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Abstract – System reliability optimization is a living problem, with solutions methodologies that 

have evolved with the advancements of mathematics, development of new engineering technology, 

and changes in management perspectives. In this paper, we consider the different types of system 

reliability optimization problems, including as examples, the redundancy allocation problem 

(RAP), the reliability allocation problem and the reliability-redundancy allocation problem 

(RRAP), and provide a flow of discussion and analysis on the evolution of the approaches for their 

solutions. We consider the development and advancement in the fields of operations research and 

optimization theory, which have allowed the formalization and continuous improvement of the 

methods and techniques to address reliability design problems of even very complex systems in 

different technological domains. Technological advances have naturally brought changes of 

perspectives, in response to the needs, interests and priorities of the practical engineering world. 

The flow is organized in a structure of successive “Eras of Evolution,” namely the Era of 

Mathematical Programming, the Era of Pragmatism, the Era of Active Reliability Improvement. 

Insights, challenges and opportunities are highlighted.  

1. Introduction 

“Success is walking from failure to failure with no loss of enthusiasm” – Winston Churchill 

Reliability engineering is a formal engineering discipline, founded on mathematical 

principles, particularly of probability theory and statistics, for systematically and rigorously 

analyzing functional problems in components and systems with the aim to produce a reliable 

design. As an engineering discipline, reliability aims at analyzing and evaluating the ability of 

products and services to perform the functions that they are intended to provide by design.  

While technology improves and advances, the complexity of modern engineered systems 

also increases. At the same time, consumers’ expectations for high functionality, high performance 

and high reliability increase, leading to challenges and opportunities. Then, although system 

reliability optimization problems have been studied, analyzed, dissected and reanalyzed, the 



continuous rise of new challenging problems demonstrates that this general research area will 

never be devoid of interesting problems to be solved. 

On one side, the development and advancement in the fields of operations research and 

optimization theory have allowed the formalization and continuous improvement of the methods 

and techniques to address reliability design problems of even very complex systems in different 

technological domains. On another side, the evolution of technology, the advancement of research 

ideas and theories, have naturally brought changes of perspectives, in response to the needs, 

interests and priorities of the developing practical engineering world. So, the development and 

application of formal optimization methods to the practical goal of achieving maximum reliability 

under various physical and economic constraints, has remained an ongoing topic of scientific 

development.  

In formal terms, the task of optimization involves formally conceptualizing the decision 

variables, the constraints and the single or multiple objective functions that describe the 

performance of the engineering design problem, and searching for the combination of values of 

the decision variables that achieve the desired goals with respect to the objective functions. 

Whether expressed explicitly in mathematical terms or not, every engineering design problem has 

design objectives which should be maximized or minimized or designed to achieve some 

acceptable requirement. When there is a single predominant objective that can be expressed with 

a series of explicit mathematical equations, then the problem can potentially be solved using 

mathematical programming methods or useful heuristics. Researchers working within the broader 

mathematical programming community are continually developing new methods and algorithms 

to solve broader classes of problems, larger and more difficult problems, and to do so more 

efficiently than before.  

1.1 Eras of Research Evolution 

 The research in complex system reliability optimization has evolved as a continuum of 

ideas and techniques. This evolution can be loosely and chronologically classified into the 

following three eras: 

• Era of Mathematical Programming 

• Era of Pragmatism 

• Era of Active Reliability Improvement 



The era of mathematical programming is preceded by the original development of 

innovative groundbreaking methods, such as dynamic programming and the simplex algorithm (or 

linear programming), for which the reliability optimization problem has served as a very 

interesting and practical vehicle to demonstrate the methods and apply them. Yet, practicing 

reliability analysts recognized the limitations of these methods in practical applications, mostly 

because only problems that could be formulated to strictly meet the assumptions required by the 

methods could be solved, and this is rarely the case in practice. Furthermore, only small and/or 

unrealistic problems could be solved, because of computation limitations at the time.  

Driven by the desire to apply reliability optimization in practice, the era of pragmatism 

evolved and became increasingly important, because of the pressing needs to consider and 

integrate into the problem some critical issues that could not be readily accommodated by the 

rigorous mathematical methods. For example, actual engineering systems problems could fall 

outside the assumptions required by the methods. Analysts were interested in complex forms of 

redundancy perhaps mixing functionally equivalent, but different components, whose failure 

behavior may not be simply described as a transition from one functioning state to a failure state, 

but rather as a process of transition across multiple states. To address a broader range of problems, 

compromises could be accepted, thus expanding the practical usefulness and applicability of the 

optimization methods. 

In these previous eras, reliability optimization had been mostly considered as singular, 

static analyses to be conducted and implemented to yield the desired design reliability of the 

system. Under this view, common assumptions were made on the existence of populations of 

homogeneous components and systems, sharing the same failure behavior but with failure 

occurrences being independent from one another. Furthermore, the implied assumption was that 

the conditions defined or considered when conducting the analysis are static and remain unchanged 

throughout the horizon of the analysis (the often-called mission time).  

