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Abstract 

Critical point machine failure in railway-signal systems can lead to fatal accidents. 

Hence, early identification of anomalies is vital in guaranteeing reliable and safe 

transportation. However, most of the existing early fault diagnosis methods can only 

estimate the degradation trend under a specific fault mode. How to analyze the 

diversified degradation conditions under multiple fault modes is still a key problem. 

Considering the diversity of fault modes, this study proposes an early fault diagnosis 
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method based on self-organizing feature map network and support vector machine, 

focusing on the use of non-fault data to simultaneously mine and accurately identify 

degradation states under different fault modes, to provide guidance for proactive 

machine maintenance. The experimental results obtained via application of this scheme 

to field data for railway point machines demonstrate that the proposed methodology 

can effectively mine and accurately identify degradation states with different machine 

characteristics. 

 

Keywords: Degradation state mining, degradation state identification, early fault 

diagnosis, railway point machine, self-organizing mapping, support vector machine 

 

1. Introduction 

Railway point machines are the critical electromechanical apparatus used in signal 

systems for changing the train directions by switching and locking turnouts. During a 

field investigation of one railway station in China, point machine operation faults were 

observed to account for 30% of all signal equipment failures. The average time required 

for point machine repair was approximately 23.4 min, which seriously affected the 

reliability and availability of railway operation. Many railway companies employ 

condition-monitoring systems for point machines to manage the measurement, 

centralization, and analysis of data collected from the sensors installed in field 

equipment to detect failures [1].	However, these systems only sound alarms when 

failure either has already occurred or is about to, which is too late for effective proactive 
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intervention [2]. Therefore, many early diagnostic techniques are employed to detect, 

locate, and identify potential abnormalities and faults to minimize performance 

degradation and avoid overall system damage and collapse [3]. Based on monitoring 

data, these methods can be used to capture hidden fault information through data 

analysis techniques for diagnosis and provide trade-offs in terms of complexity, cost, 

and accuracy [4–6]. Machine performance degradation is often considered to achieve 

early fault diagnosis, especially in some data-driven methods [7–11]. 

Considerable work for railway point machines has been published in the last 

decade to ensure that defects can be detected in advance. These techniques can be 

divided into statistical analysis [12–14], classification [15–17], and model-based 

methods [18–20]. Some early fault diagnosis studies have also been proposed regarding 

point machine performance degradation. Atamuradov et al. [21–23] performed a series 

of investigations on fault detection, diagnosis, and degradation assessment for point 

machine sliding chair failure. First, the effective time-domain statistical features of 

point machine sensing signals are selected based on the evaluation metrics. A fusion 

algorithm is then used to construct a generic health indicator for the point machine. 

Finally, different learning algorithms are used to analyze the indicator data to achieve 

degradation monitoring and early fault identification. Ardakani et al. [24] proposed a 

health assessment method to analyze degradation and diagnose abnormalities in 

advance. Principal component analysis (PCA) and the Hotelling T2 coefficient were 

used to select an energy-related feature set from point machine electrical signals to 

effectively evaluate the health state. Letot et al. [25] proposed a degradation trend 
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assessment model by utilizing the statistical features of active power signals for point 

machine reliability calculation and faulty behavior diagnosis. 

However, the abovementioned methods can only estimate the degradation trends 

and determine the degradation levels under a specific fault mode. How to analyze the 

diversified degradation conditions under different fault modes is still a key problem. 

Therefore, this paper proposes a new early fault diagnosis method based on self-

organizing feature map (SOM) network and support vector machine (SVM), focusing 

on the use of non-fault data to mine and identify degradation states under different fault 

modes, to provide guidance for proactive machine maintenance. The main 

contributions of this research can be summarized as follows: 

1) A feature selection scheme is proposed for effective signal feature processing. 

Discriminant- and correlation-based feature selections are integrated to obtain feature 

indicators that can effectively represent a machine’s health state. 

2) A SOM-based degradation state mining method is proposed for different degradation 

conditions. SOM is employed to automatically perform multiple clustering analysis on 

the non-fault feature set to simultaneously label the degradation states of a machine 

under different fault modes. 

