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Abstract 

Importance measures are integral parts of risk assessment for risk-informed decision making. 

Because the parameters of a risk model, such as the component failure rates, are functions of 

time, and a perturbation (change) in their values can occur during the mission time, time 

dependence must be considered in the evaluation of the importance measures. In this paper, it is 

shown that the change in system performance at time t, and consequently the importance of the 

parameters at time t, depends on the parameters perturbation time and their value functions 

during the system mission time. We consider a non-homogeneous continuous time Markov 

model of a series-parallel system to propose the mathematical proofs and simulations, while the 

ideas are also shown to be consistent with general models having non-exponential failure rates. 

Two new measures of importance and a simulation scheme for their computation are introduced 

to account for the effect of perturbation time and time-varying parameters.  
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Nomenclature  

Symbol Description 

IM  Importance measures 

PDF Probability distribution function 

MC  Markov chain 

T  
Mission time of the system 

( )A t  
Instantaneous availability at time t 

Parameter The system risk model parameters including failure rates, repair rates and so on. 

T

failureSDP  

The system downtime percent (SDP) from time zero to T , i.e. the sum of 

downtimes of the system from time zero to T , divided by T , when all 

parameters are at their nominal values 

, ,iT t

failureSDP


 

The downtime percent of the system from time zero to T , when parameter i  is 

perturbed from its nominal value at time t  

, ,i

i

T tt T

failure failureUA SDP SDP


 = −
 

Difference in the system downtime percents during its mission time, due to the 

perturbation in the value of i at time t  

( )F t
 

System unavailability at time t  

( )jF t
 

Component j unavailability at time t 

( ), i tF t
 

System unavailability at time t  when parameter i  is perturbed at time t  

( )F T
 

System average unavailability in time period  0,T  

( ) t
 

Markov chain state probability row vector at time t 

( )Q t
 

Markov chain infinitesimal generator matrix 

( )0, t t

 

Markov chain state transition probability matrix which maps ( )0 t  to ( ) t  

E 
The perturbation matrix that is added to ( )Q t , whose elements are equal to zero 

except the element that corresponds to the perturbed parameter, which is equal to 

one 


 

The vertical vector having same size as the transpose of ( ) t . The elements that 

correspond to states in which the system is unavailable are equal to one, and the 

other elements are equal to zero 

( )SPM t
 

System performance metric at time t 

( ), i tSPM t
 

System performance metric at time t  when parameter i  is perturbed at time t  
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1 | INTRODUCTION  

Systems consist of subsystems, elements and components, whose parameters, e.g. failure 

and repair rates, are the input of the system risk model. In many studies, these parameters are 

considered to be constant over time. However, the assumption of constant failure and repair rates 

is an approximation that does not hold for many real world systems1,2. For this reason, the 

interest is increasing for the analysis of system performance metrics, such as reliability and 

availability, considering time-varying parameters3-7. On the other hand, importance measures 

(IMs) play a significant role in risk-informed decision-making applications, because they can be 

used for identifying the most important components with respect to system performance metrics 

such as safety, availability, maintainability, and reliability8. 

Local IMs, such as differential importance measure (DIM), provide the importance of 

risk model parameters with respect to an infinitesimal change occurring at a single instance in 

their value domain9. To obtain the importance of a parameter at time t, the approach is to 

calculate the difference between the values of a chosen system performance metric under two 

conditions: 1- assuming a value for the parameter, constant during the system mission time, 2- 

assuming another value, equal to the parameter value at condition 1 plus a perturbation (change), 

also constant during the system mission time. Accordingly, the importance of the parameter at 

time t is obtained calculating the difference10-13. 

The local importance measures consider the effect of a given perturbation of just one 

value of one parameter, whereas it is known that a parameter can take different values. The 

global importance measures have been developed to take into account different values of a 

parameter for calculating its importance. The approach of the local measures is repeated for 

several values of the parameter. Consequently, the global importance of the parameter at time t is 

the average (or another function) of the performance metric differences between the perturbed 

and unperturbed conditions14-19.  

The local and global importance measures, as already shown, always consider two 

assumptions: 1- the parameters values are constant during the system mission time, 2- the 

perturbation occurs at a single time point, usually at time zero or at the present time20,21. 

Contrary to the approaches of the local and global importance measures, in real-world 

systems with degrading components, the risk model parameters values are functions of time, i.e. 

they change continuously or at discrete time instances during the system mission time. The effect 

of time-varying parameters and degrading components on the system reliability has been already 

considered22-28. Besides, it is known that thermal shocks, vibration changes, humidity changes, 

maintenance actions and etc. can affect the risk model parameters29-33. Because these events can 

occur at any time instances during the system mission time, perturbations (changes) in the values 

of the system risk model parameters do as well. 

With an emphasis on time-varying risk model parameters, and the fact that perturbations 

can occur at any time during the system mission time, the present paper attempts to answer the 
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question: what is the effect of perturbing time-varying risk model parameters values at different 

time instances on their importance at time t? In particular, the effects, their magnitude and the 

factors influencing the magnitude are thoroughly disclosed. Furthermore, two new importance 

measures are introduced to evaluate the importance of time-varying system risk model 

parameters, respecting the perturbation time. A simulation scheme is provided for the calculation 

of the two new measures.  

The paper is organized as follows. The considered system performance metric is 

proposed in section 2. Section 3 explains the effect of the time of parameters perturbation on the 

importance analysis. The two new importance measures are introduced in section 4. Section 5 

provides a computation scheme for calculating these new importance measures. The results and 

discussion are presented in section 6. Finally, conclusions are drawn in section 7. 

