
1 

 

 

Xing Liu  

Chair on Systems Science and the Energy Challenge, Foundation Electricité de France (EDF) 

Laboratoire Génie Industriel, CentraleSupélec, Université Paris-Saclay 

3 Rue Joliot Curie, 91190 Gif-sur-Yvette, France  

 

E-mail: xing.liu@centralesupelec.fr 

 

Elisa Ferrario 

School of Engineering, Pontificia Universidad Católica de Chile and National Research Center for Integrated 

Natural Disaster Management (CIGIDEN) CONICYT/FONDAP/15110017 

Avenida Vicuña Mackenna 4860, Santiago, Chile. 

 

Chair on Systems Science and the Energy Challenge, Foundation Electricité de France (EDF) 

Laboratoire Génie Industriel, CentraleSupélec, Université Paris-Saclay 

3 Rue Joliot Curie, 91190 Gif-sur-Yvette, France  

 

Email: elisa.ferrario@cigiden.cl 

 

Enrico Zio 

Chair on Systems Science and the Energetic Challenge, Foundation Electricité de France (EDF) 

Laboratoire Génie Industriel, CentraleSupélec, Université Paris-Saclay 

3 Rue Joliot Curie, 91190 Gif-sur-Yvette, France  

 

Dipartimento di Energia - Politecnico di Milano 

Via Ponzio 34/3, 20133 Milano, Italy 

 

E-mail: enrico.zio@centralesupelec.fr, enrico.zio@polimi.it 

 

Abstract: In interdependent critical infrastructures (ICIs), a disruptive event can affect 

multiple system elements and system resilience is greatly dependent on uncertain factors, 

related to system protection and restoration strategies. In this paper, we perform 
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sensitivity analysis (SA) supported by importance measures to identify the most relevant 

system parameters. Since a large number of simulations is required for accurate SA 

under different failure scenarios, the computational burden associated with the analysis 

may be impractical. To tackle this computational issue, we resort to two different 

approaches. In the first one, we replace the long-running dynamic equations with a fast-

running Artificial Neural Network (ANN) regression model, optimally trained to 

approximate the response of the original system dynamic equations. In the second 

approach, we apply an ensemble-based method that aggregates three alternative SA 

indicators, which allows reducing the number of simulations required by a SA based on 

only one indicator. The methods are implemented into a case study consisting of 

interconnected gas and electric power networks. The effectiveness of these two 

approaches is compared with those obtained by a given data estimation SA approach. 

The outcomes of the analysis can provide useful insights to the shareholders and 

decision-makers on how to improve system resilience. 

Keywords: Critical Infrastructure, System Resilience, Importance Measure, Sensitivity 

Analysis, Artificial Neural Networks, Ensemble of Methods 

1 Introduction 

The safety of critical infrastructures (CIs), such as electrical power grids, transportation, 

telecommunication, natural gas and oil, water supply networks and government services systems, are 

significantly threatened by multiple hazards, e.g., natural disasters [1,2] and human-made attacks [3]. 

Disruptive events that occur in one CI can trigger cascading failures to the interdependent CIs (ICIs), 

causing significant consequences and losses [4]. Then, how to anticipate, prepare for, respond to, and 

recover from disruptive events in CIs and ICIs, become important issues [6].  

Resilience refers to the “ability of a system to sustain and restore its basic functionality following a 

hazard source or an event (even unknown)” [6]. Various attempts have been made to define, quantify, 

analyze and improve system resilience of CIs [7].  

In scientific literature, works on system resilience mainly focus on the recovery aspect [8,9,10]. 

However, in practice, it is relevant to distinguish the individual contributions to system resilience from 

both the mitigation and recovery viewpoints in order to plan and implement the most effective strategies 

for improving resilience of ICIs. Indeed, the importance of a system element with respect to system 

resilience may change before, during and after the occurrence of a disruptive event, and, as a 

consequence, the associated resilience strategy may change too. Then, it is necessary to capture this 
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variation of criticality of the system elements to more efficiently guide the resilience strategies in the 

different phases following a disruptive event. 

In this work, we model ICIs within a control-based dynamic modeling framework, as in [11], and we 

quantify three resilience measures for ICIs, introduced in [12], to analyze resilience in different phases, 

i.e., during the failure phase, the recovery phase, and the entire failure-recovery period. Then, we 

perform a sensitivity analysis (SA) that is able to account for the contribution of different sources of 

uncertainty in the model inputs (such as system design parameters and failure-recovery parameters) to 

the uncertainty in the outputs (such as resilience measures) [13]. SA can be performed to achieve 

different purposes such as [14,15]: 1) ranking, i.e., the identification of a ranking of the inputs on the 

basis of their contribution to the output variability, 2) screening, i.e., the identification of the inputs that 

have a non-influential effect to the output variability, and 3) mapping, i.e., the determination of the 

region of the space of input variability that produces relevant output values. In this work, the focus is on 

ranking; indeed, we perform SA to rank the inputs (parameters and elements of the ICIs) that are more 

critical with respect to the development and improvement of system resilience, in order to provide 

insights to the decision-makers. Identifying the most critical inputs to system resilience can support the 

implementation of appropriate resilience strategies and the effective improvement of system resilience. 

Two types of SA approaches can be identified: local and global. Local (or differential) SA evaluates the 

effect on the output of small variations of the inputs around a reference value; the sensitivity indices 

typically used are partial derivatives or finite differences [15,16,17]. Global SA, instead, evaluates the 

effect on the output of inputs varying across the entire domain of possible input parameter variations; 

the sensitivity indices typically adopted are, e.g., correlation measures between inputs and outputs and 

statistical properties of the output distribution, such as variance [15]. Indicators for global SA are called 

global importance measures or uncertainty importance measures [18]. Local SA is straightforward, does 

not require many simulations, and its results are easily interpreted compared to global SA [17]; 

however, the latter one is considered more reliable [17] and offers higher capabilities [16]. Then, in this 

work, we focus on global SA. 

Also, SA methods can be classified in different categories, for example [15] identified the following 

types of SA methods for environmental models: perturbation and derivative methods, multiple starts 

perturbation methods, correlation and regression analysis methods, Monte Carlo filtering, variance-

based methods, density-based methods; [17] classified global SA methods for building energy analysis 

in four categories, i.e., regression methods, screening-based methods, variance-based methods, meta-

model methods; [19] distinguished between screening methods, non-parametric (regression-based) 

methods, variance-based methods, density-based methods and expected-value-of-information-based 
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methods; [18] presented an overview of global SA techniques used in risk analysis, specifying three 

types of methods, i.e., non-parametric (regression-based) techniques, variance-based techniques and 

moment independent techniques. With respect to the last classification, in this paper, we consider both 

variance-based techniques and moment independent techniques for SA. 

As mentioned above, global SA methods offer higher capabilities; however, they suffer of higher 

computational cost [16], since they explore the entire domain of inputs variability. As a result, the 

computational cost of the SA-driven importance measures (SADIM) can become very expensive, due to 

the long time needed by one single simulation to run and the large number of simulations required by 

SA. In order to reduce the computational burden of the analysis, we adopt two strategies: in the first 

one, we replace the long-running dynamic model with a fast-running regression model to reduce the 

time required by each simulation; in the second strategy, we keep the long-running dynamic model and 

adopt an ensemble-based method, which aggregates three SA indicators and allows obtaining accurate 

SA results with a lower number of simulations [16].  

Fast-running regression models, also called metamodels (such as Artificial Neural Networks (ANNs) 

[20,21], Local Gaussian Processes (LGPs) [22-23], polynomial Response Surfaces (RSs) [24-25], 

polynomial chaos expansions [26-27], stochastic collocations [28], Support Vector Machines (SVMs) 

[29] and kriging [30,31,32]), can be built by means of input-output data examples to approximate the 

response of the original long-running dynamic models, and used to perform SA. Since the metamodel 

response is obtained quickly, the problem of high computational times is circumvented [33]. In this 

work, we use ANN-based metamodels to approximate the response of the long-running dynamic model 

and we apply SA by analyzing a variance-based sensitivity index (i.e., the first-order index) on the ANN 

model outputs.  

The ensemble strategy allows integrating the output of three SA individual methods to generate reliable 

rankings, avoiding possible misinterpretations that can be produced by using a single SA method. This 

strategy has been shown to be particularly useful when the number of simulations needs to be reduced 

for computational issues [16]. The three SA indicators considered in this work are: 1) the first-order 

variance-based sensitivity measure (also called Pearson’s correlation ratio or Sobol’s first-order index) 

[19,34]; 2) the distribution-based sensitivity measure [18] and 3) the Beta measure on the basis of 

Kolmogorov-Smirnov distance [35]; while the first index is variance-based, the last two indices are 

given by moment independent techniques. To aggregate the results in the ensemble, we propose a 

normalized value sum aggregation method, derived from the ranking sum aggregation method [36]. In 

the rest of the paper, we refer to the first and second strategies as SADIM 1 and SADIM 2 approaches, 

respectively, for brevity. The results obtained from SADIM 1 and SADIM 2 are compared with those 
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obtained by a SA approach that estimates global sensitivity indices from given data, at the minimum 

computational cost, [19], to which we refer in the paper as “given data estimation method” or SADIM 3.  

