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Abstract—Assessment and prediction of mechanical wear life 
are imperative for ensuring the effective application, reducing 
maintenance cost and minimizing material waste, especially for 
the machines whose main failure modes are related to wear. For 
an assembled product, the prediction of wear life is difficult
because there is no an appropriate method for direct 
measurement. The direct product of wear is believed to contain 
key information of the wear status of the contact surfaces and 
has been suggested as an indicator for mechanical failures. 
Currently, several online oil debris monitoring methods are 
proposed with high precision for accurate debris detection, but 
there is still a lack of a model to describe the relationship 
between the wear status and the debris. This paper presents a 
physics-based model to predict the generation of abrasive debris 
of contact pairs with a certain roughness, so as to predict the 
wear life of mechanical components.  The probabilistic model is 
given in a numerical way, based on the boundary element 
method and atomic attrition mechanism. The proposed method is 
able to provide predictive features of wear debris including the 
amount, the distribution of sizes and morphological information. 
Combining the online oil debris detection approaches, the
method is applied to the prediction of an aviation hydraulic 
pump. The experimental result indicates that the method is
effective in predicting the remaining useful life of mechanical 
components.

Keywords—remaining useful life, life prediction, mechanical
prognosis, oil debris detection

I. INTRODUCTION 

The relative motion of contact pairs which are commonly 
used for power transmission in mechanical systems inevitably 
brings about material loss, which is recognized as the wear 
process. Wear, working as a primary failure mode of 
mechanical systems, may lead to catastrophic result if not 
being paid enough attention. An accurate prediction of wear
life will not only guarantee the effective application of the 
components, but also meet the requirement of condition based 

maintenance (CBM) as well [1].

Many efforts have been made on estimating the remaining 
useful life (RUL) of mechanical components. Generally, the 
methods can be divided into two categories [2]: model-based 
methods and data-driven methods. For model-based methods, 
to build a trustworthy model may be expensive but accurate [3].
To reduce the cost, the models used in model-based methods 
may also be empirical models with uncertainties. To eliminate 
the uncertainties of the models, filter-based methods are also 
employed. Li et al. proposed an improved exponential model to 
predict the life of bearings [4]. Wang et al. [5] proposed an 
enhanced particle-filter method combined with the tool wear 
rate model to estimate the life of the tool wear. Grey model is 
used combining with an adaptive-order particle filter to predict 
the RUL of aviation piston pumps [6]. As for the data-driven 
methods, artificial neural networks play important roles in the 
research of recent years for their capability of modeling non-
linear functions [7-9]. Alternative solutions of artificial 
intelligence are also used for the prediction such as echo state 
networks [10] and recurrent neural networks [11]. Ren et al. 
[12] used a deep learning approach for multi-bearing remaining 
life collaborative prediction, which can effectively represent 
multi-bearing degradation. With adequate data, data-driven 
methods may take advantages in modeling complex systems 
which are not feasible to develop physics-based models.

Sometimes, we need to learn the exact wear status of a key 
component in a system like a pair of the cylinder block and 
valve plate in an aviation piston pump, while for an assembled
product, it is nearly impossible to detect wear status by 
conducting directly detecting methods like profilometry and 
microscope. Instead, vibration signals, pressures and flow rates 
are usually used. However, data-driven methods using these 
indicators seldom provide effective wear status, let alone an 
accurate prediction of remaining wear life.

Concerning model-based methods, Archard’s model [13] is 
commonly used, which states that the wear volume is 
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proportional to the normal force and sliding distance. The wear 
coefficient is usually confirmed by experiment. The 
uncertainty of the model makes it an empirical model and may 
be failed in some conditions [14]. Meng and Ludema [15]
stated that there was actually not a general equation to predict 
wear under different work conditions with different materials 
after analyzing over 180 wear equations and over 100 related 
variables. With the help of advanced technologies such as 
atomic force microscopy (AFM) and transmission electron
microscopy (TEM), the deformed asperities which were 
abraded atom by atom gradually were observed in nanoscale
[16, 17]. A similar phenomenon was found in Diamond [18],
Diamond-like carbon which is widely used coating material
[19], and metallic materials [20, 21]. Later, Jacobs proposed 
an atomic attrition mechanism [14, 16], which makes it 
possible to give out a predictive result of wear from microscale.