2 | THE CONSIDERED SYSTEM PERFORMANCE METRIC 

Reliability and availability are important system performance metrics in reliability, 

availability, maintainability and safety (RAMS). Reliability is the probability that the system 

accomplishes its required function for a determined period of time without failure. Availability is 

the probability that the system is working correctly when it is demanded for use. System 

availability (or unavailability) is the system performance metric that is utilized in this research, 

because it considers repair actions and is more general than reliability34.  

Point, or instantaneous, availability at time t, ( )A t , is the probability that the system (or 

component) is operational at time, t. Mean availability is the proportion of time that the system is 

available for use during a specified period of time. It is the average of the instantaneous 

availability function over the specified period of time. Equation (1) represents the formula of the 

mean availability, mA , over the time period  0,T : 

( ) ( )
0

1
= 

T

mA T A t dt
T

 (1) 

The steady-state availability is the limit of the instantaneous availability function ( )A t  as 

time t goes to infinity. Finally, operational availability is a measure of availability that 

incorporates administrative downtime, logistic downtime and all other sources of downtime: 

Uptime
Operational availability 

Operating cycle
=  (2) 

In (2), the overall period of operation time considered is the operating cycle, and the total time 

that the system is functioning during the operating cycle is the uptime. Equation (2) returns the 

mean availability of the system, when there is no logistic downtime or preventive maintenance 

specified. 
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System average uptime availability (or system uptime average unavailability) is widely 

used for analyzing the performance of a system in its mission time35,36. The complement of the 

mentioned measure, i.e. system mean unavailability, is used in this research as the system 

performance metric, and the importance of a parameter is measured in terms of the effect that a 

change in the parameter value has on the system average unavailability. Although one can 

acknowledge the validity of the new ideas on the other system performance metrics like: 

reliability and availability, but we use system mean unavailability in the whole paper to have a 

consistent presentation of the ideas. 

3 | CONSIDERING PERTURBATION TIME IN IMPORTANCE ANALYSIS 

In this section, the reason for considering the time of parameters values perturbations in 

importance analysis is further explained, and the necessity of introducing the new importance 

measures is clarified. To evaluate the importance of a parameter in a system risk model, IMs 

consider a system performance metric (such as system unavailability or unreliability) in two 

different conditions: 1- when the parameter is at its nominal value, 2- when the parameter value 

is perturbed from its nominal value. Large difference of the system performance metric in the 

above two conditions imply large importance of the parameter with respect to its influence on the 

system performance metric11,12. Evidently, for different nominal values of the parameter, 

different parameter importance values are obtained. Therefore, knowing that in real systems the 

parameters values change in time1,2, and a perturbation can occur to their values at any time 

during the system mission time, it can be deduced that the amount of change in the value of the 

performance metric depends on the parameters values perturbation times. 

In the literature, the importance of the risk parameters for system performance metrics 

like unavailability, at different times, has been considered. It has been shown that the importance 

changes with time, i.e. the importance of a parameter like failure rate   for the system 

unavailability at time 1t  ( ( )1F t ) is different from its importance in the system unavailability at 

time 2 2 1,t t t , ( ( )2F t )27. This idea is shown abstractly in Figure 1. 

In Figure 1, a perturbation is imposed to the value of   at time zero. The hypothetical 

system unavailability with the baseline value of   is showed as solid line, while the dotted line 

represents the system unavailability with perturbed parameter value, i.e.  +  (i.e. the dotted 

line is hypothetical perturbation of the solid line that is used to show the idea more clearly). The 

difference between the solid line and the dotted line at time t measures the local importance of   

at time t. It is shown that the local importance of   can be different at different time instances 

1 2, ,...t t : In the other words, the local importance measures are time-varying (time-dependent). 

Global importance measures calculate the importance based on several parameter values, 

as presented in the hypothetical example of Figure 2. 

 

Figure 2 shows that the global importance measures apply the same idea as the local 

importance measures, but using various baseline parameter values. Just like the local measures, 
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they calculate the difference between the system unavailability at time t considering a constant 

value ( ) for the parameter during the system mission time, and the system unavailability at the 

same time t considering another constant but perturbed value for the parameter ( + ) during 

the system mission time ( +  is the parameter value that is perturbed at time zero by an amount 

 ). Afterward, the mentioned difference is calculated for many values of the parameter 

, , ,...    . The importance is, then, obtained by taking the average or the variance of a function 

(e.g. the absolute value) of the obtained differences. In other words, the global measures are 

averages or variances of the local measures over the value domain of the parameter. 

The concept of lifetime importance measures that are time-independent measures, then, 

introduced37. Because, the importance of the individual components varies with time, we need to 

take into account the system's entire mission time to get a comprehensive understanding of a 

component's contribution to the system's unavailability. As time-independent importance 

measures aim to evaluate the importance of a component or a failure mode over the whole 

system mission time, a common way to obtain a time-independent importance measure is to 

integrate a time-dependent importance measure over the system mission time20,21,38,39. 

Contrary to the above, in this paper we consider the importance of a time-varying 

parameter   with respect to a system performance metric at time t , considering the time at 

which   changes value. For example in the hypothetical example of this section, if the value of 

  is perturbed at time 1 1,t t t  the system unavailability at time t will be ( )1F t , while if the value 

of   is perturbed at time 2 1 2,t t t t   the system unavailability at time t will be ( )2F t , where 

( ) ( ) ( )1 2 F t F t F t . The schematic representation of this phenomenon is provided in Figure 3, 

where the solid line represents the system unavailability with parameter  , and the dotted lines 

show the system unavailability with parameter   perturbed at various time instances. The 

variation in the value of the system unavailability at time t, ( )F t , depends on the time of 

perturbing the value of   and, thus, the importance of   also changes depending on the 

perturbation time. To show this fact, two approaches are employed, as explained in the following 

subsections. 