3) A particle swarm optimization (PSO)-SVM-based classification model is proposed 

to accurately identify the different degradation states for early fault diagnosis. In this 

model, the SVM is optimized by PSO to build the classifier and realize optimized 

degradation state identification. 

4) The abovementioned methods were applied to the SIEMENS S700K point machine, 
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which is widely used for high-speed railway, to prove its effectiveness and applicability. 

 The rest of this paper is organized as follows. Section 2 explains the proposed 

methods. The case study on a real industry railway point machine is presented in 

Section 3. The observed experimental results are discussed in Section 4. Section 5 

summarizes the conclusions and the future work. 

2. Proposed methodology 

A machine usually goes through various degradation states, from initial 

deterioration to complete failure. Targeted maintenance can be implemented to prevent 

machine failure if the degradation state is identified in a timely manner. However, most 

of the current early fault diagnosis methods usually determine the degradation states 

under a specific fault mode [26]. In the actual situation, the machine has multiple fault 

modes, resulting in the diversity of the degradation. Therefore, for early fault diagnosis, 

the degradation trend and level under a specific fault mode should be horizontally 

estimated, and the degradation conditions under different fault modes should be 

vertically analyzed (Fig. 1). How to simultaneously mine the degradation states under 

different fault modes and accurately identify them is a key problem to be solved. 

 

Fig. 1. Diagram of the degradation analysis aspect. 
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To solve the above problem, a method based on SOM and SVM is proposed in this 

study for early fault diagnosis. This method consists of four steps, as shown in Fig. 2. 

(1) Data acquisition: The monitoring system is used to acquire various signal sample 

sets of the machine. (2) Feature processing: The non-fault data set is processed to obtain 

a low-dimensional feature set representing machine degradation. (3) State mining: 

Based on SOM, multiple clustering analysis of the non-fault feature set is conducted to 

mine degradation states under different fault modes simultaneously. (4) State 

identification: The classification model is built based on PSO-SVM to identify 

degradation states with different characteristics. 

 

Fig. 2. Framework of the proposed method. 

2.1 Feature processing for non-fault data 

Concise and effective feature indicators should be used to represent the 

degradation information of non-fault samples. In this section, a combined strategy with 

three main parts is proposed (i.e., feature extraction, selection, and dimensionality 

reduction) for feature processing of non-fault data. 

2.1.1 Feature extraction from time- and value-domain 

In this study, ten signal parameters, including the out-to-in value, maximum 

difference, mean value, root-mean-square difference, variance, sum of difference, 
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kurtosis, crest factor, form factor, and impulse factor, are extracted from different time 

phases as the statistical features; some of these parameters were used in [14,23,27]. ti,j 

(i = 1,···, P; j = 1,···, 10) is the jth statistical feature extracted from the ith time phase 

of a signal sample, and P is the number of time phases of the signal. However, for some 

degenerative and failure symptoms of the machine, the features are concentrated in 

specific value segments. If signal features are extracted only from the time domain, 

important features describing the machine state will be omitted. To solve this problem, 

we projected the signal curve into the value domain and analyzed the different value 

domains in segments. Eight parameters were extracted within each segment to represent 

statistical value-domain features that completely describe machine operating conditions: 

maximum time value, mean value, number of data points, maximum difference, median, 

maximum value, time median, and mode. vm,n (m = 1,···, S; n = 1,···, 8) is the nth 

statistical feature extracted from the mth value-domain segment of a signal sample, and 

S is the number of value-domain segments of the signal. A D-dimensional feature vector 

x can be extracted from the signal sample and expressed as 

x = (t1,1, ···, ti,j, ···, tP,10, v1,1, ···, vm,n, ···, vS,8),                (1) 

where D = 10P + 8S. 

2.1.2 Discriminant- and correlation-based feature selection 

The degradation state of a machine eventually shifts to a fault state as the runtime 

increases. Meanwhile, the differences between the degradation and fault features 

gradually diminish and eventually disappear. The fault features can, therefore, be 

considered indicators for measuring degradation. By extracting the statistical features 
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of the machine fault samples, a D-dimensional feature set can be obtained.	However, 

some features within such a set do not effectively represent machine fault state. 