As the direct product of wear, abrasive debris is deemed to 
contain key information of the wear status of the contact 
surfaces and have been suggested as an indicator for
mechanical failures [22]. Several online oil debris monitoring 
methods have been proposed [23], and the information of 
debris can be obtained. However, there is still a lack of an 
effective method for predicting the generation of wear debris 
with given rough surfaces. Aiming at providing a predictive 
solution for wear life based on the information of abrasive 
debris generation, a numerical model is proposed in this work. 
Two metallic entities with rough surfaces are supposed to 
contact under an applied load. The numerical single-loop 
conjugate gradient method is firstly used to get static contact 
stress. A discretized solution of subsurface stress based on half-
space theory is then used to obtain Von Mises stress at each 
potential wear unit. The wear debris generation model is based 
on the atomic attrition mechanism. Then, a predictive model is 
established for wear debris generation based on the simulative 
results. The proposed model is tested by using the return oil 
flow of a certain type of aviation piston pump. The rest of the 
paper is organized as follows: Section 2 introduces the 
modeling approaches including the static contact model, 
subsurface stress distribution model and the wear debris 
generation model. In section 3, a Monte Carlo simulation is 
conducted and the simulation results are used for predicting 
wear life of aviation pumps. Conclusions are drawn in section 
4.

II. MODELING APPROACHES

Analysis of wear debris generation depends on an 
understanding of the contact behavior of two separated 
surfaces whether under lubrication or not. Different from a 
macroscale interpretation of contact pressure distribution, wear 
debris whose sizes are usually in the range of nanometers to 
micrometers, form depending on the microscale contact 
mechanism of rough surfaces. Supposing that there are two 
contact components with rough surfaces as is shown in Fig. 1,
z direction is perpendicular to the x-y plane and an externally
applied load 0P is conducted. Each small sphere in the figure 
stands for a discrete removable unit (DRU) of the surfaces 
according to the atomic attrition mechanism. The load balance 
can be expressed as

0 ,= d
c

i jP p (1)

where c is the real contact area and ,i jp is the contact 
pressure at node ( , )i j . Node ( , )i j denotes the DRU at row i
and column j of the grid.

Fig. 1 Coordinate system of two contact components

The deformation of each DRU under the given applied load 
can be calculated by
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where xM and yM are the number of rows and columns 
of the grid and ,i k j lK is the contact coefficient of the DRU at 
( , )k l on the DRU at ( , )i j , which can be calculated as
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xa and ya are the grid spaces of rows and columns. The 
*E is the composite Young’s Modulus. Based on the 

boundary element method, the real applied load on each DRU 
can be calculated by solving the set of inequalities using 
conjugate gradient method:
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where 0u is the surface deflection and ,i jh is the 
separation at node ( , )i j of the two surfaces when there is no 
load applied.

When the applied load of each DRU of the contact surfaces 
is obtained, the stress of the underlying DRU can be calculated 
if an elastic half-space is assumed. By solving Boussinesq’s 
equation, the stress of a DRU at ( , , )i j m can be obtained by

11

,
0 0

,

( , , ) ( ( , , )

                                    ( , , )),

                            , , ,or  

yx MM
N

qr i j m k l qr i k j l m
k l

S
k l qr i k j l m

x y z p D x x y y z

s D x x y y z
q r x y z

(5)

where ( , , )i j mx y z denotes the position of DRU at ( , , )i j m ,

,k lp is the normal pressure which can be calculated by (4) and 

,k ls is the shear traction at node ( , 0)k l .
( , , )N

qr i k j l mD x x y y z and ( , , )S
qr i k j l mD x x y y z are the 

influence coefficients of normal pressure and shear traction,
which share the similar formation with the contact coefficient. 
Then the Von Mises stress of each DRU can be calculated.