Hereafter, the importance of a parameter at time t refers to the importance of the 

parameter when its value is perturbed at time t, and the system performance metric is system 

mean unavailability. 

3.1 | Simulation approach 

Consider the series-parallel system of Figure 4 and a mission time of T=200 hours. To 

show the effect of time on the importance of the parameters, the failure rates are considered as 

functions of time. On the contrary, the repair rates are assumed constant, without loss of 

generality. 
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The considered system performance metric is the average unavailability over the mission 

time. Actually, to analyze the results we consider the system downtime percent during the 

mission time, 
T

failureSDP , which is defined as the sum of downtimes of the system from time zero to 

T, divided by T, when all parameters are at their nominal values. In fact, 
T

failureSDP  is the 

operational unavailability that, as was said in section II, is equal to the average unavailability of 

the system when there is no logistic downtime or preventive maintenance specified in the time 

period  0,T , while expressing the idea using 
T

failureSDP  is easier. The similar behavior of 
T

failureSDP  

and the average unavailability of the system in time period  0,T is discussed in the Appendix. 

We analyze the importance of 
1  considering that at time t  a perturbation occurs to 

1  

(i.e. an infinitesimal positive value   is added to 1 ) and the value of 1  becomes 1 +  from 

time t  to T . Due to this perturbation, there is a difference between 1, ,T t

failureSDP  (the system 

downtime percent during its mission time when 1  is perturbed at time t) and 
T

failureSDP . The 

amount of the difference, 1

1

, ,

 = −
T tt T

failure failureUA SDP SDP , gives the magnitude of the effect of perturbing 

1  at time t on the system downtime percent from time zero to T . So, 
1

tUA  can be used to 

represent the importance of perturbing 1  at time t on the average unavailability of the system in 

time period  0,T . It will be shown that when the time of perturbation changes, the importance 

of 
1  in the system downtime percent from time zero to T varies too, which is not considered in 

the previous investigations. This phenomenon becomes even more critical when the studied risk 

model includes dynamic logic gates, in which the system unavailability depends on the sequence 

of components failure. For example in the PAND (priority and) gate of Figure 5, if component A 

fails before component B, the PAND gate will fire, resulting in failure of the respective 

subsystem, whereas the subsystem does not fail if B fails before A. So, an increase in the failure 

rate of B after the failure of A increases the system unavailability, whereas increasing the failure 

rate of B before component A failure will raise the probability that B fails before A, and 

subsequently will decrease the subsystem unavailability. So the time of perturbation influences 

the importance of the risk model parameters. 

 

Now we consider an identical perturbation in a different parameter 2  at time t  and the 

obtained value of 
2

tUA . If 
1

tUA  is greater than 
2

tUA , 1  is more important than 2  at time t , 

because a perturbation in the value of 1  at t  imposes more variation in the system downtime 

percent (i.e. the system average unavailability) from time zero to T, than a perturbation in the 

value of 2 . The critical point is that when the time of the perturbation changes, 
1

tUA  and 
2

tUA  

will also change. For example, at time kt  we can have 
1 2 k kt t

UA UA  (i.e. 1  is more important than
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2 ) whereas at time , m m kt t t , we can have 
2 1 k kt t

UA UA  (i.e. 
2  is more important than 

1 ). So, 

the importance ranking of the parameters can change, depending on when the perturbation in 

their values occurs. 

To illustrate this discussion more thoroughly, we simulate the series-parallel system of 

Figure 4 on the basis of its non-homogeneous continuous time Markov chain (MC) model 

(Figure 6). Note that, to alleviate the burden of proposing proofs and simulations, exponential 

distribution for the failure and repair times of the components is considered in the subsequent 

lines of this subsection and the next subsection, although one can verify that the ideas proposed 

by the paper are not limited to exponential distributions and Markov chains. 

 Table 1 gives the states of the MC of Figure 6. Note that the exponential distribution 

and, consequently, the Markov approach are assumed in this example to show the ideas in full 

clarity, while the assumptions can be easily relaxed to have a more general case. 

The simulation method to solve the MC model is the next-reaction method (NRM)40-42. In 

the simulation, the next system state of the MC is determined based on the calculation of the 

passage time from the present state to all possible states: the next state reached by the system is 

that with the smallest passage time. The calculation of the passage time from a state to another is 

done based on a Poisson process. If the transition rate between two states is constant over time, 

the passage time between the two states is a random value from an exponential distribution. 

However, when the transition rate is varying over time, the passage time between the two states 

is a random value from a non-homogeneous exponential distribution43,44. For this example, the 

transition rates are assumed to be: 2

1 0.5 = +t  per hour,
 2 0.65 = +t  per hour (note that any 

other time-varying functions can be used, as shown in (11) of the next subsection), 1 70 =  per 

hour, and 2 90 =  per hour, where t represents time in hours. The simulation proceeds as follows: 

1. The system behavior is simulated for 200=T  hours, with all system risk model 

parameters set at their nominal values. The system is in state 1 at the initial time. The 

first passage time is when the system goes from state 1 to the reachable state 2 or 

state 3. The first passage time is, then, the minimum of the two random realizations, 

the first from a non-homogeneous exponential distribution with rate ( )2

12 2 0.5 = +t  

(i.e. the time to go to state 2), and the second from a non-homogeneous exponential 

distribution with rate ( )22 2 0.65 = +t  (i.e. the time to go to state 3). If the first 

random value is less than the second one, the next state is state 2 and vice versa. The 

simulation continues for the passage to the next state and the next, until the mission 

time T=200 hours to obtain the value of 
T

failureSDP . 