Consequently, one must first select features from the set. Compared to the normal state, 

the fault state has some features that tend to deviate from their normal values, and the 

greater the deviation, the more obvious the discriminability of features corresponding 

to that fault. In this study, the features between machine fault and the normal state were 

distinguished based on the Fisher criterion [28], and the redundancy between features 

was measured based on the correlation coefficient.	By eliminating the irrelevant and 

redundant features of the fault states, the features indicating machine abnormalities 

were selected to provide the basis for feature processing of non-fault data. The steps of 

feature selection are as follows.  

(1) Calculate the intra- and inter-class variances of statistical features between the fault 

and normal states: 

                    (2) 

,                   (3) 

where  and  are the intra- and inter-class variances of the dth-dimensional 

feature, respectively;	  is the mean value of the dth-dimensional feature of the fault 

state;  is the mean value of the dth-dimensional feature of the normal state;	  

is the standard deviation of the dth-dimensional feature of the fault state; and  is 

the standard deviation of the dth-dimensional feature of the normal state. 

(2) Calculate the criterion between the fault and normal states: 

,                     (4) 

where J(d) denotes the criterion value of the dth-dimensional feature between the fault 
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and normal states. 

(3) For the obtained D criterion values, half of the maximum values are considered to 

be standard, and accordingly, features with criterion values larger than the 

corresponding standard are selected as effective features.  

(4) Calculate the correlation coefficient between the selected features of the fault state: 

,                    (5) 

where ρpq is the correlation coefficient between the pth- and qth-dimensional features 

of the fault state and  is the pth-dimensional feature value of the ith fault sample. 

(5) If the correlation coefficient between pairwise features exceeds 0.95, the feature 

with a higher criterion value is selected. Eventually, all of the remaining features 

translate into selected effective features. 

2.1.3 Feature dimensionality reduction based on KPCA 

Regarding the SOM and SVM models, the use of a high-dimensional dataset for 

learning would lead to overfitting problems, thereby affecting the recognition accuracy 

[29]. Hence, the feature set should be further reduced to an appropriate dimensionality. 

Kernel PCA (KPCA) is a dimensionality reduction method, and its basic principle 

involves nonlinearly mapping the input vector onto the high-dimensional feature space 

and using PCA to calculate the principal component (PC) of the data within this feature 

space [30].	 For high-dimensionality and non-linear characteristics of the non-fault 

feature set, KPCA was used in this study to extract PCs to reduce the dataset to low 

dimensionality and retain the original feature information to the maximum extent. 
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2.2 Degradation state mining based on SOM 

Different fault modes have different degradation conditions. Each degradation 

condition can be subdivided into several degradation states according to the degradation 

level. Therefore, for degradation state mining, an effective clustering method that 

cannot only discriminate the feature differences of the degradation state, but also group 

the degradation states with similar features should be employed to organize and 

represent degradation clusters. In this section, the SOM was used to cluster the non-

fault feature set to mine degradation states with different characteristics. 

The SOM is a self-organizing neural network consisting of input and competitive 

layers. These two neuron layers are fully connected by variable weights. Through an 

unsupervised learning mechanism, the SOM makes neurons within the competitive 

layer sensitive to the features of input vectors, demonstrating that neurons act as 

recognizers of input vectors [31]. After learning, the input data are divided into different 

regions of the competitive layer. The data features within the same region are similar, 

while those between separate regions are different; thus, data clustering can be realized.	

In machine diagnosis studies, SOM is used for anomaly detection [32,33] and clustering 

analysis [34,35] because of its topology-preserving property. 

A low-dimensional feature set Xnf = {xi | i = 1,···, M} can be obtained by performing 

feature processing on non-fault samples, where M denotes the number of samples. This 

low-dimensional feature set Xnf can then be further clustered by SOM to mine machine 

degradation states with different characteristics. The detailed steps of feature set 

clustering are as follows. 
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(1)	 The number of neurons within the input layer is set equal to the number of 

dimensions of the feature vector, and competitive-layer neurons are arranged in a 2D 

array with order (ss×ss). Xnf is then provided as input to the first clustering. After 

clustering, the label number of the competitive-layer neuron corresponding to each 

sample in Xnf is counted to obtain the clustering-category set clusA = {a1,i | i = 1,···, N}, 

where a1,i denotes the label number corresponding to the ith non-fault sample. 