The present work is organized as follows. Section 2 presents the control-based modelling framework 

of ICIs and the system resilience indicators. Section 3 introduces the SADIM 1 and 2 approaches. In this 

Section, the basics of the ANN model, the definitions of the SA indicators and the aggregation strategy 

used in the ensemble-based approach are given. Section 4 illustrates the application of the proposed 

methodologies on a case study concerning interconnected gas and electric power networks. Finally, 

Section 5 draws conclusions from the work performed and presents the future works.  

2 ICIs dynamic modelling framework and resilience metrics 

In Section 2.1, we introduce a modelling framework for ICIs, where the system behaviors in the 

nominal operation and failure modes are described by a set of dynamic equations and the system states 

represent the level of a resource that passes through a given node or link of the ICIs. Accounting for the 

variability of users’ demands and the constraints on system states, we formulate an under-control flow 

distribution problem by a Model Predictive Control (MPC) algorithm to calculate the system states in 

real-time. In Section 2.2, we define the performance of the system. In Section 2.3, we present the 

uncertain system parameters that affect system resilience. In Section 2.4, we illustrate the system 

resilience metrics. 

2.1 Modelling framework 

In this work, ICIs are described as a network, on the basis of graph theory, and their operation is 

modeled by linear dynamic equations that describe the switching dynamic modes of the interconnected 

systems. Then, the modeling framework adopted is able to go beyond the purely topological description 

of a system by including dynamic aspects, although in a linearly (approximated) manner [11]. The ICIs 

model is quantified by simulation, reformulating it as an optimization problem, specifically into a look-

ahead resource dispatch problem, which schedules the flows of resources within the ICIs based on up-

to-date forecasts of users’ demands [12]. The MPC approach [37,38], which allows taking into account 

the constraints on system components, system control parameters, and system design parameters, has 

been adopted to identify the control actions at each time step [11,12]. 

In Section 2.1.1, the system dynamic equations are written in their state-space form (i.e., the linear time-

invariant dynamic equations), where vectors of system state variables (𝑥), controllable variables (𝑢), 

disturbances (𝑑 ), and system outputs (𝑦 ) are related; in Section 2.1.2, the model constraints are 

illustrated; and in Section, 2.1.3, the model objective function is given. 
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2.1.1 Dynamics of ICIs 

ICIs are represented as a networked graph, where the nodes are the subsystems, i.e., components or 

functional sets of components, and the links are physical, cyber or logical connections between the 

nodes [39]. Various resources are constantly produced, consumed, stored and transformed in the 

subsystems of the ICIs. Then, depending on the main functionalities of the nodes, i.e., production, 

consumption, storage, transportation and/or conversion, we classify them into suppliers, users, buffers, 

transporters, and convertors [11].   

In the modelling framework, we consider as system states the levels of input flow, output flow and 

storage of the nodes, and the levels of input flow and output flow of the links connected to them. To 

mimic the realistic operations of ICIs under control, the outgoing links of buffering nodes and system 

driver nodes, as defined in [40], are considered as driver links and their output flows are designated as 

system controllable inputs. The general, discretized, state-space representation is written as follows [11]: 

             
 𝑥(𝑡 + 1) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) + 𝑑(𝑡)

𝑦(𝑡) = 𝐶𝑥(𝑡)
,                 (1) 

where 𝑥 = [𝑥1 … 𝑥𝑁𝑥
]

′
∈ 𝑅𝑁𝑥 is the vector of the system states, 𝑢 = [𝑢1 … 𝑢𝑁𝑢]′ ∈ 𝑅𝑁𝑢 is the vector of 

the control variables, 𝑦 = [𝑦1 … 𝑦𝑁𝑦
]′ ∈ 𝑅𝑁𝑦  is the vector of the system outputs, which are the flow 

levels received by the users, 𝑑 = [𝑑1 … 𝑑𝑁𝑑
]′ ∈ 𝑅𝑁𝑑 is the vector of disturbance variables describing the 

losses of the system states due to the disruptions. The 𝑁𝑥 × 𝑁𝑥 matrix 𝐴 contains the information on the 

system connectivity and, specifically, the rows and columns represent the nodes and the cells assume 

value 1 if the nodes on the rows depend on the nodes on the column, otherwise they assume value 0. 

The 𝑁𝑢 × 𝑁𝑥  ( 𝑁𝑢 ≤ 𝑁𝑥 ) matrix 𝐵  and the 𝑁𝑦 × 𝑁𝑥  matrix 𝐶  represent the flow transmission 

coefficients, respectively. Matrix 𝐴  is obtained from the topology of the system, whereas matrices 

matrices 𝐵 and 𝐶 are given by the dynamic equations formulated for each component. Finally, the scale 

of time depends on the objective and level of detail of the analysis, on the type of system under analysis 

and also on the available input data. For example, in electric power networks, the scale of time when 

analyzing the unit commitment problem should be in minutes to analyze the ramping capabilities of 

power generators, whereas it can be in hours when analyzing the supply of electricity to customers. In 

this work, we consider an hourly resolution. 

The advantage of using Eq. (1) is related to the possibility of describing the changes of flows during the 

failure and restoration processes, by explicitly representing the dynamic of flows on nodes and links. 

This cannot be handled by the existing approaches of the classical, static network flow models [3,41]. 

The interested reader is referred to [11] and [12] for further details. 
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2.1.2 Constraints 

The values of system states and control variables are limited by the capacities of the nodes and links. 

The constraints are formulated as follows: 

0 < 𝑥(𝑡) < 𝐶𝑃𝑥 ,  (2) 

0 < 𝑢(𝑡) < 𝐶𝑃𝑢,  (3) 

where the elements in 𝐶𝑃𝑥 and 𝐶𝑃𝑢 take values of the capacities of the corresponding elements, i.e., the 

nodes or the links. In nominal operation, the capacity of an element 𝑖 is at maximum level 𝐶𝑃𝑖
𝑁. When a 

disruptive event occurs, the capacity varies in time during the failure-recovery process, as shown in 

Figure 1:  

 𝐶𝑃𝑖(𝑡) = 𝐶𝑃𝑖
𝑁 − 𝐹𝑖 + 𝜇𝑖(𝑡 − 𝑡𝑟), 𝐶𝑃𝑖(𝑡) ≤ 𝐶𝑃𝑖

𝑁   (4) 

with 

𝐹𝑖 = {
0

magnitude of failure
 

for  0 ≤ 𝑡 <  𝑡𝑓

for  𝑡 ≥  𝑡𝑓
 , 

(5) 

𝜇𝑖 = {
0

recovery rate
 

for  0 ≤ 𝑡 <  𝑡𝑟

for  𝑡 ≥  𝑡𝑟
 . 

(6) 

where 𝑡𝑓 is the time of failure and 𝑡𝑟 is the start time of the recovery. The exact shape of the recovery 

function curve of an element is driven by the system resilience strategies. For example, [2] uses linear, 

trigonometric, and exponential recovery curves to represent the system response of average prepared, 

not well prepared and well prepared communities. For the sake of simplicity of illustration, here, we use 

linear recovery functions. 

 

Figure 1 Evolution in time of the capacity of element 𝑖.  

 

2.1.3 Objective function 

Considering that the units of the resources in ICIs are different (e.g., for the gas network the unit is in 
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cubic feet or m3 and for the electric power network it is in MW), we represent the level of relative 

insufficient satisfaction 𝑌𝑖𝑦
 of user 𝑖𝑦, by a normalized and non-dimensional variable [11]: 

𝑌𝑖𝑦
(𝑡) =

𝐷𝑖𝑦
(𝑡) − 𝑦𝑖𝑦

(𝑡)

𝐷𝑖𝑦
(𝑡)

, 
(7) 

where 𝐷𝑖𝑦
 is the demand of user 𝑖𝑦. 

Based on the dynamic equations and constraints previously introduced, we use MPC algorithm to 

allocate the flows at each time step, i.e., at each hour. MPC performs a finite-horizon optimization by 

determining sequences of system states and control operations over a prediction horizon 𝑁𝑞  for the 

minimization of the objective function at each time step within 𝑁𝑞, and, then, implementing only the 

first control action [42].  