2. The simulation is repeated exactly as in Step 1 above, but at 1t =first discrete point in 

time, a perturbation is imposed to 1 , so, the value of 1 1, ,T t

failureSDP  is calculated. This 

process is repeated for 2 , and 2 1, ,T t

failureSDP  is obtained.  
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3. Step 2 is repeated for each discrete point in time separately and the values of 

1, ,
, 1,2,...,


=kT t

failureSDP k dp  and 2, ,
, 1,2,...,


=kT t

failureSDP k dp  are obtained, wherein each 
kt  is a 

discrete point in time from 0 to 200 hours, and dp is the number of discrete points in 

time with which the mission time T has been discretized. Note that the discrete points 

in time are exactly the same for the two parameters.  

4. Finally, we calculate also the values of 
1
, 1,2,..., =ktUA k dp  and 

2
, 1,2,..., =ktUA k dp . 

The simulation results are depicted in Figure 7. 

In Figure 7, the horizontal axis is time in hours, and the vertical axis is the value of 
k

i

t
UA . 

The solid line shows 
1
ktUA  and the dotted line shows 

2
ktUA . Note that the values in Figure 7 are 

discrete, but we have connected the points to have a more clear illustration. We observe, for 

example, that 
1 2

0.0026k kt t
UA UA− =   at time 20=kt  hours, which means that the system downtime 

from time zero to 200 hours, when 1  is perturbed at time 20=kt  hours is 

( )200 20 0.0026 0.468−  =  hours, more than the system downtime from time zero to 200 hours, 

when 2  is perturbed at time 20=kt  hours: this result implies a larger importance of 1  than 2 . 

Note that as the time of occurring the perturbation, i.e. kt , increases, the perturbation affects the 

system on a smaller time period. So, because according to the performance metric, the difference 

in the system unavailability due to a perturbation at time kt  is divided by the length of mission 

time, as time passes value of ktUA  reduces for the two components.  

Clearly, the values of 
1
ktUA  and 

2
ktUA  are changed by changing the value of kt . More 

importantly, the value of 
1
ktUA  is more than the value of 

2
ktUA  at some points in time, which 

implies a larger importance of 1  than 2 , and vice versa. These phenomena occur due to 

different perturbation times, different parameters value functions during the mission time, and 

the interaction effects of these, which will be clarified using the analytical approach.  

3.2 | Analytical approach 

In a non-homogeneous continuous time Poisson process with intensity function ( ) t , the 

interarrival times of the events are functions of ( )m t  where ( ) ( )
0

  = 
t

m t d
44. For example, 1T  

and 2T  are the first and the second interarrival times with probability density functions45-47:  

( ) ( ) ( )

1


−
=

m t

Tf t t e  (3) 
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( ) ( ) ( ) ( )

2

0


    


− +

= +
m t

Tf t t e d  (4) 

 

Evidently, if a perturbation occurs in the different time instances in  0, t , the change in 

the values of ( )
1Tf t  and ( )

2Tf t  will be different. Considering what happens in a non-

homogeneous continuous time Poisson process, it can be deduced that the system unavailability 

change at time t, using the non-homogeneous continuous time Markov chain, is a function of the 

perturbation occurrence time; this assertion is proved as follows.  

The state probability vector of a non-homogeneous continuous time Markov chain model 

is obtained by solving the differential equation47: 

( ) ( ) ( ) =t t Q t  (5) 

wherein each element of ( )Q t  is a function of time-varying parameters ( ) t ,46. Equation 

(5) is a linear time-varying system (LTV), which has been proven to have a unique solution in 

the form of 48: 

( ) ( ) ( )0 0, = t t t t  (6) 

A general solution for (6) is given by the Peano-Baker series in (7), which if for all t, 

( )Q t  and ( )
0

 
t

t

Q d  commute each other, reduces to (8)47,48: 

( ) ( ) ( ) ( )

( ) ( ) ( )

1

0 0 0

11

0 0 0

0 1 1 1 2 2 1

1 2 1 2 1

, ...

... ... ...





     

      
−

−

 = + + +

+ +

  

  
k

t t

t t t

t

k k k

t t t

t t I Q d Q Q d d

Q Q Q d d d d

 (7) 

 

( )
( )

0

0,

 
 =

t

t

Q d

t t e  
(8) 

 

Now consider that at time t  a perturbation occurs in the value of a parameter, i.e. a 

scalar value   is added to the parameter. The perturbation matrix is shown by E, whose elements 

are equal to zero except the element that corresponds to the perturbed parameter, which is equal 

to one. So, the perturbed ( )Q t  is: 

( )
( )

( )

Q t t t
Q t

Q t E t t






= 

+  

 (9) 
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Subsequently, the perturbed state probability vector of the non-homogeneous continuous 

time Markov chain model, ( ) t , is obtained based on the perturbed ( )0,t t  , i.e. ( )0,t t , 

as47: 

( ) ( ) ( )0 0,t t t t  =   (10) 

 

As (9) shows, each perturbation in the value of the parameter over the system mission 

time imposes a discontinuity in ( )Q t
; the following lemma is, then, needed to proceed. 

Lemma 1. ( )Q t
 is Riemann integrable. 

