-II 

Fig. 8 subsystem performance distributions on lev-4a 

VII. CONCLUSIONS 

In this work, we systemically analyze MSSPS RAP under the interval-bounded epistemic uncertainties. 

A linear-time algorithm is proposed to compute the exact state distributions for the multi-state components 

at which the uncertain system availability will be at its infimum/supremum under uncertain environment. 

To the authors’ knowledge, it is the first algorithm that can achieve such goal. With such algorithm, the 

proposed MSSPS-EU RAP is reduced to a one-stage multi-objective optimization problem. Then, we 

analyze its landscape and propose effective repair and local search operators for its solution. A modified 

NSGA-II incorporating with the proposed operators in then proposed and compare with the standard 

NSGA-II on multiple benchmarks. The promising experiment results demonstrate that the proposed 

algorithm significantly outperforms NSGA-II, which finds solutions better than or non-dominated to the 

published ones at high time-efficiency. 

As future work, it is interesting to further improve the design of evolutionary algorithms for MSSPS Rap 
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EU. For instance, in this paper, each component version is selected under uniform probability in local search. 

However, among the top Pareto-ranked individuals found by the evolutionary algorithm, some particular 

component versions could have a higher chance of appearance than the others. To increase the probability 

of selecting such component versions, estimation of distribution algorithms may be considered. 

APPENDIX 

A. The Pseudo Codes 

 

 

Algorithm 1. 

for each 𝑖, 𝑗𝑖 

   for 𝑘𝑗𝑖 = 𝐾𝑗𝑖to⁡ 0 

       𝑝𝑘𝑗𝑖
= 𝑝𝑘𝑗𝑖−

;  

 endfor 

   for 𝑘𝑗𝑖 = 0⁡ to⁡ 𝐾𝑗𝑖  

       𝑝𝑘𝑗𝑖
= 𝑝𝑘𝑗𝑖+

; 

       𝑠 = ∑ 𝑝𝑘𝑗𝑖

𝐾𝑗𝑖
𝑘𝑗𝑖

=1 ; 

       if 𝑠 > 1 

         𝑝𝑘𝑗𝑖
= 𝑝𝑘𝑗𝑖+

− 𝑠 + 1; 

     break; 

   endif 

   endfor 

endfor 

Algorithm 2. 

for each 𝑖, 𝑗𝑖 

   for 𝑘𝑗𝑖 = 𝐾𝑗𝑖to⁡ 0 

       𝑝𝑘𝑗𝑖
= 𝑝𝑘𝑗𝑖−

;  

 endfor 

   for 𝑘𝑗𝑖 = 𝐾𝑗𝑖 ⁡ to⁡ 0 

       𝑝𝑘𝑗𝑖
= 𝑝𝑘𝑗𝑖+

; 

       𝑠 = ∑ 𝑝𝑘𝑗𝑖

𝐾𝑗𝑖
𝑘𝑗𝑖

=1 ; 

       if 𝑠 > 1 

         𝑝𝑘𝑗𝑖
= 𝑝𝑘𝑗𝑖+

− 𝑠 + 1; 

     break; 

   endif 

   endfor 

endfor 

 

 The Crossover Operator 

for 𝑖𝑖𝑛𝑑𝑖 = 1to⁡ ⌊𝑛/2⌋ % for each subsystem that will crossover 

      *if rand(1) < 𝑝𝑐 

**𝑟 = randperm(𝑁); 

***𝑐𝑛𝑢𝑚 = randi(1, 𝑁); 

End for 

for 𝑖𝑟 = 1:⁡ 𝑐𝑛𝑢𝑚 

            ****exchange(𝑖𝑖𝑛𝑑𝑖 , 𝑟(𝑖𝑟));  

                      run Repair Operator; % repair the pair chromosomes to 𝐵𝑐 

End for 

*⁡ rand(𝑛) returns a 𝑛-dimension vector, the value of each element in the returned vector is uniformly sampled from the 

interval [0,1]; 