Here, the objective function is formulated to minimize the weighted sum of insufficiency function 

𝑌𝑖𝑦
(𝑡) of user 𝑖𝑦, within the time horizon 𝑁𝑞: 

𝑚𝑖𝑛 ∑ ( ∑ 𝜔𝑖𝑦
𝑌𝑖𝑦

(𝑡 + 𝑞|𝑡)

𝑖𝑦∈𝑁𝑦

)

𝑁𝑞

𝑞=0

, 

(8) 

where, 𝜔𝑖𝑦
 is the weight assigned to the user 𝑖𝑦, and ∑ 𝜔𝑖𝑦𝑖𝑦

= 1. 

By solving the optimization problem with MPC, the control action 𝑢(𝑡|𝑡) is obtained from the control 

sequence: 

𝑢 ≜ {𝑢(𝑡|𝑡), 𝑢(𝑡 + 1|𝑡), . . . , 𝑢(𝑡 + 𝑁𝑞 − 1|𝑡)}. (9) 

Then, only the first control action 𝑢(𝑡|𝑡) will be used in the recursion to calculate the system states at 

𝑡 + 1. 

 

2.2 System performance function 

ICIs should provide stable and reliable services to the users; their performance can be defined from 

different perspectives (reliability, availability, resilience, safety, economics, etc.) and measured in 

effective ways, e.g., counting the number of operating components [2], the economic loss associated to 

the components and the casualties of people during the disaster [1]. According to [7], a measure of 

resilience of ICIs should be related to the capacity of enabling and enhancing people daily life. In this 

view, we evaluate the actual performance function of ICIs, 𝑃(𝑡), in terms of the weighted sum of the 

users states: 

𝑃(𝑡) = ∑ 𝜔𝑖𝑦

𝑁𝑦

𝑖𝑦

𝑦𝑖𝑦
(𝑡). 

(10) 
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The performance reference function of the ICIs, 𝑃𝑅(𝑡), is characterized as the weighted sum of the 

users demands: 

𝑃𝑅(𝑡) = ∑ 𝜔𝑖𝑦

𝑁𝑦

𝑖𝑦

𝐷𝑖𝑦
(𝑡). 

(11) 

Under nominal operating conditions, the supply to each user, e.g., 𝑖𝑦, with respect to its demand 𝐷𝑖𝑦
 is 

always achieved, i.e., 𝑦𝑖𝑦
(𝑡) = 𝐷𝑖𝑦

(𝑡) and 𝑃(𝑡) maintains values close to the performance reference 

function 𝑃𝑅(𝑡).  

 

2.3 Uncertain input variables 

The uncertain inputs here considered to affect system resilience performance include system initial 

conditions, i.e., initial resource levels in the buffer subsystems, parameters of the process temporality, 

i.e., related to the process duration like the system response time and the time horizon, and parameters 

related to the failure-recovery process, i.e., failure magnitude and recovery rate.  

The buffer subsystems in the ICIs contribute to system performance by storing resources, adjusting 

the supply of resources in nominal operation and compensating the insufficiency of resources in case of 

shortage during an accident. To include the functionality of the buffers, we assume that the initial 

inventory levels of buffers, 𝑥𝐵𝐹𝑖

𝑡=0, represents the initial resource level of buffer 𝐵𝐹𝑖, at 𝑡 = 0. 

Two critical time durations are defined in a failure scenario: 𝐻𝑟 = 𝑡𝑟 − 𝑡𝑓 is the response time and 

𝐻ℎ = 𝑡ℎ − 𝑡𝑓  is the time horizon, which represents the time within which the restoration is to be 

finished, where 𝑡ℎ is the time within which system performance is expected to return to the nominal 

level.  

The failure magnitude 𝐹𝑖 and recovery rate 𝜇𝑖 of an element 𝑖 are considered as uncertain variables. 

The failure magnitude 𝐹𝑖 is limited to the interval [𝐹𝑖𝑚𝑖𝑛
, 𝐹𝑖𝑚𝑎𝑥

] = [0, 𝐶𝑖], where 𝐶𝑖  is its predefined 

capacity. The recovery rate 𝜇𝑖 varies within [𝜇𝑖𝑚𝑖𝑛
, 𝜇𝑖𝑚𝑎𝑥], which can be, for example, 𝜇𝑖𝑚𝑖𝑛

=
𝐹𝑖𝑚𝑖𝑛

𝐻ℎ𝑚𝑎𝑥

 

and 𝜇𝑖𝑚𝑎𝑥
=

𝐹𝑖𝑚𝑎𝑥

𝐻ℎ𝑚𝑖𝑛

.  

 

2.4 System resilience metrics 

Resilience can be described as a function of the system performance over time and it is typically 

represented by triangular [2,43,44] or trapezoidal [1] curves, as shown in Figure 2. As a result, the most 

used metrics for resilience quantification are usually based on area quantification, such as the area 

between the reference, 𝑃𝑅(𝑡), and the actual, 𝑃(𝑡), system performance functions within a period of 
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interest, e.g., from the time of occurrence of a disruptive event until the complete recovery of the system 

[43,45].  

 

 

 

Figure 2 System performance following the occurrence of a disruptive event.  

In this work, we compute resilience as a ratio of the areas between the actual, 𝑃(𝑡), and the reference, 

𝑃𝑅(𝑡), system performance functions during a given time period. Specifically, we consider three time 

periods that lead to the computation of three resilience metrics: 1) resilience by mitigation, 𝑅𝑚, during 

the disruptive (failure) phase of the system, from the time of occurrence of a disruptive event, 𝑡𝑓, until 

the time when the recovery starts, 𝑡𝑟; 2) resilience by recovery, 𝑅𝑟, during the recovery phase of the 

system, from the time of starting of the recovery, 𝑡𝑟, to the time within which system performance is 

expected to return to the nominal level, 𝑡ℎ ; and 3) total resilience, 𝑅𝑡 , during both the failure and 

recovery phases, i.e., from 𝑡𝑓 until 𝑡ℎ. 

The distinction between resilience by mitigation and resilience by recovery comes from the need of 

identifying the most important resilience protection and recovery activities that can contribute to the 

system resilience during the different phases of mitigation and recovery, following a disruptive event. 

Indeed, during the mitigation phase, the capacity of the system to maintain the nominal level of 

operation or mitigate the negative impacts of disruption mainly depends on the robustness and 

redundancy of the system, whereas in the recovery phase, the capacity of the system to return to its 

nominal operation following disruptive events mainly depends on the rapidity of the recovery and on the 

resourcefulness of the system [46]. However, it is worth mentioning that protection strategies 

implemented during the mitigation phase can contribute also to the system resilience during the 

recovery phase, indeed larger robustness and higher rapidity are correlated. In this work, this correlation 

is not considered when analyzing separately the mitigation and recovery phases, but it is included when 

analyzing the total resilience measure. 

In the following, the mathematical formulation of the three resilience measures adopted is given. 
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The resilience by mitigation is quantified as the ratio of the area between the actual system 

performance function 𝑃(𝑡) and the time axis (the area shaded with upward diagonal stripes in Figure 2) 

for the time period 𝑡𝑓 ≤ 𝑡 ≤ 𝑡𝑟, and the area between the performance reference function 𝑃𝑅(𝑡) and the 

time axis, for the time period 𝑡𝑓 ≤ 𝑡 ≤ 𝑡𝑟, which corresponds to the response time 𝐻𝑟 = 𝑡𝑟 − 𝑡𝑓, i.e., 

within the mitigation phase: 

𝑅𝑚 =
∫ 𝑃(𝑡)

𝑡𝑟

𝑡𝑓
𝑑𝑡

∫ 𝑃𝑅(𝑡)
𝑡𝑟

𝑡𝑓
𝑑𝑡

 . 

(12)    

The resilience by recovery is calculated as the ratio of the area between the actual system 

performance function 𝑃(𝑡) and the time axis (the area shaded with downward diagonal stripes in Figure 

2) for the time period 𝑡𝑟 ≤ 𝑡 ≤ 𝑡ℎ, and the area between the performance reference function 𝑃𝑅(𝑡) and 

the time axis, for the time period 𝑡𝑟 ≤ 𝑡 ≤ 𝑡ℎ, with 𝑡ℎ ≥ 𝑡𝑟, i.e., from the start of restoration to the end 

of the time horizon 𝐻ℎ − 𝐻𝑟 = 𝑡ℎ − 𝑡𝑟, i.e., within the recovery phase: 

𝑅𝑟 =
∫ 𝑃(𝑡)

𝑡ℎ

𝑡𝑟
𝑑𝑡

∫ 𝑃𝑅(𝑡)
𝑡ℎ

𝑡𝑟
𝑑𝑡

 . 