Proof. Because the number of perturbations in the system mission time is a finite 

number, the set of discontinuity times of ( )Q t
 is a finite set too. So, the Lebesgue measure of 

the set of ( )Q t
 discontinuity times is zero. Because a bounded function with zero Lebesgue 

measure of the set of its discontinuity points is Riemann integrable, then the ( )Q t
 is Riemann 

integrable. 

The importance of the parameter in the system unavailability at time t, due to the 

occurred perturbation at time t , is calculated using the value of 

( ) ( )( ) ( ) ( ) ( )( )0 0 0, ,   −  =  − t t t t t t t , which shows the imposed variation in the 

system unavailability value at time t due to the perturbation in the parameter value at time t . 

Using lemma 1 and some matrix calculations we have: 
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( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( )( ) ( ) ( )

( )( ) ( ) ( )( )

0 0 0

0 0 0

1

0 0 0

1

0

0 0

1 1 1 2 2 1

1 1 1 2 2 1

1 1 1 1 1 2 2 1

1 2 2 2

, ,

...

...



  





     

     

        

     

 







 −

 
= + + + 
 
 

 
− + + + 
 
 

= + + +  +

 
+ +  + +  

 
 

  

  

   

 

t t t

t t t

t t t

t t t

t t t

t t t t

t

t t

t t t t

I Q d Q Q d d

I Q d Q Q d d

I Q d Q E d Q Q d d

Q E Q Q E d d

( ) ( ) ( )

( )( ) ( ) ( ) ( )( ) ( ) ( )( )

( ) ( ) ( )

( ) ( )

1 2

0 0 0

2 1 2

0 0 0

0 0 0

1

0

1

1 2 3 1 2 3

1 2 3 2 3 3 3 2 1

1 1 1 2 2 1

2 2 1

...

 

  





     

           

     

    





 

  

+

  
 + +  + +  + +  

  
  

 
− + + + 
 
 

=   − + 



  

     

  



t

t

t

t t t

t t t

t t t t t t

t t t

t t t

t

Q Q Q d d d

Q E Q Q Q E Q Q E d d d

I Q d Q Q d d

E t t E Q d d ( )( )

( )( ) ( ) ( )( )

( ) ( ) ( )

1

1 2 1 2

0

1 2

0 0

1 2 1

1 3 2 3 2 1

2 3 3 2 1 ...



   

 

    

         

     

  

   



+ +  

 
+ +   + +   

 
 

+  +

  

    

  

t t

t t t

t

t t t t t

t

t t t

Q E Ed d

Q E E Q Q E E d d d

E Q Q d d d

 

(11) 

 

Referring to the results of (11), it can be seen that the value of ( ) ( )0 0, , −t t t t  

depends on: 1- the time of occurrence of the perturbation, 2- the time-varying function of the 

system perturbed parameters values, i.e. ( )Q t , from time t  to t  and in the whole mission time, 

and 3- the interaction effects of the two previous cases. Therefore, it is proved that 

( ) ( )( ) − t t , which determines the parameter importance in the system unavailability at time 

t, is contingent upon the time of occurrence of the perturbation, that verifies the idea of Figure 3. 

It is, then, deduced that the system average unavailability in its mission time, i.e. 

( )( )
0

 
T

t dt T  , depends on when a perturbation occurs in the value of the parameter. So the 

ideas of this paper hold for system unavailability, average unavailability, and equivalently for 

system availability, average availability and the reliability metrics of systems. 
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4 | THE NEW IMPORTANCE MEASURES 

The idea underlying the new importance measures is to take the average and the variance 

of the importance values of each parameter, over perturbation times based on a performance 

metric at time t. The new measures are proposed in (12) and (13). Equation (12) is the average of 

variations of the performance metric at time T calculated over all perturbations that occur in the 

value of a parameter before time T, while (13) is the variance of the variations over the 

mentioned perturbation times.  

( )( )
( ) ( )( )

( ) ( )

The importance of parameter in the 
system perform

The importance of parameter in the ,
system performance metric at time T

0 0

0

,

0



 



   



 
 
 −
 

−  
 

= =

 




i

i
i

i

T T

tT

T

t

i

F d F d

dt
T T

SPM T SPM T dt

E T
T T

ance metric of this paper

 

(12) 
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( ) ( )( ) ( )( )

( ) ( )
( )

The importance of param

2
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,

system performance metric at time T
0 0

2

0

,

0






   







  
  
  − −
  
 − −   
  

= =

 




i
i

i

T T

tT

iT

t i

i

F d F d

E dt
T T

SPM T SPM T E dt

V T
T T

eter in the 
system performance metric of this paper

i

 

(13) 

 

Considering the performance metric of this paper, the importance at time t is the variation in the 

average system unavailability in the whole system mission time, due to an infinitesimal 

perturbation in the value of the parameter at time t, i.e. ( ) ( ),

0 0

    − i

T T

tF d T F d T . 

Accordingly, (12) gives the average importance of i over all perturbation times. The definition 

of variance is used in (13) to calculate the variance of the importance of i  over all perturbation 

times in the mission time. 