**⁡ randperm(𝑁) returns a vector of one random permutation of the elements in the set {1,2, … , 𝑁}; 

*** randi(1, 𝑁) returns an integer value from the set {1,2, … , 𝑁} with uniform probability; 

**** exchange(𝑖𝑖𝑛𝑑𝑖 , 𝑟(𝑖𝑟))  exchanges the 𝑟(𝑖𝑟) th subsystems of the paired chromosomes whose index are 

2𝑖𝑖𝑛𝑑𝑖 ⁡ and⁡ 2𝑖𝑖𝑛𝑑𝑖 − 1, respectively. 
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B. The benchmarks 

Table 3 Probability distributions of system demand in slz-15 

  p̃2ij+ p̃1ij+ p̃0ij+ p̃2ij− p̃1ij− p̃0ij− p2ij+ p1ij+ p0ij+ p2ij− p1ij− p0ij− g2ij g1ij cij 

𝑠1 

1 0.946 0.056 0.054 0.896 0.019 0.014 0.946 0.04 0.014 0.896 0.05 0.054 69 41 0.426 

2 0.923 0.078 0.082 0.895 0.057 0.02 0.923 0.057 0.02 0.895 0.057 0.048 71 36 0.437 

3 0.981 0.083 0.025 0.939 0.035 0.005 0.96 0.035 0.005 0.939 0.036 0.025 34 16 0.214 

𝑘𝐷 1 2 3 4 

𝑔𝑘𝐷 20 50 80 100 

𝑝𝑘𝐷 0.1 0.4 0.3 0.2 

The Mutation Operator 

for 𝑖𝑖𝑛𝑑𝑖 = 1⁡ to⁡ 𝑛 

    𝑢 = rand(𝑛) < 𝑝𝑐; 

run Local Search Operator; % perform local search 

run Repair Operator; % perform the repair algorithm 

end for 

The Repair Operator 

%% repair to 𝐹 

𝑑 = 𝐶0 − 𝒄
𝑇𝒙;  

𝑥⃑𝑖 = (𝑥1𝑖 , 𝑥2𝑖 , … , 𝑥𝑗𝑖 , … , 𝑥𝑛𝑖𝑖); 

while 𝑑 < 0 

       *𝑗𝑜,𝑖 = rand1(𝑥⃑);⁡  

⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ 𝑥𝑗𝑜,𝑖 ⁡ = 𝑥𝑗𝑜,𝑖 − 1; 

⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ 𝑑 = 𝑑 + 𝑐𝑗𝑜,𝑖; 

end while 

%% repair to 𝐵𝑐 

𝑉1 = {𝑗𝑖: 𝑥𝑗𝑖 < 𝑋0, 𝑐𝑗𝑖 ≤ 𝑑}; 

while 𝑑 ≥ min({𝑐𝑗𝑖: 𝑥𝑗𝑖 < 𝑋0}) 

**(𝑗𝑜,𝑖) = rand2(𝑉1); 

      𝑥𝑗𝑜,𝑖 = 𝑥𝑗𝑜,𝑖 + 1; 

⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ ⁡ 𝑑 = 𝑑 − 𝑐𝑗𝑜,𝑖; 

      𝑉1 = {𝑗𝑖: 𝑥𝑗𝑖 < 𝑋0, 𝑐𝑗𝑖 ≤ 𝑑}; 

end while 

* rand1(𝑥⃑, 𝑝)  returns the index (𝑖, 𝑗)  of a component 

in 𝑥⃑, where the component is uniformly selected from all 

the installed components.  

**rand2(𝑉) returns the index (𝑖, 𝑗) by taking a sample 

from 𝑉 with uniform probability. 

The Local Search Operator 

  𝑆𝑣 = randperm(𝑢); % construct 𝑆𝑣 

𝑑 = 𝐶0 − 𝒄
𝑇𝒙;    

for 𝑖𝑣 =1:|𝑆𝑣| 

      𝑖 = 𝑆𝑣(𝑖𝑣); 

      𝑗𝛼 = randi(1, 𝑛𝑖); 

     𝛼 = randi(0, 𝛼); 

     𝑑 = 𝑑 + 𝑐𝑗𝑖,𝛼 ∙ 𝛼; 

     [𝛽, 𝑑] = add(𝑑, 𝑖); 

  end for 

%% add(𝑑, 𝑖𝑠) 

function [𝑥𝑗𝑖,𝛽 , 𝑑] = add(𝑑, 𝑖𝑠) 