When changes occur during the system lifetime, then the results of the analysis are simply 

no longer valid and applicable. We are currently experiencing another industrial revolution, 

particularly driven by the increase in information sharing, data availability and computational 

capabilities. In particular, with the proliferation of sensors, environmental stresses, usage stresses, 

failure data, etc., can be collected and processed at regular time intervals, and the advancements 



in information knowledge that these can bring on the states of the systems, offer new opportunities 

of development for the analysis and assessment of reliability. The era of active reliability 

improvement is, then, ongoing and it is visionary in recognizing that components and system 

conditions change throughout their lives, and system reliability optimization methods, to be 

practically useful, need to dynamically respond to these changes. 

Within each of the three macro-eras discussed above, further sub-classification can be 

introduced, in a specific and unique way. In the era of mathematical programming, further sub-

classification can be done based on the specific mathematical algorithms developed to solve the 

reliability design problem. For the era of pragmatism, sub-classification can refer to which 

practical consideration in the design problem, which previously could not be analyzed, was now 

readily being addressed by the available optimization models. Within the era of active reliability 

improvement, sub-classification can be based with reference to the available data and new models 

for real reliability improvement. 

2. Reliability Optimization Problems 

System reliability design problems have multiple, and often competing objectives. 

However, there are some universal ones, including reliability (to be maximized) and cost (to be 

minimized). Often, the approach taken is to follow a prioritization of the objectives by the decision-

makers, select the most important objective as the objective function and constrain the other 

objectives within acceptable limits.  

For each formulation to be studied or solved, system reliability optimization problems must 

have three elements: decision variables, constraints and an objective function or functions. The 

decision variables are those variables that can be changed or decisions that can be made to improve 

performance, with respect to the objective function or functions. Examples of decision variables 

include component type (with its intrinsic characteristic of failure behavior and reliability), 

redundancy configuration in the system and others. Constraints are mathematical expressions of 

practical limitations, such as monetary budget or acceptable reliability, which limit the choice of 

decision variables in relation to their feasibility of respecting the constraints. The objective 

function measures the performance of the system for given values of the decision variables, and 

thus, enables the decision on the optimal combination of variables values for the optimal solution. 

The objective function can often be the system reliability to be maximized, or the system cost to 



be minimized. 

Different forms exist of the system reliability optimization problem. Three typical ones are 

the redundancy allocation problem (RAP), the reliability allocation problem and the reliability-

redundancy allocation problem (RRAP). The solution methods for each problem are obviously 

different, because of the assumptions and structure of the problem. A thorough review of system 

reliability optimization is given by Kuo et al [1-3].  

2.1 Redundancy Allocation Problem  

The most widely studied reliability optimization problem is the RAP. For many systems 

composed of discrete component types, with fixed cost, reliability and weight, in mathematical 

terms system design becomes a combinatorial optimization problem. For providing the demanded 

system functions, there may often be alternative component types available, at different cost, 

reliability, weight and other properties. The practical problem is to select the optimal combination 

of components types (decision variables) to collectively meet reliability, weight, etc. (constraints) 

at a minimum cost (objective function), or alternatively, to maximize reliability (objective 

function) while achieving given minimum (or maximum) values of other system properties 

(constraints). 

For the mathematical formulation of this problem, we can consider that there are mi discrete 

component type choices available for each subsystem (i=1, ..., s), which the system is formed of. 

Figure 1 shows a typical example of a system with a number s of k-out-of-n logic subsystems. If k 

is equal to 1 for each subsystem, then this is a simple series-parallel system. For each subsystem, 

ki components must be selected from the mi available choices (e.g., assuming an unlimited amount 

available for each of the components). The optimal decision is driven by the possibility of placing 

additional components in parallel in any of the subsystems and/or adding levels of redundancy (> 

ki) of lower reliability components as an alternative to using more reliable (and expensive) ones. 

In other words, there is a large number of possible solutions to test, even for relatively small 

problems (small number of subsystems, small number of components, small number of 

components types, etc.). 

The RAP for a series-parallel system, as the one shown in Figure 1, can be formulated as 

to maximize reliability or minimize cost, under various constraints. Often the RAP is solved for 

series-parallel systems, but other system structures have been considered, as well as more 



advanced forms of series-parallel systems, including those with several failure modes, phase 

mission types, systems with uncovered failures and systems with imperfect fault coverage.  

RAP has proven to be quite difficult to solve. Chern [4] showed that the problem is NP-

hard and many different optimization approaches have been used to determine optimal or “very 

good” (i.e., near-optimal) solutions, including (1) dynamic programming, (2) integer 

programming, (3) mixed integer and nonlinear programming, or (4) evolutionary algorithm. 