If the importance of i  is more than the importance of  j
 at most instants in the mission 

time, the value of (12) will be larger fori  than j
, which indicates a larger importance fori  than

 j
. Equation (13) will be high fori , if the importance of i  has high variation in time (i.e. at 

some points in time, a change in i  causes a very high change in system average unavailability, 

and in some other points it causes a very low variation in system average unavailability). 
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To compare two parameters, sayi and j
, if (12) and (13) are larger for i  than  j

, it 

means that in most time points in the mission time a perturbation in the value of i  has induced 

more variation in the system average unavailability than a variation in the value of  j
 (from 

(12)). Furthermore, the importance of i
 is more sensitive than the importance of  j

, which 

means a more unstable behavior of i
 than  j

 in the mission time (from (13)). So, we can come 

to a conclusion that i
 is more important than  j

. If the value of (12) is larger for i
 than  j

 

but the value of (13) is larger for  j
 than i

, we can again conclude that i
 is still more 

important than  j
. Because, although the importance of  j

 has had more unstable behavior in 

the whole mission time than the importance of i
, and perhaps in some time points  j

 has been 

even more important than i , but i  has been more influential than  j
 in most points in time, 

which means that a perturbation in the value of i
 has had a larger effect on the system average 

unavailability. If the value of (12) for the two parameters is approximately equal, but the value of 

(13) for i  is larger than that of  j
, we can deduce that i  is more important than  j

, because 

while their average effect on the system average unavailability is the same, but the importance of 

i  has had more unstable behavior than the importance of  j
 in most time points.  

5 | A COMPUTATION METHOD FOR CALCULATING (12) AND (13) 

Obtaining the closed-form solution for (12) and (13) is not possible in most cases, even 

considering exponential distribution that is an easy distribution to work with1. Hence, a 

simulation approach is proposed to calculate (12) and (13). In this respect, ( )
0

 
T

F d  is the total 

downtime of the system from time zero to T, when all parameters are at their nominal values. So, 

( )
0

 
T

F d T  is the percent of time from zero to T, that the system is not working. We can 

conclude that ( )
0

 
T

F d T  is equal to 
T

failureSDP  (more discussion is brought in the Appendix). By 

the same argument, we can deduce that ( ),

0

   i

T

tF d T  is equal to 1, ,T t

failureSDP . Thereupon, we can 

find the value of ( ) ( ),

0 0

    − i

T T

tF d T F d T  using 1

1

, ,

 = −
T tt T

failure failureUA SDP SDP  at time t. If we 

calculate 1

1

, ,

 = −
T tt T

failure failureUA SDP SDP  at many points in time (i.e. for many t) and, then, compute 

their average, the obtained value can be used as an estimate for 
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( ) ( ),

0 0 0

/    
 

− 
 
  i

T T T

tF d T F d T dt T . Thus, an estimate for (12) and (13) can be generated 

using the same simulation as the one presented in the previous section.  

6 | RESULTS AND DISCUSSION 

Using the data from the previous simulation, (12) and (13) are applied for 
1  and 

2  to 

obtain ( ) 5

1 7.0050 10 −= E , ( ) 5

2 5.5882 10 −= E , ( ) 8

1 7.1340 10 −= V , and 

( ) 8

2 7.9975 10 −= V . In order to have a more precise comparison, the simulation was run for 60 

times. Using statistical analysis to examine H0: average of (12) for 60 runs is equal for the two 

parameters against H1: H0 does not hold, and H0: average of (13) for 60 runs is equal for the two 

parameters against H1: H0 does not hold, the Z-statistic is obtained as 17.1898 and 17.9782, 

respectively, which results in rejecting both null hypotheses on an absolutely high confidence 

level. The results show that the variation in the importance of 2  is more than the variation in the 

importance of 1  in the 200 hours of system mission. Additionally, the average importance of 1  

is more than the average importance of 2 , which shows that most of the times a variation in the 

value of 1  has affected the system average unavailability more than a variation in the value of 

2 . According to the provided comparison scheme in the final paragraph of the section 4 and due 

to the larger value of (12) for 1  than that of 2 , we can conclude that 1  is more important than 

2  in the studied mission time. 

To show another case for comparison, we changed the parameters, 1 50 =  and 2 35 = , to 

obtain ( ) 5

1 2.2759 10 −= E  , ( ) 5

2 2.2760 10 −= E  , ( ) 8

1 1.6257 10 −= V  , and 

( ) 8

2 5.0892 10 −= V , which indicates approximately equal (12) values for parameters 1  and 

2 , but a larger (13) value for 2  than for 1 , known from the fact that the Z-statistic for 

examining H0: average of (13) in 60 runs for 2  is equal or less than that for 1  , against H1: H0 

does not hold is obtained as 25.0035 and the null hypothesis is rejected under an absolutely high 

confidence level. The result of the simulation for T=200 hours is showed in Figure 8, wherein the 

solid line shows 
1
ktUA  and the dotted line shows 

2
ktUA . These results show that in the mission time, 

a change in the value of both parameters has approximately equal average effect on the system 

average unavailability. On the other hand, the effect of a change in the value of 2  on the system 

average unavailability is more unstable than that of 1 . For example, two of the highest values of 

2
ktUA  are 0.0014 and 0.0009 whereas the highest values of 

1
ktUA  are 0.0006 and 0.0002. It means 

that although the two parameters have equal average effect on the system average unavailability 
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(i.e. equal values of (12)), in some points in the mission time 
2  has higher effect on the system 

average unavailability than 
1 . So, we can conclude that 

2  is more important than 
1 .  

As another case, a real world electrical power supply system for nuclear power plants is 

considered35. The system is showed in Figure 9,A , wherein the grid supply is the primary 

component, the diesel supply is a redundant component for supplying the power, and the sensing 

and control circuitry is grid supply failure detector to put the diesel supply in operation. Figure 

9,B presents the fault tree of the system that can be easily mapped into its representative Markov 

chain considering exponential failure and repair rates35. 

The results of implementing the new ideas on the Markov chain of the power supply 

system for 62 10  hours are shown in Figure 10, with same notations and interpretations as 

Figures 7 and 8. The simulation has been repeated for 500 times to omit the effect of stochastic 

behavior of the system on the results.  