𝑗𝛽 = randi(1, 𝑛𝑖𝑠); 

if 𝑖𝑠 ≠ |𝑆𝑣| 

  𝛽 = max {randi ቆ⌊
𝑑

𝑐𝑗𝑖,𝛽

⌋ , ⌈
𝑑

𝑐𝑗𝑖,𝛽

⌉ቇ , 𝑋0}; 

else 

  𝛽 = max {⌊
𝑑

𝑐𝑗𝑖,𝛽

⌋ , 𝑋0}; 

  𝑑 = 𝑑 − 𝑐𝑗𝑖,𝛽 ∙ 𝛽; 

end if 

end function 

. 
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4 0.948 0.086 0.028 0.932 0.046 0.006 0.948 0.046 0.006 0.932 0.046 0.022 82 37 0.485 

5 0.928 0.063 0.05 0.887 0.033 0.009 0.928 0.063 0.009 0.887 0.063 0.05 57 30 0.327 

6 0.961 0.038 0.031 0.92 0.033 0.007 0.96 0.033 0.007 0.931 0.038 0.031 27 13 0.161 

7 0.927 0.113 0.061 0.868 0.037 0.023 0.927 0.05 0.023 0.868 0.071 0.061 32 14 0.194 

8 0.947 0.046 0.055 0.94 0.039 0.014 0.947 0.039 0.014 0.94 0.039 0.021 39 23 0.229 

9 0.951 0.051 0.049 0.881 0.045 0.012 0.943 0.045 0.012 0.9 0.051 0.049 91 37 0.566 

10 0.946 0.051 0.019 0.93 0.027 0.003 0.946 0.051 0.003 0.93 0.051 0.019 79 40 0.496 

𝑠2 

1 0.923 0.075 0.037 0.89 0.01 0.001 0.923 0.075 0.002 0.89 0.073 0.037 85 40 1.003 

2 0.936 0.092 0.062 0.902 0.055 0.009 0.936 0.055 0.009 0.902 0.055 0.043 44 26 0.516 

3 0.959 0.05 0.039 0.924 0.011 0.006 0.959 0.035 0.006 0.924 0.037 0.039 80 42 0.957 

4 0.957 0.035 0.039 0.878 0.01 0.019 0.957 0.024 0.019 0.926 0.035 0.039 25 12 0.311 

5 0.936 0.092 0.063 0.93 0.045 0.019 0.936 0.045 0.019 0.93 0.045 0.025 84 41 0.981 

6 0.953 0.05 0.021 0.906 0.049 0.004 0.947 0.049 0.004 0.929 0.05 0.021 83 49 1.042 

7 0.953 0.037 0.019 0.944 0.003 0.001 0.953 0.037 0.01 0.944 0.037 0.019 79 36 0.979 

8 0.958 0.032 0.038 0.941 0.019 0.006 0.958 0.032 0.01 0.941 0.021 0.038 43 21 0.516 

9 0.94 0.102 0.05 0.92 0.057 0.003 0.94 0.057 0.003 0.92 0.057 0.023 36 19 0.438 

10 0.922 0.076 0.026 0.898 0.008 0.001 0.922 0.076 0.002 0.898 0.076 0.026 100 50 1.192 

𝑠3 

1 0.94 0.081 0.039 0.9 0.05 0.011 0.939 0.05 0.011 0.9 0.061 0.039 21 13 0.262 

2 0.94 0.067 0.036 0.908 0.009 0.011 0.94 0.049 0.011 0.908 0.056 0.036 27 13 0.317 

3 0.944 0.053 0.051 0.849 0.05 0.018 0.932 0.05 0.018 0.896 0.053 0.051 24 13 0.29 

4 0.961 0.073 0.021 0.944 0.017 0.006 0.961 0.033 0.006 0.944 0.035 0.021 20 12 0.255 

5 0.961 0.039 0.013 0.945 0.016 0.002 0.961 0.037 0.002 0.948 0.039 0.013 39 23 0.473 

6 0.99 0.083 0.033 0.933 0.032 0.011 0.957 0.032 0.011 0.933 0.034 0.033 23 11 0.292 

7 0.97 0.024 0.012 0.964 0.012 0.001 0.97 0.024 0.006 0.964 0.024 0.012 40 17 0.515 