(2) Competitive-layer neurons are arranged in a 2D array of order (ss+1)×(ss+1).	Xnf is 

provided as input for the second clustering, after which the clustering category is 

counted and the set clusB = {b1,i | i = 1,···, N} is obtained. 

(3)	Competitive-layer neurons are arranged in a 2D array of (ss+2)×(ss+2), and Xnf is 

provided as input for the third clustering, after which the clustering category is counted 

and the set clusC = {c1,i | i = 1,···, N} is obtained. 

(4) Sets clusA, clusB, and clusC are integrated to obtain the clustering sequence set Seq1 

= {(a1,i, b1,i, c1,i) | i = 1,···, N}, where (a1,i, b1,i, c1,i) denotes the sequence corresponding to 

the ith non-fault sample. 

By analyzing the neuron distribution within the competitive layer, samples are 

selected, merged, and removed to obtain the dataset consisting of degradation state 

samples only.	The steps for this mining strategy can be described as follows. 

(1) Count the labels of neurons within the ss×ss competitive layer, whose clustering 

sample number is not less than M/(ss×ss), and create the neuron label set nNum1. In 

accordance with first-dimensional data concerning Seq1, select samples correspond to 

the label nNum1 in Xnf. Next, create the dataset Sel1 = {xi
'  | i = 1,···, P}, along with the 

corresponding clustering sequence set Seq2 = {(a2,i, b2,i, c2,i) | i = 1,···, P}, by using selected 

samples, where P denotes the number of selected samples. 

(2) Follow step 1 for the (ss+1)×(ss+1) layer and proceed to build the label set nNum2, 

dataset Sel2 = {xi
''| i = 1,···, Q}, and corresponding clustering sequence set Seq3 = {(a3,i, b3,i, 
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c3,i) | i = 1,···, Q}, where Q denotes the number of selected samples. 

(3) Follow step 1 for the (ss+2)×(ss+2) layer and build the label set nNum3, dataset Sel3 

= {xi
'''| i = 1,···, R} and corresponding clustering sequence set Seq4 = {(a4,i, b4,i, c4,i) | i = 

1,···, R}, where R denotes the number of selected samples.  

(4) Based on the distance distribution of neurons within the (ss+2)×(ss+2) competitive 

layer, analyze the neighborhood of each neuron in nNum3. Merge the closest 

neighboring neurons with labels consistent with the number of neurons with the most 

clustering samples.	 By referring to the merged-neuron labels, modify the third-

dimensional data of Seq4 to update the corresponding clustering sequences of Sel3 

samples and obtain Seq5 = {(a5,i, b5,i, c5,i) | i = 1,···, R}. 

(5) Follow step 4 for the (ss+1)×(ss+1) layer and modify the second-dimensional Seq5 

data to update the corresponding clustering sequence of Sel3 samples and obtain Seq6 = 

{(a6,i, b6,i, c6,i) | i = 1,···, R}. 

(6) According to Seq6, sort samples within Sel3 according to their respective clustering 

states. By analyzing the sample within each state, find and remove normal-state samples. 

Finally, the degradation state dataset can be obtained.	Fig. 3 depicts the overall mining 

strategy workflow. 
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Fig. 3. Flowchart of mining strategy. 

2.3 Degradation state identification based on the PSO-SVM 

Because of the multiple types of degradation states, the number of samples 

corresponding to each degradation state is relatively small under the condition that the 

total number of degradation samples is constant. Therefore, the degradation state 

identifier should be built using a model with good classification effect for multi-class 

small samples. In this section, a PSO-SVM model is proposed to identify different 

degradation states. 