The importances of 1  and 2  using the method provided by Do Van et al.12,13 are 

calculated to be 0.7315 and 0.2685 respectively. The importances of the two parameters 

calculated using the new methods are ( ) 8

1 1.9542 10 −= E  , ( ) 9

2 8.8744 10 −= E  , 

( ) 17

1 6.8487 10 −= V  , and ( ) 17

2 2.3324 10 −= V . The importance of 1  is 2.7244 times the 

importance of 2  obtained using the method of Do Van et al.12,13
 that is based on the perturbation 

of the parameters at time zero, while according to Figure 10, the importance of 1  decreases due 

to its perturbation in the other time points that is considered in the new measures to obtain the 

importance of 1  about 2.2 times of the importance of 2  using (12). According to the results of 

Figure 10 and the interpretation method provided in section IV and used in the early paragraphs 

of this section, 1  is more important than 2 . Furthermore, according to the sequence of failure 

that is imposed by the cold spare gate to the system of Figure 9, whenever grid supply fails later, 

the diesel supply component is operated later and has less time for failure, so the whole system 

has less chance to fail in the system mission time. The same condition happens in the PAND gate 

of Figure 10. These conditions are completely captured by the new idea, to obtain increasing 

importance for 1  by decreasing the perturbation time. 

To validate the ideas for a general real world system, the system of Figure 9 is again 

considered wherein the cold spare gate is substituted with a hot spare gate and the failure 

function of the grid supply and the control circuitry are changed to: Weibull distribution with 

scale parameter 500 and shape parameter 2, normal distribution with mean parameter 600 and 

standard deviation parameter 10. System failure and functioning simulation, and the calculation 

of system downtime percent over the mission time of 62 10  hours are performed based on the 

Monte Carlo method of Rao et al.35 The simulation results are in Figure 11, with same notations 

and interpretations as Figure 10. Figure 11 shows the system downtime percent variation based 
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on the different perturbation times of the grid supply scale parameter, the diesel supply failure 

rate, and the control circuitry mean parameter. The importances of the mentioned parameters 

using (12) are 
30.1363 10− , 

30.0764 10− , and 
30.0596 10− while using (13) the importances 

are obtained 
70.1373 10− , 

70.0416 10− , and 
70.0478 10− , respectively. According to the 

interpretation method of section IV, the scale parameter of the grid supply is the most important 

parameter while the control circuitry mean parameter is the second important one. 

To compare the new measures and the other importance measures, we consider the 

unavailability of the system of Figure 12. 

In Figure 12, non-repairable components 1 and 2 have exponential PDFs ( ) 1

1 1

 − 
=

t
f t e , 

( ) 2

2 2

 − 
=

t
f t e  respectively, wherein 1 0.05 =  failures per hour, and 2 0.04 =  failures per 

hour. The system unavailability at time t is: 

( ) ( ) ( )1 2= F t F t F t  (14) 

In (14), ( ) 1
− 

= − j t

jF t e  is component j unavailability at time t. Table 2 presents the formulas of 

the IMs for computing the importance of component j, wherein the source column provides the 

reference for formulas’ explanations and notations. The failure rates are considered constant 

because the IMs of Table 2 (except the two new IMs) are proposed for constant risk model 

parameters. So, only the effect of perturbation occurrence time is analyzed here, and not its 

interaction effect with time-varying parameters which was studied in the previous examples. The 

value of the perturbation in the components unavailabilities is 0.00001 = . 

For comparing the IMs, their performance metrics, other than those of the new measures, 

are multiplied by the perturbation value, because the new measures are based on the difference 

between the performance metric in the normal and the perturbed conditions while the other 

measures divide the difference by the perturbation value. The results of calculating the equations 

of Table 2 for the system of Figure 12 are presented in Figures 13 to 15. 

Figure 13, A to C shows the plots of BI , −B PI , and NI  for the two components over time. 

Note that in the literature −B PI  and NI  are calculated for an infinite mission time, while we have 

calculated them at different mission times to have a more clear understanding of them. The 

derivative-based global sensitivity measures of the two components are presented in Figure 14, A 

to F. The two new measures are presented in Figure 15, A and B.  

As the results show, the global IMs and the Natvig measure show almost constant 

behavior in time for both components, while the other measures depend on time. Figure 13, A 

and B and Figure 15, A show different value and trend for E in comparison with those of 
j

BI  and 

j

B PI −  for both components. This happens because 
j

BI  calculates the importance of each 
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component at time t considering a perturbation in their failure time PDFs at time zero and 
j

B PI −  

just simply calculates the average of 
j

BI , while measure E at time t, averages the different 

importances of the component at time t each of which obtained assuming different perturbation 

occurrence times. It is evident that in the system of Figure 12, whatever a perturbation occurs 

later in a component failure time PDF, its effect on the system unavailability at time t decreases 

(because of constant parameters and absence of dynamic gates), which results in the smaller 

value of E than that of 
j

BI  and also a decrease in E for long mission times that is analyzed in the 

following paragraphs. So while some IMs are approximately time independent, and time 

dependent IMs like 
j

BI  and 
j

B PI −  do not consider the perturbation occurrence time, this concept 

is considered in E, then if the perturbation time distribution (i.e. PDF of shocks occurrence time) 

exists, we can apply that to obtain the weighted forms of (12) and (13), wherein ( )w t  represents 

the PDF of the perturbation time. In (15) and (16) the probability that a perturbation occurs at 

time t is multiplied by its importance. 