8 0.942 0.055 0.025 0.905 0.001 0.006 0.942 0.052 0.006 0.92 0.055 0.025 71 31 0.867 

9 0.97 0.071 0.03 0.933 0.021 0.016 0.963 0.021 0.016 0.933 0.037 0.03 65 39 0.785 

10 0.998 0.038 0.024 0.906 0.035 0.006 0.959 0.035 0.006 0.938 0.038 0.024 88 50 1.108 

𝑠4 

1 0.941 0.052 0.057 0.841 0.038 0.016 0.941 0.043 0.016 0.891 0.052 0.057 59 26 0.684 

2 0.95 0.038 0.022 0.94 0.014 0.009 0.95 0.038 0.012 0.94 0.038 0.022 97 43 1.229 

3 0.963 0.066 0.055 0.864 0.043 0.028 0.929 0.043 0.028 0.879 0.066 0.055 69 37 0.774 

4 0.997 0.086 0.035 0.902 0.062 0.003 0.935 0.062 0.003 0.902 0.063 0.035 76 38 0.873 

5 0.982 0.057 0.054 0.841 0.038 0.023 0.939 0.038 0.023 0.889 0.057 0.054 33 19 0.4 

6 0.944 0.063 0.039 0.856 0.059 0.008 0.933 0.059 0.008 0.898 0.063 0.039 79 45 0.972 

7 0.927 0.097 0.064 0.881 0.024 0.029 0.927 0.044 0.029 0.881 0.055 0.064 95 42 1.157 

8 0.956 0.035 0.039 0.926 0.01 0.004 0.956 0.035 0.009 0.926 0.035 0.039 83 46 0.988 

9 0.933 0.072 0.068 0.888 0.054 0.013 0.933 0.054 0.013 0.888 0.054 0.058 73 39 0.857 

10 0.934 0.05 0.024 0.926 0.02 0.001 0.934 0.05 0.016 0.926 0.05 0.024 65 37 0.806 

𝑠5 

1 0.911 0.106 0.079 0.872 0.064 0.025 0.911 0.064 0.025 0.872 0.064 0.064 69 34 1.287 

2 0.953 0.051 0.046 0.876 0.047 0.009 0.944 0.047 0.009 0.903 0.051 0.046 21 11 0.437 

3 0.921 0.079 0.079 0.819 0.027 0.043 0.921 0.036 0.043 0.842 0.079 0.079 63 27 1.167 

4 0.933 0.091 0.037 0.904 0.015 0.014 0.933 0.053 0.014 0.904 0.059 0.037 86 44 1.788 

5 0.936 0.083 0.06 0.849 0.083 0.007 0.91 0.083 0.007 0.857 0.083 0.06 21 11 0.391 

6 0.944 0.055 0.037 0.883 0.004 0.006 0.944 0.05 0.006 0.908 0.055 0.037 57 27 1.184 

7 0.934 0.076 0.055 0.901 0.034 0.019 0.934 0.047 0.019 0.901 0.044 0.055 20 12 0.382 

8 0.974 0.074 0.055 0.856 0.07 0.009 0.921 0.07 0.009 0.871 0.074 0.055 77 46 1.538 

9 0.935 0.055 0.031 0.914 0.035 0.009 0.935 0.055 0.01 0.914 0.055 0.031 60 28 1.16 

10 0.925 0.115 0.04 0.886 0.064 0.011 0.925 0.064 0.011 0.886 0.074 0.04 55 30 1.077 

𝑠6 

1 0.952 0.04 0.04 0.92 0.028 0.007 0.952 0.04 0.008 0.92 0.04 0.04 43 21 0.88 

2 0.948 0.045 0.041 0.886 0.002 0.013 0.948 0.039 0.013 0.914 0.045 0.041 32 19 0.671 

3 0.965 0.043 0.014 0.896 0.042 0.001 0.957 0.042 0.001 0.943 0.043 0.014 42 19 0.845 

4 0.981 0.076 0.044 0.907 0.024 0.026 0.95 0.024 0.026 0.907 0.049 0.044 53 25 1.056 

5 0.95 0.047 0.025 0.933 0.014 0.009 0.95 0.041 0.009 0.933 0.042 0.025 62 28 1.194 