(13)   

The overall level of system resilience, i.e., the total resilience 𝑅𝑡, is given by the ratio of the area 

between the actual system performance function 𝑃(𝑡) and the time axis for the time period 𝑡𝑓 ≤ 𝑡 ≤ 𝑡ℎ, 

and the area between the performance reference function 𝑃𝑅(𝑡) and the time axis, for the time period 

𝑡𝑓 ≤ 𝑡 ≤ 𝑡ℎ, with 𝑡ℎ ≥ 𝑡𝑓, within the mitigation and recovery phases: 

𝑅𝑡 =
∫ 𝑃(𝑡)

𝑡ℎ

𝑡𝑓
𝑑𝑡

∫ 𝑃𝑅(𝑡)
𝑡ℎ

𝑡𝑓
𝑑𝑡

 . 

(14) 

 

3 Sensitivity analysis-driven importance measure (SADIM) 

3.1 Introduction to SADIM 

Generally speaking, we can consider the system model: 

 𝑍 = 𝑓 (𝑄), ℝ𝑛 → ℝ𝑚,                   (15) 

where 𝑍 is the set of output variables (OVs) of the model, and 𝑄 is the set of uncertain input variables 

(IVs). In the case of ICIs, IVs include system initial conditions, parameters of the process temporality 

and parameters related to the failure-recovery process of the system elements, as discussed in Section 

2.3, and the OVs include the system resilience metrics, just introduced in Section 2.4. 

The uncertainty in IVs propagates to uncertainty on the system resilience metrics (OVs). Sensitivity 

analysis (SA) can be used to quantitatively evaluate the contributions of the IVs on the OVs, and 
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identify the most critical/important elements to which higher priority should be given in the protection 

and recovery strategies design and implementation. 

A sensitivity analysis-driven importance measure (SADIM) can be introduced to filter the least 

relevant input variables and simplify the model in order to reduce computational cost, while maintaining 

the accuracy needed for the analysis [13]. The filtering criteria can be, for example, a threshold for the 

unity-based normalized SA indicators defined as 𝜎 = 1/𝑛, where 𝑛 is the number of IVs [47]. It’s also 

possible to select the most important IVs with respect to a certain percentage of the IVs number [16]. 

The IVs most relevant to system resilience are related to the elements whose failures most affect the 

system resilience: then, SADIM can also be used to identify the system critical elements, which are 

more worthy of investment for system resilience improvement. 

 

3.2 Two strategies to accelerate SADIM computation 

The cost for combining SADIM can be very expensive because of the high computation time 

required by each simulation of the dynamic model (for example, a simulation of a failure scenario for 

the case study illustrated in Section 4.1 takes around 10 seconds to run and the computational time 

increases with the growth of the system size; the simulations are carried out by using Yalmip Toolbox 

[48] and Cplex optimizer [49] on Matlab 2015a, on an Intel® Core™ 2 Duo CPU E7600 @ 3.07 GHz) 

and the large number of simulations required by SA (for example, more than 106 Monte Carlo 

simulations are required in SA approaches that use a distribution-based SA indicator [18]. 

To reduce the computational burden, we propose two strategies, as shown in Figure 3. In the first 

approach (referred in the following as SADIM 1), we adopt a fast-running Artificial Neural Network 

(ANN) regression model to replace the original time-consuming dynamic model and, then, we apply the 

SA considering a variance-based sensitivity index (i.e., the first-order index) on the ANN model outputs. 

In the second approach (referred in the following as SADIM 2), we keep the long-running dynamic 

model, but we reduce the number of simulations necessary for an accurate SA by implementing an 

ensemble-based approach [16] in the SADIM. In the ensemble-based approach, three SA indicators are 

computed and, then, aggregated to produce a reliable ranking of the most critical elements [16]. 
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Figure 3 Approaches to reduce the computational burden for the sensitivity 

analysis-driven importance measure calculation.  

 

3.2.1 Artificial Neural Networks 

An ANN is a modelling structure composed of many parallel computing nodes arranged in different 

layers and interconnected by weighed connections [50]. The node in an ANN performs few and simple 

operations and communicates the results to its neighboring nodes. From a mathematical viewpoint, 

ANNs consist of a set of nonlinear (e.g., sigmoidal) basis functions with adaptable parameters that are 

adjusted by a training process (on many different input/output data examples), i.e., an iterative process 

of regression error minimization [51]. ANNs have been proved to be a powerful technique to perform 

massively parallel computations for data processing [52] and to solve a variety of problems in 

prediction, control, optimization, pattern recognition, etc. [53]. Specifically, ANNs have been 

demonstrated to be universal approximants of continuous nonlinear functions (under mild mathematical 

conditions) [54], i.e., in principle, an ANN model with a properly selected architecture can be a 

consistent estimator of any continuous nonlinear function. Further details about ANN regression models 

are not reported here for brevity; the interested reader may refer to the cited references and the copious 

literature in the field. 

In this work, we consider the classical three-layered, feed-forward ANN composed of three layers 

(input, hidden and output, see Figure 1) and trained by the error back-propagation algorithm. Notice that 

it is a good practice to model the system using as little number of hidden layers as possible to keep the 

number of parameters to be estimated as low as possible: indeed, the higher the number of hidden 



14 

 

layers, the larger the model complexity and the poorer the generalization capabilities [55]. In addition, 

too many parameters will drastically slow down the learning process [56]. 

  

 

Figure 4 Layout of a three-layered, feed-forward Artificial Neural Network. 

 

The numbers of nodes in the input layer and the output layer are known, as they correspond to the 

numbers of IVs and OVs. The number of nodes in the hidden layer has to be determined during the 

training process; in general, also this number, as the number of hidden layers, is kept as low as possible, 

since the higher the number of hidden nodes the higher the number of parameters to be estimated. In 

general, an ANN with too few hidden nodes does not succeed in learning the training data set; vice 

versa, an ANN with too many hidden nodes learns the training data set too well, and it does not have 

generalization capability [33]. 

Typically, the entire set of input-output data is divided into three subsets: a training (input/output) 

data set, used to calibrate the parameters of the ANN regression model (i.e., the weights of the links); a 

validation (input/output) data set, used to monitor the accuracy of the ANN model during the training 

procedure; a test (input/output) data set, not used during ANN training and validation, but used at the 

very end of the training to evaluate the network generalization capability when fed with new data. 

ANNs are good at interpolation, but they can be very bad at extrapolation; to guarantee that the bounds 

of the training domain are not exceeded, data must not be over-fitted during the training process. This 

can be guaranteed by the validation process: in practice, the validation error is computed on the 

validation set at different iterative stages of the training procedure: at the beginning of training, this 

value decreases as does the error computed on the training set; later in the training, if the ANN 

regression model starts over-fitting the data, the error calculated on the validation set starts increasing 
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and the training process must be stopped [50]. The Root Mean Square Error (RMSE) on the training, 

validation and test data set has been considered for the ANN development in this paper.  

A final remark is in order with respect to application to large-scale systems. In this work, a small case 

study has been considered, but it is worth mentioning that issues related with the high dimensionality of 

the input parameter space can arise when considering large-scale systems. Indeed, any algorithm 

involving the construction of a metamodel suffers when the dimensionality of the input parameter (i.e., 

feature) space increases, because the available set of input-output data examples becomes sparser with a 

power law relationship [57]. This issue is unavoidable and limits the application of any algorithm for 

metamodeling in engineering problems, unless dimensionality reduction strategy is adopted (e.g., 

principal component analysis, or feature extraction and selection) [33]. 

 

3.2.2 Ensemble-based sensitivity analysis 

The ensemble method allows combining the output of three single SA indices to identify reliable 

rankings [16]. As a consequence, the resulting ranking overcomes the problem of possible 

misinterpretations of the individual methods, specifically in cases of limited quantity of data [16]. In 

Section 3.2.2.1, the three SA indicators used in the ensemble approach are illustrated and in Section 

3.2.2.2, the method proposed to aggregate the results is described. 

3.2.2.1 Sensitivity analysis indicators 

In this work, the three SA indicators considered in the ensemble-based SA method are: 1) first-order 

variance-based sensitivity measure (also called Pearson’s correlation ratio or Sobol’s first-order index) 

[19,34]; 2) distribution-based sensitivity measure [18] and 3) Beta measure on the basis of Kolmogorov-

Smirnov distance [35]. The first index is variance-based, whereas the last two indices are given by 

moment independent techniques. 

Methods based on variance decomposition are the most used for global SA [16]; indeed, they are 

suitable for complex nonlinear models since they do not introduce any hypothesis on the model 

functional relationship to its inputs [15,16,17,18]. Variance-based methods explore the entire range of 

variation of the inputs that are modelled as stochastic variables inducing variability (uncertainty) in the 

model outputs. The variance of the output distributions is considered a good proxy of the output 

uncertainty [15]. However, the assumption that a single moment of the output distribution, i.e., the 

variance, is sufficient to describe output variability is not always appropriate, e.g., in case of multi-

modal or highly-skewed distributions [15,16,17,18,58]. To overcome this limitation, moment 

independent techniques, such as distribution-based sensitivity measure and Beta measure on the basis of 

Kolmogorov-Smirnov distance, do not consider only one specific moment of the output distribution, but 
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they look at the entire output distribution in a moment independent fashion [15,18]. Specifically, the 

distribution-based sensitivity measure and the Beta measure on the basis of Kolmogorov-Smirnov 

distance are based on the distance between the unconditional output distribution (generated by varying 

all inputs) and the conditional (on a given input) output distribution.  