The SVM is a margin-based classifier that can perform classification for linear and 

nonlinear samples [17,36]. SVMs are used as classification tools in machine diagnosis 

research because of their high classification accuracy and good generalization ability, 

even with few samples [16,18,37]. The basic principle of SVM involves constructing 

an optimum hyperplane linearly separating two classes of samples with the maximum 

margin [38].	Let S = {(xi, yi) | xi ∈ RN, yi	∈ {-1, 1}, i=1,···, n} represent the training set, 

wherein xi denotes an input vector and yi refers to the label of xi. The optimum 

hyperplane function can be expressed as 

,                    (6) 

where αi represents a Lagrange multiplier and K(xi, xj) is the kernel function. In this 

study, the radial basis function (RBF) was used as the SVM kernel function. The RBF 

can be defined as follows: 

,                (7) 

where σ is a parameter that sets the kernel “spread.” 

In order to identify multiple degradation states, a multi-class SVM classifier is 
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applied. Multi-class SVM is mainly implemented by combining multiple binary SVMs. 

The “one-against-one” strategy was used in this study to build the SVM classifier [39]. 

Regarding the sample data of k classes, a set of k·(k−1)/2 binary SVMs was built. Each 

of these SVMs considered only two sample classes, and they classified and voted for 

the input sample, i.e., the sample belonging to the class with the most votes. 

Regarding these SVMs, the parameters C and σ describe impacts on the 

classification performance, where C is a penalty parameter used to control the degree 

of penalty associated with misclassified samples. Optimum parameters must be selected 

to improve the classification accuracy of the SVMs.	PSO is a population-based search 

method that can efficiently find the optimal or near-optimal solutions in search space.	

In this study, PSO was employed to select the best value for C and σ of SVM, because it 

has been demonstrated to be a powerful parametric optimization technique [40].  

The detailed process of the degradation state identification based on PSO-SVM is 

depicted in Fig. 4 and consists of the following three steps. (1) Data processing: 

Degradation state samples are categorized into training and test sets, on which feature 

processing is performed to obtain corresponding low-dimensional datasets tr and te, 

respectively. (2) Training: The SVMs are trained using tr, and the PSO algorithm is 

used to optimize the SVM parameters iteratively until the termination criterion is met.	

The process of PSO optimizing SVM parameters were described in [41,42]. Based on 

the “one-against-one” multi-class classification strategy, the classifier model is built 

using optimum parameter values thus obtained. (3) Testing: The te dataset was used to 

test the classification accuracy of the proposed model to prove the feasibility of 

employing this model for degradation state identification. 
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Fig. 4. Identification workflow based on PSO-SVM. 

3. Case study 

3.1 Point machine monitoring 

A centralized signaling monitoring system is an integrated platform for monitoring 

railway signal equipment. This system can monitor point machine operation according 

to the turnout relay condition.	Fig. 5 depicts the process through which a monitoring 

system acquires machine power data.	The switch-amount acquisition module obtains 

the machine start and end times by judging the state of the turnout relay 1DQJ. During 

this period, the Hall current sensor collects current data from the open-phase protector, 

while the output terminals of the Hall sensor are connected to the power collector. The 

power collector collects voltage data during each phase from the open-phase protector. 

In addition, the current and voltage sampling frequency is 25 Hz. After power data are 

obtained by performing calculations using current and voltage data, the power collector 

transmits power data to the communication front-end processor via the RS-485 bus and 

finally sends the data to the monitoring host through the switch.	
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Fig. 5. Flowchart of point machine monitoring. 

Fig. 6 presents the power signal acquired by the centralized signaling monitoring 

system. As the turnout power source, the changes in the point machine signal curve are 

related to the process of switching and locking the turnout. The power curve is divided 

into four phases according to the point machine operation characteristics: (1) a start-

release phase (0–1 s), (2) a switch phase (1–4 s), (3) a lock phase (4–5 s), and (4) an 

indication phase (≥5 s). Similar partitioning methods were used in [2,20,24]. 

 

Fig. 6. Normal power curve of an S700K point machine. 

3.2 Fault modes of S700K point machine 

Six fault modes of the S700K point machine were identified by investigating the 

actual working conditions of onsite equipment and reviewing maintenance log. Fig. 7 
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depicts the power curves corresponding to these fault modes. Their corresponding 

characteristics can be summarized in the time-domain phase (Table 1). The four time-

domain phases are represented as phases 1 to 4 for convenience. 

 

Fig. 7. Power curves corresponding to six fault modes.   