6 0.954 0.075 0.042 0.919 0.011 0.025 0.954 0.021 0.025 0.919 0.039 0.042 56 25 1.092 

7 0.97 0.025 0.023 0.91 0.023 0.006 0.97 0.024 0.006 0.952 0.025 0.023 26 15 0.548 

8 0.974 0.024 0.018 0.937 0.011 0.003 0.974 0.023 0.003 0.958 0.024 0.018 48 26 1.034 

9 0.969 0.07 0.016 0.964 0.023 0.008 0.969 0.023 0.008 0.964 0.023 0.013 86 44 1.713 

10 0.951 0.059 0.068 0.92 0.039 0.01 0.951 0.039 0.01 0.92 0.039 0.041 55 31 1.144 

𝑠7 
1 0.943 0.046 0.053 0.861 0.044 0.014 0.942 0.044 0.014 0.901 0.046 0.053 46 21 0.654 

2 0.941 0.09 0.034 0.92 0.037 0.015 0.941 0.044 0.015 0.92 0.046 0.034 31 18 0.432 
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3 0.995 0.051 0.013 0.952 0.032 0.003 0.965 0.032 0.003 0.952 0.035 0.013 70 36 0.971 

4 0.944 0.051 0.048 0.879 0.019 0.005 0.944 0.051 0.005 0.901 0.051 0.048 20 12 0.278 

5 0.967 0.061 0.048 0.962 0.027 0.006 0.967 0.027 0.006 0.962 0.027 0.011 41 18 0.585 

6 0.956 0.055 0.053 0.946 0.038 0.006 0.956 0.038 0.006 0.946 0.038 0.016 25 13 0.346 

7 0.937 0.056 0.025 0.919 0.04 0.001 0.937 0.056 0.007 0.919 0.056 0.025 82 39 1.108 

8 0.953 0.039 0.035 0.918 0.019 0.011 0.953 0.036 0.011 0.926 0.039 0.035 86 50 1.212 

9 0.939 0.06 0.047 0.846 0.038 0.014 0.939 0.047 0.014 0.893 0.06 0.047 23 12 0.328 

10 0.937 0.069 0.05 0.899 0.033 0.015 0.937 0.048 0.015 0.899 0.051 0.05 86 50 1.192 

𝑠8 

1 0.914 0.079 0.036 0.865 0.066 0.008 0.914 0.078 0.008 0.885 0.079 0.036 63 29 0.753 

2 0.944 0.05 0.062 0.922 0.031 0.021 0.944 0.035 0.021 0.922 0.031 0.047 77 37 0.932 

3 0.944 0.05 0.051 0.887 0.019 0.029 0.944 0.027 0.029 0.899 0.05 0.051 33 15 0.4 

4 0.94 0.056 0.034 0.899 0.021 0.007 0.94 0.053 0.007 0.91 0.056 0.034 83 34 0.986 

5 0.944 0.081 0.045 0.914 0.026 0.01 0.944 0.046 0.01 0.914 0.041 0.045 28 13 0.321 

6 0.915 0.072 0.033 0.895 0.037 0.005 0.915 0.072 0.013 0.895 0.072 0.033 63 32 0.774 

7 0.907 0.079 0.051 0.891 0.012 0.003 0.907 0.079 0.014 0.891 0.058 0.051 70 34 0.831 

8 0.932 0.066 0.037 0.873 0.002 0.009 0.932 0.059 0.009 0.897 0.066 0.037 20 12 0.234 

9 0.912 0.101 0.083 0.845 0.01 0.032 0.912 0.056 0.032 0.845 0.072 0.083 72 32 0.812 

10 0.94 0.079 0.078 0.856 0.041 0.037 0.922 0.041 0.037 0.856 0.066 0.078 48 24 0.575 

𝑠9 

1 0.941 0.073 0.036 0.912 0.006 0.012 0.941 0.047 0.012 0.912 0.052 0.036 31 17 0.31 

2 0.936 0.051 0.031 0.918 0.028 0.005 0.936 0.051 0.013 0.918 0.051 0.031 90 44 0.86 

3 0.922 0.082 0.064 0.832 0.075 0.015 0.91 0.075 0.015 0.854 0.082 0.064 90 52 0.868 