2 2 2 2 2 21 ( ) ( ) ( ) 6( )
2VM xx yy xx yy xx yy xy yz xz

(6)

Supposing that a shear traction s is conducted on the 
contact component as is shown in Fig. 1, the equivalent stress 
of each DRU may exceeds the yield stress yield :

( ) ( , , ) | ( , , )p VM i j m yieldS t i j m x y z (7)

where ( )pS t is the potential removal set. Actually, not all 
of the DRU in the potential set will be removed during the 
wear process. Those that spatially concatenate the superficial
DRUs may be removed if the superficial DRUs are also 
included by ( )pS t and they consist the actual removal set 

( )aS t which can be written as

( ) ( , , ) | ( , , ) ( ), ( , , 1) ( ), 0

           ( , ,0) | ( , ,0) ( )

a p a

p

S t i j m i j m S t i j m S t m

i j i j S t( , ,0)j, ,0),
(8)

The adjacent DRUs in the actual removal set will be 
recognized as one debris particle. So several wear debris 
particles might be generated in one simulation step and the 
equivalent size of the debris particle can be estimated by

3
6 i

i
V

D (9)

where iV is the size of a wear particle. The debris particles 
are collected and the rough surfaces of the two contact 
components will be updated by subtracting the actual removal 
DRUs. The flowchart of the numerical modeling method for 
abrasive debris generation is shown in Fig. 2. The method has 
been validated currently by Li [24].

Fig. 2 Flowchart of the modeling method for abrasive debris generation

III. NUMERICAL SIMULATION AND AN APPLICATION ON AVIATION 
PISTON PUMP

A. Numerical simulation
In an engineering application, the profile of a certain rough 

surface can be obtained by profilometry techniques such as 
atomic force microscopy and white light interferometry. Then, 
the roughness of the surface can be calculated by

1

1 n

a i
i

R y
n

(10)

where n is the total number of nodes on the surface and 
iy is the vertical distance from the mean line to the thi data

point.

To conduct the proposed model on an engineering case, 
two artificial surfaces are firstly generated by a Fourier based 
digital filter with Gaussian height distribution as is shown in 
Fig. 3. The roughness of the surfaces is 80 μm .

Fig. 3 Surface topology of a contact component

According to the statistical results [25], most debris sizes 
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generated by engineering machinery range from 50 μm to 500 
μm . So the area of the researched surfaces are set to be 1 

2mm to cover all the possible debris sizes. Within the area, 
128 128 data points are set, so the size of each DRU is 
approximate 4 31.19 μme , which is also the resolution of the 
wear debris in the simulation. Other parameters for the 
simulation are listed in TABLE I.

TABLE I VALUES OF PARAMETERS FOR SIMULATION

Parameter Meaning Value

c
Dry friction coefficient 0.3

1v Poisson’s ratios of upper surface 0.3

2v Poisson’s ratios of lower surface 0.3

1E Young’s Modulus of upper surface 210GPa

2E Young’s Modulus of lower surface 210GPa

xL Length of simulation space in x 
direction

1mm

yL Length of simulation space in y 
direction

1mm

zR Resolution in z direction 7.8125 μm

yield
Yield stress of composite surface 355MPa

0F Initial normal force 50N

The applied force on the contact component is set to be 
50N. By using the proposed contact model, the stress on each 
DRU can be calculated. The equivalent stress distribution of 
the superficial DRUs is displayed in Fig. 4. For steel, the yield 
stress is approximate 355 MPa and obviously, the equivalent 
stress of some DRUs exceed the yield stress. The displacement 
of one contact component is displayed in Fig. 5.

Fig. 4 Pressure distribution

Fig. 5 Displacement distribution

For each simulation step, the DRUs in actual removal set

are collected. The adjacent DRUs in the actual removal set will 
be recognized as one debris particle as is shown in Fig. 6. The 
size of a certain debris particle is the summation of the sizes of 
the DRUs which constitute the debris. The wear volume of 
each simulation step can be obtained by summing all the 
debris’ sizes. We can see from the figure that the proposed 
method can also provide morphological information of the 
debris such as length, diameter and ratio of length to diameter.
In addition, amount of the particles can also be obtained.