Table 1 

Descriptions of fault characteristics within time-domain phases 

Fault Characteristics 

F1 
In phase 1, the observed power peak is rather large, and the overall power is larger than that 

under normal operating conditions 

F2 In phase 2, the degree of power fluctuations is large 

F3 
In phase 2, the power rises sharply and remains constant until it reaches the time limit; 

subsequently, it drops to zero  

F4 
In phase 3, the power rises sharply and fluctuates abnormally until it reaches the time limit; 

subsequently, it drops directly to zero  

F5 In phase 4, the power is approximately twice that under normal conditions 

F6 In the later part of phase 4, the power drops and remains at zero 

The six power curves were subsequently projected onto the value domain.	Fig. 8 
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demonstrates that significant differences exist between the power distributions 

corresponding to the above-mentioned fault modes.	The power peak of F1 is rather 

large—approximately 4.2 kW—and was caused by the high point machine power 

required to release the turnout during phase 1.	The power distribution of F2 is relatively 

discrete due to large power fluctuations during switching operation of the turnout 

performed by the point machine during phase 2.	F3 and F4 possess more power points 

due to the long point machine idling time during phases 2 and 3, respectively. In 

addition, the power values corresponding to these two faults are mostly between 0.5 

kW and 1 kW, indicating that the point machine operating power is rather high in these 

two states.	The power corresponding to F5 has a specific distribution between 0 kW 

and 0.5 kW due to abnormal power changes in the slow-release region during phase 4. 

F6 exhibits a greater “zero value” of power due to all of the power values within the 

slow-release region being zero during phase 4. 

 

Fig. 8. Value-domain projections of six fault modes. 

3.3 Point machine non-fault power data 

Fig. 9 depicts the first PC distributions of 600 power samples. As can be seen, the 

first PC values of the non-fault samples are between 0 and 0.08, while those of the fault 
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samples are between 0.08 and 0.37.	The non-fault samples include both the normal- 

and latent-state samples. The attribute values of the normal samples are mostly zero, 

while a few slightly fluctuate around zero. The attribute values of the latent samples are 

mainly between 0.02 and 0.08.	One can observe that the attribute value distributions 

corresponding to the normal and latent states differ significantly, demonstrating that 

these state samples can be distinguished and used for degradation state mining.  

 

Fig. 9. First PC distributions of fault and non-fault samples. 

4. Experimental results 

In this study, a 52-day power dataset obtained from the S700K point machines 

stationed at the turnouts—No. 1 (J1, J2, J3), No. 2 (J1, J2, J3), No. 3 (J1), and No. 4 

(J1)—was acquired by centralized signaling monitoring system of the Chenzhou West 

station. The acquired dataset served as experimental data to verify the proposed method.	

This dataset contained 20 normal samples, 1,000 non-fault samples, and 120 fault-state 

samples.	MATLAB 2017a was used to program the simulation, which was implemented 

on a laptop equipped with an Intel Core i7-5600U HQ processor (4 MB cache, up to 

3.20 GHz) and 8 GB memory. 
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4.1 Power data feature processing results 

Twenty normal samples (N) and 20 samples corresponding to each fault state were 

selected to form a standard dataset containing 140 samples. By performing feature 

processing on this dataset, the effective features and settings of the KPCA parameters 

were obtained. Further, with reference to the abovementioned process, feature 

processing of the non-fault dataset was also performed.  

By extracting the statistical parameters of the standard dataset from the time and 

value domains, a 64-dimensional feature set was obtained.	Subsequently, the criterion 

values and correlation coefficients of this feature set were calculated and compared, 

and effective features—t1,3, t2,1, t2,2, t2,8, t4,3, t4,5, t4,8, t4,9, v1,2, v1,7, and v3,3—were selected. 

These features were used to form a new 11-dimensional feature set, which was	

normalized and utilized to obtain a distribution of the attribute values of the samples 

within each feature dimension, as depicted in Fig. 10.	These 11 features were effectively 

used to distinguish between the different sample-data states. Furthermore, KPCA was 

applied to reduce the dimensionality of the feature set. 

 

Fig. 10. Distributions of normal and fault samples within the effective feature dimensions. 