4 0.921 0.068 0.029 0.903 0.039 0.007 0.921 0.068 0.011 0.903 0.068 0.029 76 40 0.732 

5 0.929 0.083 0.064 0.904 0.047 0.023 0.929 0.048 0.023 0.904 0.047 0.049 60 25 0.576 

6 0.934 0.063 0.021 0.916 0.04 0.002 0.934 0.063 0.003 0.916 0.063 0.021 87 50 0.917 

7 0.938 0.099 0.049 0.922 0.052 0.01 0.938 0.052 0.01 0.922 0.052 0.026 47 27 0.469 

8 0.978 0.064 0.024 0.89 0.062 0.004 0.934 0.062 0.004 0.912 0.064 0.024 78 45 0.806 

9 0.914 0.076 0.036 0.888 0.029 0.01 0.914 0.076 0.01 0.888 0.076 0.036 66 33 0.644 

10 0.904 0.095 0.031 0.874 0.085 0.001 0.904 0.095 0.001 0.874 0.095 0.031 33 15 0.322 

𝑠10 

1 0.967 0.042 0.037 0.927 0.016 0.021 0.963 0.016 0.021 0.927 0.036 0.037 42 25 0.735 

2 0.968 0.05 0.075 0.945 0.027 0.005 0.968 0.027 0.005 0.945 0.027 0.028 41 24 0.766 

3 0.98 0.022 0.01 0.952 0.019 0.003 0.978 0.019 0.003 0.968 0.022 0.01 91 43 1.662 

4 0.986 0.054 0.008 0.976 0.015 0.002 0.983 0.015 0.002 0.976 0.016 0.008 64 30 1.151 

5 0.961 0.061 0.021 0.947 0.031 0.004 0.961 0.035 0.004 0.947 0.032 0.021 61 35 1.155 

6 0.996 0.013 0.012 0.931 0.008 0.006 0.986 0.008 0.006 0.975 0.013 0.012 34 16 0.626 

7 0.97 0.024 0.016 0.96 0.024 0.006 0.97 0.024 0.006 0.96 0.024 0.016 54 29 0.998 

8 0.973 0.035 0.012 0.962 0.02 0.003 0.973 0.024 0.003 0.962 0.026 0.012 24 12 0.428 

9 0.961 0.07 0.058 0.939 0.031 0.008 0.961 0.031 0.008 0.939 0.031 0.03 33 19 0.62 

10 0.984 0.013 0.015 0.939 0.007 0.008 0.984 0.008 0.008 0.972 0.013 0.015 40 20 0.72 

𝑠11 

1 0.967 0.026 0.031 0.931 0.004 0.014 0.967 0.019 0.014 0.943 0.026 0.031 62 34 0.752 

2 0.968 0.038 0.061 0.962 0.025 0.007 0.968 0.025 0.007 0.962 0.025 0.013 53 22 0.662 

3 0.975 0.02 0.018 0.962 0.017 0.002 0.975 0.02 0.005 0.962 0.02 0.018 42 23 0.528 

4 0.965 0.065 0.063 0.954 0.027 0.008 0.965 0.027 0.008 0.954 0.027 0.019 84 35 1.003 

5 0.978 0.069 0.013 0.966 0.017 0.005 0.978 0.017 0.005 0.966 0.021 0.013 26 15 0.316 

6 0.974 0.021 0.019 0.948 0.007 0.01 0.974 0.016 0.01 0.96 0.021 0.019 73 37 0.91 

7 0.953 0.054 0.051 0.937 0.04 0.007 0.953 0.04 0.007 0.937 0.04 0.023 34 16 0.432 

8 0.973 0.025 0.027 0.925 0.001 0.009 0.973 0.018 0.009 0.948 0.025 0.027 100 45 1.212 

9 0.971 0.027 0.024 0.927 0.008 0.003 0.971 0.026 0.003 0.949 0.027 0.024 40 21 0.507 

10 0.984 0.024 0.016 0.965 0.017 0.002 0.981 0.017 0.002 0.965 0.019 0.016 84 36 1.018 

𝑠12 

1 0.962 0.035 0.034 0.92 0.016 0.014 0.962 0.024 0.014 0.931 0.035 0.034 22 11 0.312 

2 0.989 0.078 0.053 0.896 0.044 0.019 0.937 0.044 0.019 0.896 0.051 0.053 71 42 0.997 