2.2 Reliability Allocation Problem 

The reliability allocation problem and RAP are fundamentally different problems. For the 

reliability allocation problem, the system structure is fixed and the component reliability values 

are continuous decision variables. For this problem, there is no general restriction on the system 

structure. Several examples of a general system are depicted in Figure 2. Component cost and other 

parameters are defined as mathematical functions of the component reliability. Increasing the 

component reliability (and thus, the system reliability) increases the cost, weight and other factors, 

which may be included as part of the constraints or the objective function. Here, also, the goal of 

the optimization is typically to maximize system reliability or minimize system cost, and since the 

decision variables are continuous, different forms of non-linear programming can be used to 

determine the optimal solutions. To assure that the constraints are satisfied, Lagrangian multipliers 

are often introduced as part of the objective function.  

            

            Figure 1: Series-Parallel System               Figure 2: General System Structure 

2.3 Reliability-Redundancy Allocation Problem (RRAP) 

The reliability-redundancy allocation problem is the most general problem formulation. 

The system is composed of one or more “subsystems,” i.e., collections of logically connected sets 

of components. Each subsystem has xi components with reliability of ri as decision variables. The 

problem is then to optimally allocate redundancy and reliability to the components of each 



subsystem with an objective to maximize the overall system reliability. The system and subsystems 

can be in any arrangement, as depicted in Figure 2. Again, typically the objective of the 

optimization is to maximize system reliability or minimize system cost. 

RAP is often considered for series-parallel systems, but other system structures can be 

considered as well. The reliability allocation problem and RRAP has been applied to different 

system structures, including common structures (series, parallel, etc.), but also consecutively 

connected systems, sliding window systems, flow transmission systems, common bus systems and 

others. 

2.4 Component Assignment and Sequencing Problems 

Two other related system reliability problems are assignment or sequencing of components 

within a system. This is particularly interesting and important for systems with standby 

redundancy, where the components are activated as needed in accordance with a defined sequence. 

For assignment problems, there is typically a defined system structure, but the available 

components are assigned to specific locations with the system. Sequencing problems are solved 

for optimization for systems with consecutively connected systems and/or standby components 

with cold or warm redundancy required a defined activation sequence. 

The problem of assignment of components to positions within a system to maximize 

reliability was originally presented by Derman et al [5, 6]. An important early research effort [7] 

defined optimal assignments for different system structures. The related problem is sequencing of 

redundant components. More recently, sequencing of standby redundant components has been 

considered by researchers to maximize system reliability [8, 9]. 

2.5 Other Optimization Problems 

There have been many other related system reliability optimization problems as well. There 

have been extensions of the original problems, as well as related problems including spares 

provisioning, optimization of series-parallel topology, optimal load distribution, optimal mission 

abort policy, test plan allocation, preventive maintenance optimization and others [2].  

3. Era of Mathematical Programming 

Methods initially developed to solve complex system reliability optimization problems can 

be referred to as belonging to the era of mathematical programming. The emphasis was on applying 



advanced mathematics to obtain mathematically provable optimal solutions. The priority was on 

solving problems to optimality, but in doing so, often the structure and size of the problems were 

limited to be able to apply the rigorous mathematical model, the problems being solved in the end 

rarely being realistic or indicative of actual design problems. Assumptions were often introduced 

for mathematical convenience, and problems that did not meet those conditions were avoided. 

However, these original methods are very important and influential, and they have served as the 

foundation for much of the research and development work in quantitative reliability engineering 

that followed.  

Solution of complex system optimization problems was possible because of advancements 

in operations research theory and the development of new algorithms. A key mathematical 

challenge was to find an efficient way to at least approximate solutions to problems otherwise 

unsolvable with classic analytical methods. Numerical and mathematical approaches were 

introduced to successfully solve such problems, with the turning point having been the realization 

of the first computer, which provided the possibility to perform sets of operations for handling 

large numbers of data in a time much shorter than previously possible.  

The newborn field of computer science sparked the mind of several mathematicians that 

tried to formulate methods to use computers to help solving practical problems involving high 

computational efforts. The field of mathematical optimization was then born. Several pioneers 

from the first half of the 20th century contributed to develop formulations and algorithms to be 

implemented in computing machines to solve difficult optimization problems, including from the 

fathers of linear programming, Leonid Kantorovich and George Dantzig, Richard Bellman, 

originator of dynamic programming, to the founders of evolutionary algorithms, such as Lawrence 

Fogel, John Holland, Ingo Rechenberg and Hans-Paul Schwefel. Their ideas were the milestones 

from which other variants of the methods developed until today. 