In the following, the mathematical formulation of the three SA indicators considered in the ensemble-

based SA method is given. 

Let 𝑍𝑗 denote one of the OVs and 𝑄𝑖 one of IVs, the first-order variance-based sensitivity index, 𝑆𝑖, is 

defined as [19,34]: 

𝑆𝑖 =
𝑉[𝐸(𝑍𝑗|𝑄𝑖)]

𝑉[𝑍𝑗]
 . 

 (16)  

where 𝑉[𝑍𝑗] is the variance of the model uncertain OV, and 𝑉[𝐸(𝑍𝑗|𝑄𝑖)] is the variance of the expected 

value of 𝑍𝑗 if the impact from 𝑄𝑖 is eliminated, i.e., assuming that 𝑄𝑖 is fixed at its “true” value. This 

first-order index represents the direct contribution of each IV to the variance of OV. 

The distribution-based indicator, 𝛿𝑖, is given by [18]: 

𝛿𝑖 =
1

2
𝐸[𝑠(𝑄𝑖)], 

(17)  

where 𝑠(𝑄𝑖) is defined as: 

𝑠(𝑄𝑖) = ∫ |𝑓𝑍𝑗
(𝑧𝑗) − 𝑓𝑍𝑗|𝑄𝑖

(𝑧𝑗)| 𝑑𝑧𝑗 , 
(18)  

where 𝑓𝑍𝑗
(𝑧𝑗) is the density function of 𝑍𝑗, and 𝑓𝑍𝑗|𝑄𝑖

(𝑧𝑗) is the conditional probability density function 

of 𝑍𝑗 when 𝑄𝑖 is a fixed value. The distribution-based SA indicator 𝛿𝑖 represents the expected shift in 

the distribution of 𝑍𝑗 provoked by 𝑄𝑖. Unlike the first-order variance-based sensitivity index 𝑆𝑖, which 

considers one moment of the OV distribution, the indicator 𝛿𝑖 accounts for the entire distributions of 

OVs. Applications show that 𝑆𝑖  and 𝛿𝑖  are in agreement in identifying the less relevant IVs, but 

discrepancies exist in the ranking of the most relevant ones [18]. 

The Beta measure, 𝛽𝑖 , based on the Kolmogorov-Smirnov distance, is computed by averaging the 

distance between the unconditional and conditional (on a given input) distributions of the output as 

follows [35]: 

𝛽𝑖 = 𝐸[𝑠𝑢𝑝𝑧𝑗∈𝛺𝑍𝑗
|𝐹𝑍𝑗

(𝑧𝑗) − 𝐹𝑍𝑗|𝑄𝑖
(𝑧𝑗)|]. (19)  

where 𝐹𝑍𝑗
(𝑧𝑗) is the cumulative distribution function (CDF) of 𝑍𝑗 and 𝐹𝑍𝑗|𝑄𝑖

(𝑧𝑗) is the conditional CDF 

of 𝑍𝑗  when 𝑄𝑖  is a fixed value. The metric 𝑠𝑢𝑝𝑧𝑗∈𝛺𝑍𝑗
|𝐹𝑍𝑗

(𝑧𝑗) − 𝐹𝑍𝑗|𝑄𝑖
(𝑧𝑗)|  in Eq. (19) is the 

Kolmogorov-Smirnov distance, which is defined as the largest absolute difference between the two 

CDFs, and has the property to be scale invariant. 

The main advantage of the Beta measure, 𝛽𝑖, compared to the distribution-based indicator, 𝛿𝑖, is in the 

use of CDFs rather than density functions. Indeed, CDFs can be defined for all distributions (even if a 
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distribution does not admit a density) and they allow relating the sensitivity measure to, e.g., the 

probabilities of exceeding a target [35]. 

 In this work, the three SA indicators have been applied to the same input-output data obtained from 

system behaviour simulations, so they have been calculated without the need of rerunning the model, 

avoiding extra computational cost.  

 

3.2.2.2  Aggregated ranking of sensitivity indicators 

The three SA indicators introduced in Section 3.2.2.1 are aggregated for the final ranking of the IVs 

that affect the OVs. We take as reference the ranking sum aggregation [36] and propose the following 

method to aggregate the values of the three SA indicators 𝑆𝑖, 𝛿𝑖 and 𝛽𝑖 in one SA indicator 𝐼𝑖. For each 

IV, 𝑄𝑖, the aggregated SA indicator 𝐼𝑖 is calculated as follows: 

1) For each SA indicator, 𝑆𝐴𝑖, i.e., 𝑆𝑖, 𝛿𝑖 or 𝛽𝑖, rescale its original value to a normalized value 𝑆𝐴𝑖
∗ =

𝑆𝐴𝑖

∑ 𝑆𝐴𝑖𝑖
, which is the ratio of the SA indicator value of an IV 𝑄𝑖 over the sum of the SA indicator 

values of all the IVs. This step brings the values of different SA indicators into the range [0,1]. 

2) Calculate the sum of the results obtained in step 1), 𝑆𝑆𝐴𝑖 = 𝑆𝑖
∗ + 𝛿𝑖

∗ + 𝛽𝑖
∗. 

3) Normalize the values of 𝑆𝑆𝐴𝑖 to the aggregated SA indicator 𝐼𝑖 =
𝑆𝑆𝐴𝑖

∑ 𝑆𝑆𝐴𝑖𝑖
. 

This aggregation method considers the direct integration of the results of the different SA indicators, 

i.e., it calculates the sum of values of SA indicators instead of the sum of ranking, as in the ranking sum 

aggregation method. The ranking sum aggregation method may lead to practical undesirable situations: 

indeed, it can lead to multiple IVs occupying the same ranking position. Comparing to the ranking sum 

aggregation method, the advantage of the proposed aggregation method is that it is able to capture the 

variability of IVs with respect to different SA indicators, avoiding the situation of multiple IVs in the 

same ranking position. 

4 Case study and results 

4.1 Interconnected natural gas distribution network and electric power grid 

The case study is taken from [59] and considers two ICIs: a natural gas distribution network and an 

electric power grid (Figure 5, solid and dash-dotted lines, respectively). The objective is to provide the 

necessary amount of gas and electricity to the demand nodes. In particular, the gas distribution network 

supplies gas to two users, 𝐷1 and 𝐷2, and to two electric power generators, 𝐸1  and 𝐸2 , that provide 

electricity to two users of electricity, 𝐿1, and 𝐿2. 
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The natural gas distribution network has two suppliers, 𝑆1 and 𝑆2, whose outputs are assumed to be 

equal to 90000 cubic feet, i.e., 90 MCF (1 MCF ≈ 28.32 m3), and 180 MCF, respectively; two buffers 

(gas reservoirs), DS1  and DS2 ; five transporters 𝑎 , 𝑏 , 𝑐 , 𝑑  and 𝑒 ; and two users 𝐷1  and 𝐷2 , whose 

demands, 𝐷𝐷1 and 𝐷𝐷2, are equal to 100 MCF and 80 MCF, respectively. The electric power network 

has two converters (electric power generators), 𝐸1 and 𝐸2 , that transform gas into electricity with a 

constant coefficient 𝛽 , where 𝛽=10 MWh/MCF, i.e., 1 MCF of natural gas produces 10 MWh of 

electricity; two transporters, 𝐺1 and 𝐺2; two users 𝐿1 and 𝐿2, whose demands, 𝐷𝐿1 and 𝐷𝐿2, are equal to 

500 MWh and 400 MWh, respectively.  

In this case study, we consider the same failure scenario as in [59], where the vulnerable elements, 

which are highlighted in Figure 5, fail due to a disruption event. The uncertainties of IVs, i.e., system 

design parameters, parameters related to the process temporality, failure magnitudes and recovery rates 

of the vulnerable elements identified in [59], are considered as described by uniform distributions, for 

illustration purposes. The ranges of the distributions are reported in Table 1.  