3 0.952 0.043 0.056 0.942 0.042 0.006 0.952 0.042 0.006 0.942 0.042 0.016 51 22 0.69 

4 0.963 0.044 0.07 0.945 0.029 0.008 0.963 0.029 0.008 0.945 0.029 0.026 63 38 0.874 

5 0.932 0.089 0.049 0.924 0.041 0.012 0.932 0.056 0.012 0.924 0.041 0.035 63 37 0.869 

6 0.943 0.104 0.057 0.886 0.022 0.017 0.943 0.04 0.017 0.886 0.057 0.057 44 25 0.62 

7 0.931 0.069 0.035 0.903 0.058 0.012 0.93 0.058 0.012 0.903 0.062 0.035 60 34 0.848 

8 0.925 0.061 0.047 0.892 0.041 0.002 0.925 0.061 0.014 0.892 0.061 0.047 85 50 1.175 

9 0.975 0.065 0.048 0.906 0.03 0.019 0.951 0.03 0.019 0.906 0.046 0.048 78 43 1.118 

10 0.933 0.077 0.037 0.9 0.019 0.01 0.933 0.057 0.01 0.9 0.063 0.037 85 50 1.192 

𝑠13 
1 0.967 0.072 0.014 0.964 0.024 0.009 0.967 0.024 0.009 0.964 0.024 0.012 72 43 0.931 

2 0.985 0.083 0.032 0.933 0.033 0.012 0.955 0.033 0.012 0.933 0.035 0.032 53 28 0.646 
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3 0.958 0.034 0.04 0.92 0.008 0.024 0.958 0.018 0.024 0.926 0.034 0.04 53 32 0.623 

4 0.967 0.066 0.023 0.945 0.025 0.005 0.967 0.028 0.005 0.945 0.032 0.023 53 22 0.63 

5 0.971 0.025 0.023 0.907 0.012 0.011 0.971 0.018 0.011 0.952 0.025 0.023 41 19 0.515 

6 0.983 0.07 0.026 0.945 0.018 0.012 0.97 0.018 0.012 0.945 0.029 0.026 100 48 1.243 

7 0.97 0.026 0.015 0.959 0.023 0.002 0.97 0.026 0.004 0.959 0.026 0.015 82 48 1.045 

8 0.955 0.033 0.019 0.948 0.031 0.002 0.955 0.033 0.012 0.948 0.033 0.019 76 32 0.959 

9 0.953 0.056 0.059 0.94 0.043 0.004 0.953 0.043 0.004 0.94 0.043 0.017 98 44 1.157 

10 0.954 0.039 0.054 0.945 0.032 0.004 0.954 0.039 0.007 0.945 0.032 0.023 24 10 0.301 

𝑠14 

1 0.954 0.05 0.044 0.94 0.037 0.009 0.954 0.037 0.009 0.94 0.037 0.023 72 39 0.46 

2 0.931 0.096 0.051 0.884 0.006 0.027 0.931 0.042 0.027 0.884 0.065 0.051 21 9 0.121 

3 0.945 0.043 0.043 0.914 0.037 0.006 0.945 0.043 0.012 0.914 0.043 0.043 85 44 0.488 

4 0.957 0.051 0.042 0.919 0.001 0.023 0.957 0.02 0.023 0.919 0.039 0.042 28 14 0.166 

5 0.939 0.054 0.04 0.867 0.026 0.017 0.939 0.044 0.017 0.906 0.054 0.04 54 29 0.323 

6 0.95 0.039 0.036 0.925 0.005 0.008 0.95 0.039 0.011 0.925 0.039 0.036 41 23 0.25 

7 0.958 0.055 0.041 0.938 0.036 0.006 0.958 0.036 0.006 0.938 0.036 0.026 45 19 0.277 

8 0.929 0.059 0.031 0.91 0.004 0.01 0.929 0.059 0.012 0.91 0.059 0.031 71 41 0.429 

9 0.966 0.032 0.032 0.943 0.001 0.016 0.966 0.018 0.016 0.943 0.025 0.032 30 15 0.18 

10 0.955 0.052 0.03 0.932 0.028 0.015 0.955 0.03 0.015 0.932 0.038 0.03 56 26 0.324 