When mathematical programming methods associated with the field of operations research 

were being developed and formalized, but still in their infancy, researchers were searching for 

interesting applications. Maximization of system reliability was considered an attractive 

application. Indeed, it is a difficult and challenging problem, yet practical and useful to 

demonstrate the utility of new mathematical programming algorithms. Typical formulations of the 

problem are challenging, with a highly nonlinear objective function and often integer decision 



variables.  

Dynamic programming was applied to the system reliability problem as one of the very 

first applications explored. Considering the initial formulations of RAP, dynamic programming 

could almost be directly applied to efficiently obtain optimal solutions. The problem was that it 

was difficult to extend it to solve more realistic or actual design problems. Linear programming, 

or the simplex algorithm, is a very powerful advancement, which allowed for very large linear 

problems to be solved. However, system reliability is a highly nonlinear objective function, so 

researchers had to be creative to exploit the power of the simplex algorithm to solve reliability 

problems. RRAP is nonlinear with both continuous and integer decision variables creating another 

very challenging problem, that was often solved using some variation of nonlinear programming. 

3.1 Dynamic Programming 

Dynamic programming was originated in 1954 by Richard Bellman [10], and system 

reliability optimization was among the first problems studied. The aim was to treat mathematical 

problems arising from the study of multi-stage decision processes. The key advancement, as 

compared to previous methods, relies on the fact that when analyzing these problems, not all the 

possible sequences of the present and following stages are needed, i.e., it is possible, instead, to 

state general conditions to determine for each stage the most suitable decision according to the 

current state only, whereas classical approaches gathered information about all the sequences, 

making the calculation cumbersome and unpractical [10]. 

A problem solvable by dynamic programming can be performed as a system, described by 

a set of quantities, the state parameters, that undergo a state variation caused at a certain time t by 

a decision made by the user. The solution aims at taking an initial decision for guiding the future 

ones so that it is possible to maximize a given objective function of the state parameters. In many 

cases the number of parameters considered to make the decision is very large, especially when 

considering stochastic processes in which decisions determine a distribution of outcome states. In 

these cases, the approach allows reducing the dimension of the problem by focusing on the current 

time. To perform the dynamic programming optimization, the state parameters and the sequence 

of decisions to analyze, i.e., a policy, are needed. The optimal policy is, then, the one that 

determines the decision required at each time with respect to the current state of the system. 



Bellman [11] and Bellman and Dreyfuss [12, 13]  demonstrated that an optimal solution to 

the RAP could be found using dynamic programming. In their problem, there was only one 

component choice for each subsystem, and the objective was to maximize reliability with a single 

cost constraint. For each subsystem, the problem was to identify the optimal levels of redundancy. 

A well-known disadvantage of dynamic programming formulations is the difficulty of efficiently 

solving problems with multiple constraints. 

 Fyffe, Hines and Lee [14] used a dynamic programming approach to solve a more difficult 

design problem. Their problem involved a system with 14 subsystems and cost and weight 

constraints. For each subsystem in the Fyffe formulation, there are three or four different 

component choices each with different reliability, cost and weight. However, several of these 

component choices are dominated by other competing choices. Similar to Bellman, only 1-out-of-

n redundancy was considered. To accommodate multiple constraints within a dynamic 

programming formulation, they used a Lagrangian multiplier for the weight constraint within the 

objective function.   

 Instead of using Lagrangian multipliers, Nakagawa and Miyazaki [15] used a surrogate 

constraint combining the cost and weight constraints into one. They then solved a series of problem 

iterations with different surrogate multipliers, with a heuristic to successively update the surrogate 

multipliers. Stopping criteria was provided to identify cases when their algorithm would not lead 

to an optimal solution. The algorithm was demonstrated by solving 33 variations of the Fyffe 

problem with different weight constraints. Of the 33 problems, they found optimal solutions to 30 

of the problems. Otherwise, the final solution was not feasible (although there are feasible 

solutions to the problem).  

3.2 Linear Programming/Integer Programming 

Linear programming (LP) and Integer Programming (IP) are powerful methods that allow 

finding the maximum or minimum of a linear function describing the performance under 

assessment, which is called the objective function. A standard mathematical definition is the 

following: 

max {cx; Ax ≤ b, x ≥ 0}or min {cx; Ax ≤ b, x ≥ 0} 

For this formulation y = cx is the objective function to be maximized or minimized, x is 



the vector of non-negative variables to be found, b and c are vectors of known coefficients, and A 

is a matrix of known coefficients that when multiplied by x have to satisfy the constraints expressed 

by the vector of coefficients b. The problem is defined within a convex polyhedron-shaped feasible 

region, intersection of finitely half-spaces represented by linear equalities/inequalities. 

This optimization framework was initially used by the Soviet economist Leonid 

Kantorovich who was trying to organize the actions of soldiers to decrease expedition costs and 

increase enemy losses. At the same time another economist, T.C. Koopmans was working on the 

applicability of linear programming to solve classical problems. Their work was recognized by the 

Nobel prize in economics in 1975. Following that, mathematician George Dantzig developed an 

LP methodology to solve optimization problems, providing a formal proof of the solution [16]. 