 

( ) ( )
( ) ( ),

0 0

0

i

T T

tT

i

F d F d

E w t dt
T T

    



 
 
 = −
 
 
 

 
  (15) 

 

( ) ( )
( ) ( )

( )

2

,

0 0

0

i

T T

tT

i i

F d F d

V w t E dt
T T

    

 

  
  
  = − −
  
   

  

 
  (16) 

 

For example, Figure 16 considers ( ) 0.1

1 0.1 ,0tw t e t− =    for the perturbation of the 

component 1 and ( ) 0.02

2 0.02 ,0tw t e t− =    for that of the component 2 of the system of Figure 

12. 

Therefore, based on (15) and (16) that capture the probability and the magnitude of the 

effects simultaneously, the plots of the new measures in different mission times are obtained as 

Fig. 17, A and B. Fig. 17, A and B show that unlike Fig. 15, A and B, component 1 is more 

important than component 2, because the probability that a perturbation occurs in component 1 

during the early hours of the system operation is more than that of the component 2 according to 

the PDFs of Fig. 16, and in the system of Fig. 12 the perturbations that occur earlier have higher 

effect on the importance of their respective components. Considering higher effect and 
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occurrence probability for the early perturbations of component 1 in (15) and (16), component 1 

is more important that component 2 in Fig. 17, A and B unlike Fig. 15, A and B. 

Figure 15, A shows another characteristic of the new measure, that is, reduction in the 

importance of the components in system mission time more than 50 hours. The reason is that the 

unavailability of the system is very high at long mission times, whether in perturbed or 

unperturbed conditions. Therefore, perturbing the components failure time PDFs (especially at 

times close to the mission time) has very small effect, i.e. importance, on the system 

unavailability at long mission times. Consequently, E will decrease, because it is the average of 

all these effects from zero to the mission time. This phenomenon does not happen in Fig. 17, A. 

The reason is that the perturbations with the highest effect on the system performance metric, i.e. 

the perturbations that occur in the early times of the system mission time, have higher occurrence 

probability, due to Fig. 16, in comparison with the other perturbations. This higher occurrence 

probability is multiplied by their respective perturbations’ high effect on the system performance 

metric using (15) to concurrently capture the effect of magnitude and possibility of the effects 

and to produce non decreasing Fig. 17, A. Figure 15, B shows that the variation in the effect of 

different perturbation times on the system unavailability at long mission times is higher for 

component 2 than for component 1, which means more unstable behavior of the system 

unavailability due to a perturbation in the unavailability of the component 2. 

7 | CONCLUSION 

In this paper, we have investigated the importance of system risk model parameters with 

respect to system unavailability, considering two assumptions: 1- a perturbation in the values of 

the parameters can occur at any time during the system mission time, 2- the parameters values 

are functions of time. We have showed, using simulation and analytical formulation, that the 

time of parameter value perturbation has undeniable effects on its importance. It has also been 

shown, that the magnitude of the effects depends on the perturbation time of the parameter value, 

and the parameter value function in the mission time. Besides, it has been illustrated that while a 

parameter, due to a perturbation in a time instance, can be more important than another one at 

time t, this order can be reversed if the perturbation time changes. Furthermore, two new 

importance measures have been introduced to consider the two assumptions, and a simulation 

scheme has been proposed for their computation. All claims and measures were examined and 

confirmed using a non-homogeneous continuous time Markov chain of a series-parallel system 

and a real world case study, while the validation of the ideas for general models were indicated 

using the simulation of a real world system having non-exponential failure rates. The new 

measures were compared with some traditional IMs, to show their capability of considering the 

effects of parameters perturbation occurrence time in their importances, while extending new 

efficient IMs to consider the ideas can be studied in future researches.  
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APPENDIX | The relationship between system average unavailability and i

tUA   

( )F t  is the sum of the state probabilities of a Markov chain model at time t, wherein the 

system is unavailable.11-13 The system average unavailability in a time period  0,T  can be 

obtained using (17)12 below: 

 

( ) ( )
0

1
= 

T

F T F t dt
T

 (17) 

In (17), ( )F t dt  is a multiplication of system unavailability at time t, i.e. ( )F t , and an 

infinitesimal time period, i.e. dt . So, ( )F t dt  is the system expected downtime in time period dt

. Therefore, considering the definition of the integral, ( )
0


T

F t dt  is the system expected downtime 

in time period  0,T . Thus, one can conclude that ( )
0

1
 

T

F d
T

 is equal to 
T

failureSDP . By the same 

logic 
, ,iT t

failureSDP  is equal to ( ),

0

1
   i

T

tF d
T

. Therefore, i

tUA  is equal to the change in system 

average unavailability when i  is perturbed at time t, i.e. ( ) ( ),

0 0

1 1
     = − i i

T T

t

tUA F d F d
T T

. 

Accordingly, when one uses i

tUA  to analyze the results, ( ) ( ),

0 0

1 1
    − i

T T

tF d F d
T T

 can be 

intended. Obviously, as the number of considered perturbation times increases, a more accurate 

estimation for (12) and (13) can be obtained using i

tUA . 
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TABLE 1  Description of Figure 6. 

Node State Failed components in each state of Figure 6 
System 

description 

1 1 No component is failed Working 

2 2 Component 1 or component 2 Working 

3 3 Component 3 or component 4 Working 

4 4 (Component 1 or component 2) and (Component 3 or component 4) Working 

5 5 Component 1 and component 2 Failed 

6 6 Component 3 and component 4 Failed 

7 7 (Component 1 and component 2) and (Component 3 or component 4) Failed 

8 8 (Component 1 or component 2) and (Component 3 and component 4) Failed 
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TABLE 2  IMs that are used for calculating the components importances of the system in Figure 12. 
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