Fig. 6 Simulation of wear debris particles

However, the simulation on single contact pair may present 
individual characteristics. To get statistic results, a Monte 
Carlo simulation is carried out. 100 contact pairs are generated 
stochastically with same roughness 80 μm . All simulations are 
conducted with the parameters listed in TABLE I. The wear 
volumes of all the contact pairs are displayed in Fig. 7, from 
which we can find that the numerical simulation provides us a 
probabilistic model instead of a deterministic model which 
means that we may obtain a more accurate predicting result.

Fig. 7 Wear volumes

B. An application on aviation piston pump
Aircraft hydraulic power supply system provides high 

pressure fluid for actuation system, braking system, landing 
gear system and other sub-function systems. As the power 
source of the aircraft hydraulic system, aviation piston pump’s
performance influences the flight safety directly. The debris 
generation model is used to predict the remaining wear life of a 
key friction pair: pair of valve plate and cylinder block in an 
aviation piston pump. Because the main degradation mode of 
the pair is abrasive wear and for the case, it is assumed that 
there are no other mechanisms leading to the failure of this 
component, the remaining wear life approximately equal to the 
RUL which is used to denote the result in this case.
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The debris generation model provides information of debris 
on a small area, but the research object is obviously larger than 
that. If the model is used to predict the RUL of the component,
an integral should be done, as is shown in Fig. 8, and the 
aforementioned simulation is an example of the green element
shown in the figure. For each small element, the applied load is 
changing with the rotation of the valve plate. The structural 
parameters for the valve plate for this case can be found in [26].
The result of the partial lubrication model is used as the 
pressure distribution in this case and the assumption is that for 
each element the load is applied uniformly. Then, a 
probabilistic model can be obtained by integrating the 
information of abrasive debris generation on each element.

Fig. 8 cylinder block of piston pump 

Wear of the pump will result in leakage and the outlet flow 
rate and pressure will decrease. Assuming that the cylinder 
block and the valve plate are wedge-shaped, the total leakage 
of the component can be calculated by

3 30 0
2 1 1

2 1 4 3

( ) 1 14( ) 5
60 ln( / ) ln( / )

s
cv

P P
Q h h h

r r r r
(11)

where 0 is the distribution angle of the pistons, 1h and

2h are the maximum and minimum displacements between the 
cylinder block and the valve plate, sP is the outlet pressure, 

0P is the inlet pressure, is the dynamic viscosity of fluid, 

1r and 2r are the inner and outer radii of the internal sealing 
zone, 3r and 4r are the inner and outer radii of the external oil 
sealing zone. The original leakage flow of the pump is 1.774 
L/min and the failure threshold is 2.8 L/min. So we can 
estimate the original interval of the cylinder block and the 
valve plate is approximate 14.4222 μm and the average failure 
interval is approximate 16.7919 μm .

The remaining wear life of the component can be expressed
as 

( /)AF C wdIRUL I R (12)

where AFI denotes the average interval when the 
component meet the failure threshold,  CI denotes the current 

interval between the cylinder block and the valve plate and 
wdR is the wear rate alone the direction of interval which can 

be obtained by

/wd wR R A (13)

where wR is obtained by the debris generation model and 
A is the average contact area.

The result of the prediction is shown in Fig. 9. We can find 
that the upper and lower boundaries cover the experiment 
result well.

Fig. 9 Upper and lower boundaries of RUL prediction

IV. CONCLUSION

This paper proposes a wear debris generation model for 
predicting the wear life of mechanical components. For some 
mechanical components whose main failure mode is wearing,
the remaining useful life equals the remaining wear life. 

By using the proposed model, features of abrasive debris 
generated by two contact components with rough surfaces can 
be obtained including the amount, the distribution of sizes and 
morphological information like aspect ratio. All thess
characteristics may provide a potential relation between the 
debris and the components’ wear status. Further research is 
need concerning there is not a doubtless equation explaining 
the exact degradation performance of debris particles on 
certain wear status.

An application on an aviation piston pump to validate the 
effectiveness of the model and experiment result indicates that 
the proposed wear debris generation model fits the results well.
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