One of the most important achievements was the reduction of the possible solutions, and therefore, 

the advantage of the method in terms of computing power needed. 

If the objective is to maximize reliability or minimize cost given multiple nonlinear but 

separable constraints, many variations of the problem can be transformed into an equivalent integer 

programming problem using 0-1 decision variables. This was originally demonstrated by Ghare 

and Taylor [17] who used a branch-and-bound approach to solve many randomly generated RAPs 

with 30 subsystems with 15 constraints, and 99 subsystems with 10 constraints. Ghare and Taylor 

assumed that there was only one component choice for each subsystem and redundancy was active 

always 1-out-of-n redundancy. 

Bulfin and Liu [18]  also used an IP approach to solve the RAP. They developed one 

heuristic and two exact algorithms to be applied depending on the problem structure. They 

formulated the problem as a knapsack problem and used a surrogate constraints approach, similar 

to Nakagawa and Miyazaki [15]. The surrogate multipliers were approximated as the optimal 

Lagrangian multipliers as found by subgradient optimization. Bulfin and Liu formulated the Fyffe 

problem and its variations as integer programs and solved the 33 problems previously investigated 

by Nakagawa and Miyazaki, and other examples as well. They also considered only subsystems 

with 1-out-of-n redundancy. Coit and Liu [19] extended their aproach to k-out-of-n redundancy 

subsystems if no mixing of component types is allowed within the subsystem parallel structure. 

Other examples of IP solutions to the redundancy allocation problem were presented by 

Misra and Sharma [20], Gen, Ida, Tsujimura and Kim [21], and Gen, Ida and Lee [22]. Misra and 



Sharma presented a very fast and useful algorithm to solve integer programming problems 

formulated like those of Ghare and Taylor [17]. Gen, Ida, Tsujimura and Kim and Gen, Ida and 

Lee formulated the problem as a multi-objective decision making problem with distinct goals for 

reliability, cost and weight. 

For other system reliability applications, LP has been proved useful in the context of 

structural system reliability by Corotis & Nafday [23]. They used LP to identify the most critical 

failure mode for a structural system. More recent papers [24] demonstrate that LP is particularly 

useful in structural system reliability analysis. The LP bounds can be applied for any type of system 

and for different component probabilities. These bounds are the narrowest possible bounds that 

one can be obtained for a system, for any specified information forthe component failure 

probabilities.  

The main drawback of using LP or IP is that the size of the problem to be solved, and its 

computational cost, increases exponentially with the number of components, questioning its 

efficiency when it comes to realistic, complex systems. An approach has been proposed to 

overcome this issue and extend the applicability of LP. Decomposing the entire system into 

subsystems based on failure modes can be applied to identify component state probabilities and 

joint probabilities of the states of a small number of components. It can also provide bounds for 

the failure probability of large systems. This is particularly useful when other methods are not 

applicable. This approach has been presented by Chang & Mori [25]. The idea is the development 

of a relaxed LP (RLP) bounds method to reduce the number of design variables using the universal 

generating function (UGF) [26].  

RLP bounds method can be applied to a single series or parallel system, but it is not 

applicable to a general system that consists of both series subsystems and parallel subsystems. For 

this reason, an additional assumption can be made to obtain the Strategic Relaxed Linear 

Programming (SRLP). After decomposing the system according to different failure modes, each 

critical failure mode is also considered as a system (or subsystem) itself. The bounds on the system 

failure probability can be computed by the RLP bounds method if it is a series or parallel system, 

and the bounds on its joint failure probability can also be computed by the RLP bounds method. 

The bounds estimated by the RLP bounds method are, then, used as constraints in solving the LP 

problem for estimating the failure probability of the entire system.  



3.3 Nonlinear Programming 

Nonlinear programming (NLP) is an optimization method defined by the same main 

principles of linear programming, with the difference that the objective function and/or its 

constraints, and therefore the feasible region of the problem, are defined with at least one nonlinear 

equation. The addition of nonlinear equations make the optimization problem much more difficult 

to be solved, for example: 

• In a nonlinear function it is hard to assess whether a maximum is local or global, and unlike 

linear functions where a max/min location is restricted to the borders of the feasible region, 

for a nonlinear function it can be in the interior of the feasible region. 

• If the objective or any constraints are non-convex, the problem may have multiple 

disconnected feasible regions and multiple locally optimal points within such regions. 

• The numerical method chosen to get to the solution may cause two different starting points 

to lead to two different solutions. 

• It is difficult to ensure that the constraints applied to the problem meet the requirements of 

the feasible region. 

• A tolerance region for the solution has to be considered with a proper uncertainty. 