The RBF was also set as the KPCA kernel function with a radial basis parameter 
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σ = 2. The number of PCs varies between 3 and 9.	By comparing the seven-dimensional 

reduction results, it can be seen that when the number of PCs is set to 6 (i.e., the dataset 

is reduced to six dimensions), the best distinction among different states is achieved 

and more than 99% of the original information can be retained.	The distributions of 

samples in different PCs are depicted in Fig. 11.	Feature processing was performed on 

the non-fault dataset consisting of 1,000 samples, as per the abovementioned procedure, 

and a six-dimensional feature set was obtained.	Fig. 12 depicts the distributions of non-

fault samples within different PCs. As shown, the aforementioned sample distribution 

differs in all six dimensions. 

 

Fig. 11. Distributions of normal and fault samples in six PCs. 

 

 

Fig. 12. Distributions of non-fault samples in six PCs. 
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4.2 Degradation mining results 

The competitive-layer neurons of SOM were arranged in arrays with dimensions 

of 4×4, 5×5, and 6×6. The connection weights were randomly initialized, and the 

neuron neighborhood was observed to shrink to the shape of a hexagonal grid. The 

number of iterations was set to 1000.	The loss function was represented as a mean 

square error.	After setting the SOM parameters, cluster analysis was performed on the 

non-fault feature set.	The computational times required for SOM with competitive-

layer sizes of 4×4, 5×5, and 6×6 were 309 s, 312 s, and 317 s, respectively.	The sample 

distributions after clustering are depicted in Fig. 13,	wherein the hexagonal lattice 

represents neurons within the competitive layer,	whereas the number within the lattice 

represents the sample size clustered by neurons.	 Fig. 14 presents the distance 

distribution of neurons within the competitive layer after clustering, wherein the 

connection band between adjacent neurons was used to measure the distances.	A lighter 

connection band color represents a shorter distance, whereas a darker color denotes a 

longer distance. 

 

Fig. 13. Distributions of clustering samples within competitive-layer neurons.
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Fig. 14. Distributions of neuron distance within competitive layers.  

By selecting, merging, and removing the SOM clustering results, six degradation 

states—D1–D6—were obtained. Table 2 lists the clustering sequences and sample sizes 

corresponding to each state.	 The total number of degradation samples is 386, 

accounting for 38.6% of the non-fault dataset.	Most of the samples within the dataset 

were not divided into degradation states.	These undivided samples include normal- and 

intermediate-state samples.	During transition from the normal to the degradation state, 

a point machine experiences several intermediate states.	The difference between the 

intermediate and normal states is fuzzy, and compared to a degradation state, an 

intermediate state does not typically reflect machine degradation.	Consequently, these 

intermediate states are not divided into degradation states.	  

Table 2 

Statistical information concerning six degradation states 

Clustering sequence D1 D2 D3 D4 D5 D6 

SOM 4×4 1 6 8 9 3 15 

SOM 5×5 21 20 17 10 24 11 

SOM 6×6 7 20 16 29 31 1 

Sample number 73 58 71 69 55 60 

Fig. 15 depicts power curves corresponding to the six degradation states.	The 

power values for D1, D2, and D3 are evidently normally distributed in phases 1, 3, and 

4, respectively.	However, in phase 2, compared to N, the power values and fluctuation 

degrees of the three states increase successively.	The characteristics of D1, D2, and D3 

are similar to those of F2, which	 could be because point machines are subject to 

abnormal resistances during the tongue rail switching process. The power values of D4 
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and D5 are normally distributed in phases 2 and 4, respectively. However, during phase 

1, the observed power peaks of the two states are lower than that of N. Moreover, during 

phase 3, compared to N, the power and fluctuation degree of D4 and D5 increase 

successively;	these characteristics are consistent with those of F4. This behavior may 

result from the detector rob moving abnormally during the process of locking the point 

machine tongue rail. The overall power value of the D6 state is lower than that of N, 

and its degradation characteristics are not consistent with the existing six fault modes.	

Referring to the field maintenance log, this abnormal state is caused by imperfect 

debugging of the point machine before operation or after maintenance. 

 

Fig. 15. Power curves corresponding to six degradation states. 