𝑠15 

1 0.935 0.09 0.071 0.913 0.05 0.015 0.935 0.05 0.015 0.913 0.05 0.037 24 12 0.471 

2 0.983 0.055 0.034 0.923 0.039 0.014 0.947 0.039 0.014 0.923 0.043 0.034 69 32 1.376 

3 0.945 0.083 0.025 0.926 0.011 0.008 0.945 0.047 0.008 0.926 0.049 0.025 38 20 0.762 

4 0.948 0.037 0.017 0.946 0.001 0.006 0.948 0.037 0.015 0.946 0.037 0.017 73 37 1.449 

5 0.957 0.083 0.056 0.947 0.036 0.007 0.957 0.036 0.007 0.947 0.036 0.017 53 32 1.134 

6 0.917 0.074 0.044 0.852 0.047 0.017 0.917 0.066 0.017 0.882 0.074 0.044 72 35 1.366 

7 0.94 0.046 0.025 0.929 0.036 0.008 0.94 0.046 0.014 0.929 0.046 0.025 45 21 0.882 

8 0.938 0.094 0.047 0.917 0.049 0.013 0.938 0.049 0.013 0.917 0.049 0.034 36 19 0.729 

9 0.937 0.103 0.023 0.915 0.047 0.002 0.937 0.061 0.002 0.915 0.062 0.023 47 28 0.917 

10 0.924 0.069 0.068 0.882 0.034 0.012 0.924 0.064 0.012 0.882 0.05 0.068 89 47 1.758 

Table 4. component versions in slz-15 

lev-4a 𝑝1𝑖𝑗+ 𝑝1𝑖𝑗− 𝑔1𝑖𝑗 𝑐𝑖𝑗 lev-5a 𝑝1𝑖𝑗+ 𝑝1𝑖𝑗− 𝑔1𝑖𝑗 𝑐𝑖𝑗 

𝑠1 

1 0.96 0.7739 150 1.02 

𝑠1 

1 0.98 0.9444 120 0.59 

2 0.969 0.831 100 0.89 2 0.977 0.9521 100 0.535 

3 0.98 0.9553 80 0.72 3 0.982 0.9501 85 0.47 

4 0.964 0.8068 80 0.62 4 0.978 0.9691 85 0.42 

5 0.97 0.7729 50 0.52 5 0.983 0.9692 48 0.4 

     6 0.92 0.8744 31 0.18 

     7 0.984 0.9631 26 0.22 

𝑠2 

1 0.953 0.8155 75 1.367 

𝑠2 

1 0.995 0.9743 100 0.205 

2 0.96 0.81 50 0.967 2 0.996 0.9713 92 0.189 

3 0.914 0.8647 50 0.916 3 0.997 0.9952 53 0.091 

4 0.967 0.8641 20 0.516 4 0.997 0.9679 28 0.056 

     5 0.998 0.9745 21 0.042 

𝑠3 

1 0.96 0.877 240 0.813 

𝑠3 

1 0.971 0.9662 100 7.525 

2 0.97 0.9208 200 0.783 2 0.973 0.9506 60 4.72 

3 0.96 0.9364 200 0.614 3 0.971 0.9263 40 3.59 

4 0.959 0.7701 180 0.534 4 0.976 0.9505 20 2.42 

5 0.97 0.9567 90 0.384      

6 0.959 0.8806 60 0.214      

𝑠4 

1 0.98 0.8623 70 1.26 

𝑠4 

1 0.977 0.9755 115 0.18 

2 0.96 0.7808 70 1.19 2 0.978 0.9628 100 0.16 

3 0.98 0.8096 30 0.697 3 0.978 0.9732 91 0.15 

4 0.989 0.7992 25 0.683 4 0.983 0.9724 72 0.121 

5 0.979 0.9681 25 0.645 5 0.981 0.9675 72 0.102 

     6 0.971 0.947 72 0.096 

 

     

𝑠5 

1 0.983 0.9467 55 0.071 

     2 0.982 0.9352 25 0.049 

     3 0.977 0.969 25 0.044 

     4 0.984 0.9575 128 0.986 
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     5 0.983 0.9616 100 0.825 

Table 5. component versions in lev-4a and lev-5a 
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