NLP solvers generally attempt to solve the problem by computing gradient values at 

various trial solutions, and moving in the direction of the negative gradient (when minimizing, 

positive gradient when maximizing). They usually also exploit second derivative information to 

follow the curvature as well as the direction of the problem functions. To solve constrained 

problems, NLP solvers must take into account feasibility and the direction and curvature of the 

constraints as well as the objective.  

Mixed integer and nonlinear programming have been effectively used to solve the 

redundancy allocation problem. A review of nonlinear programming optimization methods is 

provided by Floudas [27]. Considering reliability optimization, important research contributions 

were provided by Tillman, Hwang and Kuo [28, 29]. In these problems, component reliability is a 

continuous decision variable and component cost is expressed as a function of reliability and other 

parameters.   

3.4 Evolutionary Algorithms 

Evolutionary algorithms (EA) are a group of optimization methods that perform their task 

with a built-in ability to evolve. EA have the three following common features: 



1. Population-based, i.e., they handle a group of solutions, the population, manipulated in 

different ways to optimize the problem; 

2. Fitness-oriented, meaning that EAs favor individuals (a solution belonging to a population) 

which are fitter than others according to established criteria. Each individual has a gene 

representation which is its code together with a performance evaluation, i.e., its fitness value. 

Choosing fitter individuals drives the optimization and the convergence of the algorithm; 

3. Variation-driven: In order to simulate evolution steps, individuals are subject to random 

variations, necessary to explore the problem’s solution space. 

The basic intent of EAs is to implement the Darwinian concept of survival of the fittest, 

applying it to functions to optimize. Through each generation, the solutions considered weak in 

terms of the specific criteria adopted for the optimization face extinction, whereas the best ones 

combine to produce new individuals that potentially can improve the convergence to an optimal 

solution. 

The first attempts to mimic evolution by simulating genetic processes date back to Fraser 

[30] and Bremermann [31]. The main contributor, however, is John Holland, who in 1975 

published “Adaptation in Natural and Artificial Systems [32]” in which he introduced the main 

fundamental concepts of genetic algorithms (GA). In GA, each individual of the population has 

two characteristics: a chromosome and a fitness value representing its quality. The chromosome is 

composed of genes; in the original formulation each gene was considered as a bit, therefore either 

1 or 0, and the chromosome was a string of zeros and ones. In the following years, several 

researchers developed new forms of GAs.  

A chromosome can be viewed as a sorted string or vector. The evolutionary process starts 

when all fitness values of the initial population have been assigned. Afterwards, the selection 

process begins, in which some individuals are selected in order to be included in the mating pool. 

The fittest individuals are more likely to be selected and spread their properties to the offsprings: 

individuals in the mating pool are combined to produce new hybrids whose fitnesses are evaluated 

to decide whether or not to pass onto the next population, replacing other individuals. It is common 

practice to keep a constant number of individuals inside a population at each stage.  

GA have not been applied practically for system reliability problems until the 1990s, when 

researchers such as Coit [33, 34] implemented it in a combinatorial reliability design problem. The 

evolutionary optimization proved very efficient in terms of cost-effectiveness of the selection of 

the parts and allocation redundancies for system reliability. Several authors then tackled 



optimization problems by GA. For example, Painton and Campbell [35] presented a model based 

on such methods, highlighting again their robustness and capability of finding the optimum over a 

high dimensional nonlinear space in a considerably shorter time than the required one for 

enumeration. In order to improve the reliability of a personal computer, they identified the main 

components and their failure modes in order to determine some possible improvement levels.  

With regards to applications, reliability allocation to minimize total operating costs, subject 

to an overall plant safety goal, was presented by Yang et al. [36]. System optimization was used 

to enhance the design, operation and safety of new and/or existing nuclear power plants. They 

determined the reliability characteristics of reactor systems, subsystems, major components and 

plant procedures in accordance with a set of top-level performance goals. The cost for improving 

and/or degrading the reliability of the system was also included in the reliability allocation process 

as a multi-objective problem formulation. GA was demonstrated to determine effective solutions 

for a typical pressurized water reactor.  

Konak et al. [37] presented a generic guideline regarding the implementation of GA for 

multi-objective reliability optimization, proposing a list of techniques and highlighting the 

advantages and difficulties of each of them. The reliable network design problem has been studied 

using multi-objective GA. Kumar et al. [38] presented a multi-objective GA to optimize 

telecommunication networks while simultaneously improving network performance and design 

costs given a system reliability constraint. Kim and Gen [39] studied bicriteria spanning tree 

networks considering the objectives of cost and reliability, while Marseguerra et al. [40] 

determined optimal surveillance test intervals using a multi-objective GA to improve reliability 

and availability.  