 

 

 

 

Figure 5 Interconnected natural gas-power systems (vulnerable nodes and links are highlighted). 
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TABLE 1 

Ranges of uncertain input variables (1 MCF ≈ 28.32 m3) 

Description Symbol Interval Unit measure 

Response time 𝐻𝑟 [0, 30] hrs 

Time horizon 𝐻ℎ [50, 120] hrs 

Initial storage of buffer 𝐷𝑆1 𝑥𝐷𝑠1

𝑡=0 [1000, 4000] MCF 

Initial storage of buffer 𝐷𝑆2 𝑥𝐷𝑠2

𝑡=0 [2000, 8000] MCF 

Failure magnitude of supplier 𝑆1 𝐹1 [0, 90] MCF 

Failure magnitude of supplier 𝑆2 𝐹2  [0, 180] MCF 

Failure magnitude of link 𝐿𝑎−𝑏 𝐹3 [0, 300] MCF 

Failure magnitude of link 𝐿𝑏−𝑐 𝐹4 [0, 170] MCF 

Failure magnitude of link 𝐿𝑐−𝑑 𝐹5 [0, 100] MCF 

Failure magnitude of link 𝐿𝑑−𝑒 𝐹6 [0, 100] MCF 

Failure magnitude of link 𝐿𝐸1−𝐺1
 𝐹7 [0, 800] MWh 

Failure magnitude of link 𝐿𝐸2−𝐺2
 𝐹8 [0, 400] MWh 

Recovery rate of supplier 𝑆1 𝜇1 [0, 1.8] MCF/hrs 

Recovery rate of supplier 𝑆2 𝜇2  [0, 3.6] MCF/hrs 

Recovery rate of link 𝐿𝑎−𝑏 𝜇3 [0, 6] MCF/hrs 

Recovery rate of link 𝐿𝑏−𝑐 𝜇4 [0, 3.4] MCF/hrs 

Recovery rate of link 𝐿𝑐−𝑑 𝜇5 [0, 2] MCF/hrs 

Recovery rate of link 𝐿𝑑−𝑒 𝜇6 [0, 2] MCF/hrs 

Recovery rate of link 𝐿𝐸1−𝐺1
 𝜇7 [0, 16] MWh/hrs 

Recovery rate of link 𝐿𝐸2−𝐺2
 𝜇8 [0, 8] MWh/hrs 

 

 

4.2 Results by SADIM 1 

4.2.1 Artificial Neural Network models 

To build the data sets, 5000 IVs have ben sampled and the OVs have been calculated by simulating 

the original dynamic model. The input/output data have been divided into three data sets as follows: 

70% (i.e., 3500 data) in the training data set, 15% (i.e., 750 data) in the validation data set and 15% (i.e., 

750 data) in the test data set. Training, validation and test have, then, been carried out by the ANN 

Toolbox of Matlab 2015a.  

Three different ANN models have been built, with each one output node representing one of the three 

system resilience measures, 𝑅𝑚, 𝑅𝑟 and 𝑅𝑡. Table 2 shows the numbers of hidden nodes of the ANN 

models found by trial and error, and the Root Mean Square Error (RMSE) values obtained on the 

training, validation and test data sets.  
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TABLE 2 

Number of hidden nodes of the ANN models and Root Mean Square Error (RMSE) of the training, 

validation and test data sets for resilience by mitigation 𝑅𝑚, resilience by recovery, 𝑅𝑟, and total 

resilience, 𝑅𝑡. 
 

 𝑅𝑚 𝑅𝑟 𝑅𝑡 

Hidden nodes 30 29 28 

RMSE Training 0.0184 0.0406 0.0377 

RMSE Validation 0.0249 0.0524 0.0464 

RMSE Test 0.0286 0.0532 0.0492 

 

For brevity sake, in the following, we discuss only the results related to the total resilience 𝑅𝑡.  

Figure 6 shows the linear regression between the network outputs (total resilience computed by the 

ANN model, 𝑅𝑡
𝐴𝑁𝑁, on the vertical axis) and the original dynamic model outputs (total resilience, 𝑅𝑡

𝑀𝑃𝐶, 

computed by the MPC, on the horizontal axis), with respect to the training, validation, test, and the 

entire data set. Notice that only the first 50 data are shown in Figure 6, for rendering the Figure visible. 

For a perfect fit, the data should fall along a 1:1 line, where the network outputs are equal to the targets, 

i.e., the original dynamic simulations outputs. In this case, the correlation coefficient 𝑅𝑐  is always 

higher than 0.98, which indicates that the fit is good for all data sets. Then, once the ANN is trained, it 

can provide accurate values of total resilience in correspondence of new input data. 

The computational time required by one simulation of the trained ANN model to calculate the total 

resilience indicator of one failure scenario is around 2×10-4 seconds. On the contrary, one simulation of 

the MPC dynamic model takes 10 seconds. 
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Figure 6. Linear regression between the network outputs (total resilience computed by the ANN 

model, 𝑅𝑡
𝐴𝑁𝑁, on the vertical axis) and the original dynamic model outputs (total resilience, 𝑅𝑡

𝑀𝑃𝐶, 

computed by the Model Predictive Control (MPC), on the horizontal axis). 

 

4.2.2 Input variable importance by sensitivity analysis 

For each resilience measure, 𝑅𝑚, 𝑅𝑟 or 𝑅𝑡, 5000 simulations by the ANNs have been carried out to 

estimate unconditional distributions and 106 simulations have been run to estimate conditional 

distributions for each IV. Then, the first-order variance-based SA indicators of each IV have been 

calculated according to equation (16). In Table 3, the values of the first-order variance-based sensitivity 

measure computed for the resilience by mitigation, 𝑆𝑖
𝑅𝑚 , resilience by recovery, 𝑆𝑖

𝑅𝑟 , and total 

resilience, 𝑆𝑖
𝑅𝑡, are reported. The most important IVs are those whose SA indicator values are larger 

than threshold 𝜎 = 0.05. 
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The results of the SA first-order indices for the resilience by mitigation, 𝑆𝑖
𝑅𝑚, resilience by recovery, 

𝑆𝑖
𝑅𝑟, and total resilience, 𝑆𝑖

𝑅𝑡, are reported in Table 3. 

 

TABLE 3 

SA indicators (first order-indices) of IV for resilience by mitigation, 𝑆𝑖
𝑅𝑚, resilience by recovery, 𝑆𝑖

𝑅𝑟, 

and total resilience, 𝑆𝑖
𝑅𝑡, computed by means of SADIM 1 approach. The values higher than the 

threshold value 𝜎 are in bold.  

 

 SADIM 1  

IV 𝑆𝑖
𝑅𝑚 𝑆𝑖

𝑅𝑟 𝑆𝑖
𝑅𝑡 

𝐻𝑟 0.1667 0.0496 0.0565 

𝐻ℎ 0.0344 0.0661 0.0519 

𝑥𝐷𝑠1

𝑡=0 0.0344 0.0297 0.0336 

𝑥𝐷𝑠2

𝑡=0 0.0344 0.0319 0.0351 

𝐹1 0.0344 0.0385 0.0397 

𝐹2 0.0344 0.0705 0.0611 

𝐹3 0.1377 0.1355 0.1481 

𝐹4 0.0523 0.0661 0.0641 

𝐹5 0.0372 0.0319 0.0351 

𝐹6 0.0441 0.0319 0.0366 

𝐹7 0.0785 0.0826 0.0855 

𝐹8 0.0358 0.0286 0.0336 

𝜇1 0.0344 0.0330 0.0366 

𝜇2 0.0344 0.0474 0.0427 

𝜇3 0.0344 0.0595 0.0534 

𝜇4 0.0344 0.0463 0.0641 

𝜇5 0.0344 0.0319 0.0351 

𝜇6 0.0344 0.0319 0.0351 

𝜇7 0.0344 0.0374 0.0382 

𝜇8 0.0344 0.0496 0.0336 
 

It can be seen that during the mitigation phase, the most important IVs identified by the SA for the 

resilience by mitigation, 𝑆𝑖
𝑅𝑚, computed by employing the SADIM 1, are the response time, 𝐻𝑟, and the 

failure magnitudes, 𝐹3, 𝐹7, and 𝐹4, whose values are higher than the threshold value, 𝜎, (as shown in 

Table 3, in bold). The results show which are the components and, consequently, the activities that need 

to be considered to enhance the resilience in the mitigation phase; specifically, in this case, they are 

related to the improvement of, e.g., failure detection capabilities that can increase the system response, 

and the strengthening of the robustness of links 𝐿𝑎−𝑏, 𝐿𝐸1−𝐺1
and 𝐿𝑏−𝑐, to reduce the failure magnitudes. 

During the recovery phase, the most relevant IVs identified by the SA for the resilience by recovery, 

𝑆𝑖
𝑅𝑟, are the failure magnitudes 𝐹3, 𝐹7, 𝐹2 and 𝐹4, the time horizon 𝐻ℎ, and the recovery rate 𝜇3, whose 

values are higher than the threshold value, 𝜎, (as shown in Table 3, in bold). Then, in this phase, the 
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most important resilience enhancement activities should focus on the improvement of the emergency 

preparedness of the users and of the recovery efficiency of link 𝐿𝑎−𝑏, 𝐿𝐸1−𝐺1
and 𝐿𝑏−𝑐 and suppliers 𝑆2. 