4.3 Degradation identification results 

With regard to D1–D6, a degradation dataset consisting of 330 samples was 

created, with 55 samples in each state.	Each state sample in this dataset was randomly 

divided in a 4:1 ratio to create tr and te sets. The PSO-SVM parameters were set as 

follows: the inertia weights wmin and wmax were set to 0.4 and 0.9, respectively; the 

number of particles was 20; the maximum iteration number was set to 200; and the 

acceleration constants c1 and c2 were set to 1.5 and 1.7, respectively. The search ranges 

of SVM parameters C and σ were set to [0, 100] and [0, 1000], respectively, and the 
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two parameters were randomly initialized. The 5-fold cross validation was used to 

evaluate the performances of the SVM parameters. The computational time required to 

train and test the PSO-SVM model using tr and te was about 54.5 s.	 	

Five simulation experiments were performed, and the average classification 

accuracy of the model was considered to be the experimental result. Fig. 16a depicts 

the fitness curve of PSO searching for the optimum parameter values in one of the 

experiments, wherein the best fitness is 100% and the average fitness is approximately 

96%.	The optimum SVM parameter values (C, σ) obtained in this experiment were 

(4.894, 20.954).	 Fig. 16b depicts the classification results of the abovementioned 

experiment. During this experiment, the classifier mistakenly identified two D6 

samples as D2 and D3 samples. Because the degradation characteristics of D6 are not 

obvious and its power distributions during phases 1, 2, and 4 are similar to those of D2 

and D3, the model failed to identify D6 samples accurately. 

 

Fig. 16. PSO-SVM training and testing. (a) PSO fitness curve; (b) classification results. 

The experimental results obtained using different classification methods, 

including back propagation (BP) neural network, decision tree, and naïve Bayes 

methods, are listed in Table 3. The average classification accuracy of the proposed 

model is evidently superior to those of these methods.	 The average classification 

accuracy of the PSO-SVM model without KPCA is low, proving the necessity of further 
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dimensionality reduction in terms of the selected feature data. Unlike the PCA-based 

method, the proposed method uses KPCA to extract nonlinear power information from 

signal data and retains more original data for learning and classification.	Although the 

classification accuracy of genetic algorithm (GA) parameter optimization is lower than 

that of PSO, it can yield higher classification results than the other methods.	Unlike the 

method without a heuristic algorithm, optimum parameters are used to build the SVM 

model in the proposed method, thereby improving its classification performance.	  

Table 3 

Experimental results obtained using different methods 

State 
KPCA+ 

PSO-SVM 

KPCA+ 

BP 

network 

KPCA+ 

Decision 

tree 

KPCA+ 

Naïve 

Bayes 

KPCA+ 

GA-

SVM 

PSO- 

SVM 

PCA+ 

PSO-

SVM 

KPCA+ 

SVM 

D1 (%) 100 90.91 100 81.82 100 90.91 90.91 95.46 

D2 (%) 100 100 90.91 72.73 95.46 100 100 100 

D3 (%) 100 90.91 63.67 72.73 90.91 90.91 100 100 

D4 (%) 100 100 100 86.37 100 81.82 81.82 86.37 

D5 (%) 100 100 90.91 86.37 100 100 100 100 

D6 (%) 86.37 72.73 81.82 86.37 81.82 72.73 81.82 72.73 

Acc (%) 97.73 92.43 87.89 81.07 94.70 89.40 92.42 92.43 

5. Conclusions 

This study proposed an early fault diagnosis method for the railway point machine 

that focuses on the use of non-fault data to mine and identify degradation states under 

different fault modes. A concise feature set indicating machine degradation was 

obtained by using the proposed combination strategy to process the non-fault data of 

the machine. A SOM-based degradation state mining method was proposed for different 
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degradation conditions. Moreover, a PSO-SVM-based classification model was 

proposed to accurately identify different degradation states. The feasibility and validity 

of the proposed method were verified by examining the field point machine power 

signals. The experimental results showed that this method can be used to mine different 

degradation level states under multiple fault modes and that the classifier can identify 

these states with 97.73% accuracy. 

In the future, this proposed method will also be used for other machine types to 

further extend its application domains. 
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