Problems studied by Martorell et al. [41, 42] involved the selection of technical 

specifications and maintenance activities at nuclear power plants to increase reliability, availability 

and maintainability for safety-related equipment. They also considered the optimal allocation of 

more reliable equipment, testing and maintenance activities to assure high reliability, availability 

and maintainability levels for safety-related systems. Additional limited resources (e.g., budget 

and workforce) were required, to form another a multi-objective problem. Solutions were obtained 

by using both single-objective GA and multi-objective GA, to solve the problem of testing and 

maintenance optimization with the objective functions of unavailability and cost. 



Various other meta-heuristics have been used for reliability optimization. For example, Ant 

Colony Optimization (ACO) is a population-based, general search technique for the solution of 

difficult combinatorial problems [43]. The method is inspired by the pheromone trail laying 

behavior of real ant colonies. In ACO, artificial ants probabilistically build solutions by taking into 

account pheromone trails, which change dynamically at run-time, to reflect the agents acquired 

search experience and heuristic information on the problem instance. ACO algorithms have been 

applied for the reliability optimization of series-parallel systems [44], also including quantity 

discounts on the redundant components [45], and network optimization by embedding a Cellular 

Automata approach combined with Monte Carlo simulation for network availability assessment 

[46], within a multi-objective ACO search engine [47]. ACO has also been applied in hybrid form 

with Simulated Annealing (SA), called ACO SA, for the design of communication networks [48], 

where the design problem is to find the optimal network topology for which the total cost is a 

minimum and the all-terminal reliability is not less than a given level of reliability.  

SA is another type of meta-heuristics introduced by Kirkpatrick, et al [49] and Cerny [50] 

as a general probabilistic method for solving combinatorial optimization problems. SA searches 

the global optimal solution avoiding entrapment in poor local optima by allowing a 

(probabilistically) occasional uphill move to worse solutions. A SA algorithm for communication 

network reliability optimization has been proposed in [51], which selects the optimal set of links 

that maximizes the overall reliability of the network subject to a cost restriction, given the 

allowable node-link incidences, the link costs and the link reliabilities. The algorithm employs a 

variation of the SA approach coupled with a hierarchical strategy to achieve the global optimum. 

SA has also been applied to search the optimal solution of system reliability-redundancy allocation 

problems [52] also considering nonlinear resource constraints [53]. Different SA strategies have 

been applied to solve multi-objective system reliability optimization problems [54].  

Particle Swarm Optimization (PSO) is another algorithm conceptually based on the social 

behavior of biological organisms that move in groups, such as birds and fishes [55]. The basic 

element of PSO is a particle, which can fly throughout the search space toward an optimum by 

using its own information and that provided by other particles within its neighborhood. As in GA, 

the performance of a particle is determined by its fitness that is assessed by calculating the 

objective functions of the problem to be solved. Then, PSO has certainly some similarities to 

evolutionary algorithms such as GAs, but it also incorporates a cooperative approach. Indeed, all 



individuals (particles) which are allowed to survive change their positions over time and one 

particle’s successful adaptation is shared and reflected in the performance of its neighbors. In PSO, 

a particle’s neighborhood is the subset of particles with which it is able to communicate. Originally 

developed for the optimization of continuous unconstrained functions, PSO did not attract much 

attention from the reliability community, because most reliability optimization problems are of 

discrete nature and have constraints. However, it has been shown that properly adapted PSO can 

be an effective tool for solving some discrete constrained reliability optimization problems [56]. 

PSO has, then, been applied to solve reliability optimization and redundancy allocation problems 

of complex systems [57].  

Several optimization meta-heuristics have been designed for various optimization 

applications in reliability engineering. As no meta-heuristic is so versatile to always outperform 

the other meta-heuristics in all kinds of reliability optimization problems, developing new, good 

optimization approaches can be very helpful in some specific applications and benefit practitioners 

providing more options. Overall, some preferences in practice is given to the use of GAs, as they 

are able to solve both integer reliability problems and mixed-integer reliability problems. 

Furthermore, their applicability is not limited to series-parallel systems. In many reliability 

optimization problems, the optimal solutions found by GAs have turned out to be superior to those 

of the other meta-heuristic methods for both integer reliability problems (in which component 

reliabilities are given and redundancy allocation is to be decided) and mixed- integer reliability 

problems (in which both the component reliabilities and redundancy allocation are to be decided 

simultaneously). Therefore, GAs are very competitive and attractive meta-heuristic methods, 

especially appropriate for design of nonstandard series-parallel systems. In addition, the multiple 

solutions found by the GA sometimes vary significantly in the component reliabilities and/or 

redundancy allocation for systems. This offers the design engineer a variety of options from which 

to choose with negligible differences in the system reliability.  