Regarding the total resilience, the most relevant IVs identified by the SA, 𝑆𝑖
𝑅𝑟 , are the failure 

magnitudes 𝐹3 , 𝐹7 , 𝐹4  and 𝐹2 , the response time 𝐻𝑟 , the time horizon 𝐻ℎ  and the recovery rate 𝜇3 , 

whose values are higher than the threshold value, 𝜎, (as shown in Table 3, in bold). It can be seen that 

the most important IVs are the combination of those variables identified for resilience by mitigation and 

resilience by recovery. This result is coherent with the meaning of total resilience, which represents the 

resilience level of the system considering both the failure and recovery stages. The corresponding 

resilience enhancement activities in two phases can be implemented following the results for resilience 

by mitigation and those for resilience by recovery, respectively. 

 

4.3 Results by SADIM 2 

In SADIM 2, the original MPC dynamic model simulations are performed to calculate the values of 

the resilience measures, i.e., 𝑅𝑚 , 𝑅𝑟  and 𝑅𝑡 . However, the number of Monte Carlo simulations for 

computing the unconditional and conditional distributions of each IV reduces to 100 and 104, 

respectively, thanks to the use of the ensemble-based approach. In SADIM 2, the first-order variance-

based sensitivity index, the distribution-based indicator, and the Beta measure based on Kolmogorov-

Smirnov distance, have been calculated, for each IV, according to equations (16), (17), and (19), 

respectively, and then have been aggregated, as explained in Section 3.2.2.2.  

In Table 4, the values of the ensemble-based sensitivity measure computed for the resilience by 

mitigation, 𝐼𝑖
𝑅𝑚, resilience by recovery, 𝐼𝑖

𝑅𝑟, and total resilience, 𝐼𝑖
𝑅𝑡, are reported. The relevant IVs are 

those whose SA indicator values are larger than the threshold 𝜎 = 0.05.  
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TABLE 4 

Ensemble-based SA indicators of the IVs for resilience by mitigation, 𝐼𝑖
𝑅𝑚, resilience by recovery, 

𝐼𝑖
𝑅𝑟, and total resilience, 𝐼𝑖

𝑅𝑡, computed by means of SADIM 2 approach. The values higher than the 

threshold value 𝜎 are in bold. 

 

 SADIM 2  

IV 𝐼𝑖
𝑅𝑚 𝐼𝑖

𝑅𝑟 𝐼𝑖
𝑅𝑡 

𝐻𝑟 0.2662 0.0508 0.0580 

𝐻ℎ 0.0303 0.0641 0.0496 

𝑥𝐷𝑠1

𝑡=0 0.0293 0.0320 0.0300 

𝑥𝐷𝑠2

𝑡=0 0.0310 0.0337 0.0326 

𝐹1 0.0295 0.0350 0.0374 

𝐹2 0.0295 0.0630 0.0577 

𝐹3 0.1452 0.1754 0.2215 

𝐹4 0.0400 0.0530 0.0549 

𝐹5 0.0320 0.0324 0.0308 

𝐹6 0.0384 0.0329 0.0313 

𝐹7 0.0603 0.0764 0.0686 

𝐹8 0.0298 0.0309 0.0298 

𝜇1 0.0292 0.0346 0.0343 

𝜇2 0.0292 0.0417 0.0402 

𝜇3 0.0299 0.0714 0.0595 

𝜇4 0.0293 0.0411 0.0382 

𝜇5 0.0303 0.0320 0.0303 

𝜇6 0.0308 0.0320 0.0299 

𝜇7 0.0303 0.0357 0.0356 

𝜇8 0.0294 0.0320 0.0297 

 

During the mitigation phase, the most important IVs identified by the SA for the resilience by 

mitigation, 𝐼𝑖
𝑅𝑚 , identified by employing the SADIM 2, are the response time 𝐻𝑟 , and the failure 

magnitudes 𝐹3 and 𝐹7, whose values are higher than the threshold value, 𝜎, (as shown in Table 4, in 

bold). Therefore, the most important resilience enhancement activities include, e.g., the improvement of 

failure detection capability to reduce the response time and the strengthening of the robustness of links 

𝐿𝑎−𝑏 and 𝐿𝐸1−𝐺1
. 

During the recovery phase, the most important IVs identified by the SA for the resilience by 

recovery, 𝐼𝑖
𝑅𝑟, identified by employing the SADIM 2, are the failure magnitudes 𝐹3, 𝐹7 , 𝐹2 and 𝐹4, the 

recovery rate 𝜇3 , the time horizon 𝐻ℎ , and the response time 𝐻𝑟 , whose values are higher than the 

threshold value, 𝜎, (as shown in Table 4, in bold). Then, the important resilience enhancement activities 

should focus on the improvement of the failure detection capability, the emergency preparedness of the 

users and the recovery efficiency of links 𝐿𝑎−𝑏, 𝐿𝐸1−𝐺1
, and 𝐿𝑏−𝑐, and suppliers 𝑆2. 
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Regarding the total resilience, the most relevant IVs identified by the SA, 𝐼𝑖
𝑅𝑡 , are the failure 

magnitudes 𝐹3, 𝐹7 , 𝐹2 and 𝐹4, the recovery rate 𝜇3, and the response time 𝐻𝑟, whose values are higher 

than the threshold value, 𝜎, (as shown in Table 4, in bold).  

The most important IVs are the combination of those variables identified for resilience by mitigation 

and resilience by recovery, except for the time horizon 𝐻ℎ , whose value is equal to 0.0469. The 

corresponding resilience enhancement activities can be implemented in the mitigation and recovery 

phases according to the individual results for resilience by mitigation and resilience by recovery, 

respectively.  

 

4.4 Comparison of SADIM approaches 

The results given by SADIM 1 (Section 4.2.2) and SADIM 2 (Section 4.3) are compared with those 

obtained by a given data estimation SA method [19], (SADIM 3), in Section 4.4.1. Then, considerations 

about the computational cost and the effectiveness of the three methods are given in Sections 4.4.2 and 

4.4.3, respectively. SADIM 3 has been applied by considering 5000 system responses generated by the 

original dynamic model and Monte Carlo simulation. Further details on the results given by SADIM 3 

can be found in [60]. 

 

4.4.1 Ranking of important IVs 

The most important IVs and subsystems can be ranked on the basis of the SA indicator values. In 

Table 5, the five most important IVs, i.e., those with larger SA indicator values, identified by the three 

SADIM approaches, are given with respect to the three resilience measures (resilience by mitigation, 

𝑅𝑚, resilience by recovery, 𝑅𝑟, and total resilience, 𝑅𝑡). 

 

TABLE 5 

Rankings of the five most important IVs given by SADIM 1, SADIM 2 and SADIM 3 approaches for 

resilience by mitigation 𝑅𝑚 , resilience by recovery, 𝑅𝑟, and total resilience, 𝑅𝑡 

 
 𝑅𝑚  𝑅𝑟  𝑅𝑡 

 SADIM 1 SADIM 2 SADIM 3  SADIM 1 SADIM 2 SADIM 3  SADIM 1 SADIM 2 SADIM 3 

1 𝐻𝑟  𝐻𝑟  𝐻𝑟   𝐹3 𝐹3 𝐹3  𝐹3 𝐹3 𝐹3 

2 𝐹3 𝐹3 𝐹3  𝐹7 𝐹7 𝐹7  𝐹7 𝐹7 𝐹7 

3 𝐹7 𝐹7 𝐹7  𝐹2 𝜇3 𝐻ℎ  𝐹4 𝜇3 𝐹2 

4 𝐹4 𝐹4 𝐹4  𝐻ℎ 𝐻ℎ 𝐹2  𝐹2 𝐻𝑟  𝐹4 

5 𝐹6 𝐹6 𝐹6  𝐹4 𝐹2 𝐹4  𝐻𝑟  𝐹2 𝐻ℎ 
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For the resilience by mitigation 𝑅𝑚 , the five most important IVs obtained by SADIM 1 and 2 

methods are identical with those obtained by SADIM 3: they are the response time, 𝐻𝑟, and the failure 

magnitudes 𝐹3, 𝐹7, 𝐹4 and 𝐹6, which reflect the importance of protection efforts on links 𝐿𝑎−𝑏, 𝐿𝐸1−𝐺1
, 

𝐿𝑏−𝑐 and 𝐿𝑑−𝑒.  

For the resilience by recovery 𝑅𝑟 , the most important two IVs, obtained by the three SADIM 

methods, are 𝐹3 and 𝐹7, related to the failure magnitudes of link 𝐿𝑎−𝑏 and link 𝐿𝐸1−𝐺1
. The other three 

most important IVs are the same for SADIM 1 and SADIM 3 (even if they are in a different order) and 

they are: time horizon, 𝐻ℎ, failure magnitude of supplier 𝑆2, 𝐹2, and failure magnitude of link 𝐿𝑏−𝑐, 𝐹4. 

The approach SADIM 2, instead, identifies also the recovery rate of link 𝐿𝑎−𝑏, 𝜇3, as important.  

If we look through the entire failure-recovery process (i.e., with respect to the total resilience), it can 

be seen that three IVs, i.e., 𝐹3, 𝐹7, and 𝐹2, have been identified as critical by all the three SADIM 

methods, and, specifically, 𝐹3 and 𝐹7, are the most critical. The other IVs that appear in the top five by 

at least one SADIM method are: 𝐹4, 𝜇3, 𝐻𝑟, 𝐻ℎ. The importance of 𝐹4 is supported by SADIM 1 and 3; 

the criticality of the response time, 𝐻𝑟 is highlighted by SADIM 1 and 2; whereas the importance of the 

recovery rate, 𝜇3 , and the time horizon, 𝐻ℎ , is supported by only one method, i.e., SADIM 2 and 

SADIM 3, respectively. 

The results of SADIM approaches provide different ranking positions of the IVs, which indicate the 

priorities of the corresponding resilience enhancement activities. In general, topology modification, 

redundancy allocation of the important elements, failure detection capability are some of the activities 

that can be implemented to increase the resilience by mitigation. In this specific case, the most 

important resilience enhancement activities can include the improvement of failure detection capability 

to reduce the response time and the strengthening of the robustness of links on links 𝐿𝑎−𝑏, 𝐿𝐸1−𝐺1
, 𝐿𝑏−𝑐 

and 𝐿𝑑−𝑒. Instead, the increase of the recovery efficiency is a typical activity to improve the resilience 

by recovery by improving the repair rate efficiency of failed elements and/or identifying the best repair 

sequence (by optimization).  

Notice that for the system under analysis, the most important components for resilience are mainly 

associated with failure magnitudes, response time and time horizon. Indeed, the initial storage of the two 

buffers and the recovery rates (except for one recovery rate over eight) are not in the ranking of the five 

most important variables. It is worth mentioning that these results are for the specific system analyzed 

and cannot be generalized to any interconnected critical infrastructure system. 

 

4.4.2 Computational costs of three SADIM approaches 

The three applied SADIM methods can significantly reduce the computational cost, comparing to the 

conventional method with the original dynamic model and large numbers of simulations in SA. Indeed, 
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to obtain the above results, the traditional SA method requires 2×107 simulations, i.e., it takes around 

5000 hours, whereas, the SADIM 1 and SADIM 3 methods require 5000 simulations of the original 

MPC dynamic model, which takes around 13 hours, and the SADIM 2 method needs 104 simulations to 

obtain the SA indicator for each IV, i.e., it takes around 26 hours, the double of time required by 

SADIM 1 and 3. Notice that the computational cost of SADIM 1 does not depend on the number of 

system parameters, i.e., it does not increase if the number of IVs increases; on the contrary, the 

computational cost of SADIM 2 strongly depends on the number of IVs. Then, SADIM 1 and 3 are 

better than SADIM 2 with the respect to the computational cost.   

 

4.4.3 Effectiveness of three SADIM approaches 

The SADIM methods provide the rankings of the most important/critical parameters with respect to 

system resilience, which can, then, be improved efficiently by taking into account the results given by 

these methods. In the following, we take into account the results obtained in Section 4.3 in order to 

improve the system resilience of the ICIs given in Section 4.1; then, the effectiveness of the three 

SADIM methods are compared. 

We consider first an initial configuration (the reference case) of the IVs in which all of them are 

assumed to take their mean values (see Table 1). Then, we modify these values according to the ranking 

position of the IVs given by each SADIM method in order to analyze the improvement on the resilience 

by mitigation, 𝑅𝑚 , resilience by recovery, 𝑅𝑟 , and total resilience, 𝑅𝑡 . The original level of an IV 

increases, e.g., in the case of the recovery rate, or reduces, e.g., in the case of the failure magnitude or 

response time, by 50% if it ranks first, by 40% if it ranks second, by 30% if it ranks third, by 20% if it 

ranks forth and by 10% if it ranks fifth.  

The values of the resilience measures of the reference case and improved values as guided by three 

SADIM methods are reported in Table 6. As expected, the resilience measure values, 𝑅𝑚, 𝑅𝑟 and 𝑅𝑡, 

increase by applying the resilience strategies identified by the SADIM methods and, in particular, the 

highest improvement (values in bold in Table 6) are given by SADIM 2 with respect to the resilience by 

mitigation and by SADIM 1 with respect to the resilience by recovery and total resilience. 

Notice that the percentage values adopted to increase the performance of the most important elements 

have been arbitrarily chosen only for illustration purposes. In real cases, the best strategy for mitigation 

and/or recovery should be identified for the different types of components. 

 



28 

 

TABLE 6 

Values of resilience measures (resilience by mitigation, 𝑅𝑚, resilience by recovery, 𝑅𝑟, and total 

resilience, 𝑅𝑡) under the initial condition (reference case) and the SADIM-improved conditions. 

 

 𝑅𝑚 𝑅𝑟 𝑅𝑟 

Initial conditions (reference case) 0.6735 0.7482 0.7343 

SADIM 1-improved conditions 0.7258 0.8418 0.8243 

SADIM 2-improved conditions 0.7733 0.7993 0.7962 

SADIM 3-improved conditions 0.6943 0.8363 0.8119 

 

 

In Figure 7, the evolution in time of the ICIs performance functions, under initial conditions and 

SADIM-improved conditions, is shown. These curves reflect the characteristics of the failure and 

recovery processes of the system performance. Due to different recovery start and end instants of the 

users, the recovery curves of the system performance are not smooth. The slope changes depend on the 

topological structure of the system, the coefficient values in the dynamic equations and, most 

importantly, the setting of the system parameters.  

 

 

 

 

Figure 7. Comparison of the evolution in time of the performance functions of the case study 

illustrated in Section 4.1 under the initial condition (reference case) and SADIM-improved conditions. 

 

It can be noticed that all the SADIM methods provide useful indications on the improvement of the 

system resilience of the considered ICI. In particular, the most significant improvement in the 

performance function is achieved by implementing the resilience strategy guided by the SADIM 1. 

Since SADIM 1 has, also, a relatively low computational cost, it turns out to be the best SADIM method 

for this application. 
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5 Conclusion 

In this work, we have developed sensitivity analysis-driven importance measure (SADIM) 

approaches to identify the most influential system parameters and most critical subsystems with respect 

to system resilience, within a control-based modelling framework. Three resilience measures have been 

considered to assess the system resilience of ICIs, i.e., 1) resilience by mitigation 𝑅𝑚, which represents 

the capacity of resistance of ICIs during the failure phase of the system, 2) resilience by recovery 𝑅𝑟, 

which measures the capacity of restoration of ICIs during the recovery phase, 3) total resilience 𝑅𝑡, 

which evaluates the overall resilience performance of ICIs during the failure and recovery phases. 

Due to the long simulation time needed to evaluate the dynamic model and the large number of 

iterations required by the SA, the computational cost of SADIM for large-scaled ICIs is very expensive. 

To address this issue, we have proposed two approaches and applied them to a case study of interest. 

The first one, i.e., SADIM 1, consists in employing fast-running ANN models to replace the long-

running dynamic model. The second approach, i.e., SADIM 2, aims at reducing the number of 

simulations required for SA. It adopts an ensemble-based method that aggregates three different SA 

indicators, which can be calculated by employing a smaller number of simulations. This approach uses 

the original, costly, dynamic model but reduces the number of simulations for SA.  

We have applied the proposed SADIM approaches (SADIM 1 and 2) and a given data estimation SA 

approach (SADIM 3) to a case study concerning a gas supply system and a power grid. The 

computational cost and the effectiveness of the SADIM methods have been compared: 

 With respect to the computational cost, both the proposed SADIM methods can largely reduce 

the computational burden of the conventional SA method. SADIM 1 is faster than SADIM 2, 

but slower than SADIM 3, due to the training of the ANN models. 

 With respect to effectiveness, the results obtained from SADIM 1 lead to a larger improvement 

of system resilience than those provided by SADIM 2 and SADIM 3. 

For the case study considered, SADIM 1, which integrates the used of ANN estimation in the 

standard process of SA, has turned out to be the best SADIM method. To generalize this finding to other 

systems, more ICIs should be analyzed and, in addition, the uncertainty introduced by the use of ANNs 

should be addressed. 

With the capability of the proposed SADIM approaches, one direction of future work is the 

optimization of the resilience improvement strategies for ICIs on the basis the results of SADIM. 
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