4. Era of Pragmatism 

After exhausting much of the inventory of reliability optimization problems that could be 

solved to optimality by mathematically rigorous methods, researchers entered into an era of 

pragmatism. The driver for this was the need to expand the types of problems to treat, considering 

more complex systems and more realistic reliability behaviors of the components, without 



necessarily being able to mathematically prove the optimality of the solutions (although this 

remains highly desirable). 

Original problem formulations that were solved to optimality often adhered to some 

common assumptions, although not always, including (i) active redundancy, (ii) perfect switching 

of redundant components, (iii) limitations on mixing functionally equivalent components within a 

parallel structure, (iv) binary behavior of components and systems, and others. These assumptions 

simplified the problems and optimal solutions could be found, but artificially constraining the 

problem spaces far from real conditions. Therefore, the usefulness of these methods was limited, 

and there was a need to analyze systems with more realistic behaviors, including multi-state 

systems, uncertain systems, realistic forms of redundancy etc. 

For the more realistic and complex problems, the assumptions or model forms required for 

mathematical programming algorithms could generally not be satisfied. At the same time, more 

advanced computers and computer processing provided for exhaustive forms of heuristic search. 

GA and other forms of meta-heuristics were now used predominantly. 

4.1 Multi-state Systems 

For components and systems used in practice, often a binary state description (functioning 

or failed) may not be a proper representation of the reliability behavior, because the component 

and system reliability performance has a range of different levels (Barlow & Wu [58], Hudson & 

Kapur [59]). However, evaluation of multi-state system (MSS) reliability is more difficult, and 

potentially mathematically cumbersome. 

Levitin et al [60], and Levitin & Lisnianski [61] presented pioneering and influential 

research models to optimize system design for multi-state systems. Levitin et al [60] determined 

an optimal system structure, and Levitin & Lisnianski [61] optimized imperfect preventive 

maintenance intervals. They used a universal generating function (UGF) approach to evaluate 

multi-state reliability and a GA to search the solution space to determine the best solution, although 

not guaranteed to be the optimal solution. UGF is a convenient function based on a z-transform 

that is useful to systematically and efficiently compute multi-state reliability. 

Levitin and his colleagues continued to extend their innovative work to analyze additional 

applications of multi-state systems. The first formulation of joint structure and maintenance 



optimization problem for multi-state systems was presented in Levitin & Lisnianski [62], and the 

optimization approach was extended to systems with common cause failures in Levitin [63]. Later, 

Levitin & Xing [64] analyzed systems with propagating failures. Each of these research efforts 

represented fundamental advancements. System reliability optimization could, then, be applied to 

an entirely new class of systems design problems. 

In recent years multi-state models for system reliability assessment have become 

increasingly popular. In particular, significant research efforts have been devoted to the solution 

of RAPs for series-parallel multi-state systems (MSSPS) [3, 65-67], which was first introduced in 

[68]. Series-parallel structures are typically considered because they are quite common in practice. 

Due to the difficulty of the problem, meta-heuristics are often used to solve MSSPS RAP, even 

though they can become time-consuming, especially on large systems.  

On the other hand, theoretical analysis of meta-heuristics for MSSPS RAP has been 

generally lacking. Exact/approximated algorithms or guidance for meta-heuristics design have not 

yet been proposed in the MSSPS RAP literature, while it is important because the application of 

RAP to multi-state models often requires exhaustive computational resourses. Indeed, the 

difficulty of solving MSSPS RAP is not only due to the well-known problems of MSS reliability 

evaluation, but also to the discrete, probabilistic and nonlinear nature of RAP problems. 

Another form of a system where the components exhibit multiple states is when component 

failure time distributions or state probabilities and replaced with a stochastic degradation process. 

This problem can be particularly challenging when the individual component degradation 

processes are dependent or have interactions. Song et al [69] determined optimal replacement 

intervals and inspection intervals for systems with dependent failure processes. Bian and Gebraeel 

[70] developed a prognostics model for a multi-component system with degradation interactions. 

4.2 Uncertainty 

The optimization of system reliability relies on a model to provide a representation of the 

system failure behavior. The model is built on a number of hypotheses on the types of distributions 

which the stochastic failure processes of the components obey. The values of the parameters of 

these distributions need to be estimated, and there is always some level of estimation uncertainty. 

There is intrinsic uncertainty and incomplete knowledge of the system behavior. Uncertainty can 

be model or structural uncertainty, which exists on the hypotheses of the model, or parameter 



uncertainty, which exists on the values of its parameters.  

In the literature, a number of aspects/factors/causes of uncertainty have been identified, as 

summarized by Armacost and Pet-Edwards [71], Zimmermann [72]: 

▪ Lack of information or knowledge: Lack of information, knowledge and/or data is the main 

source of uncertainty. This type of uncertainty can be reduced by collecting more information 

and data. 

• Approximation: Any model involves some degree of approximation, which is necessary when 

there is insufficient information to describe exhaustively the phenomenon of interest or when 

it is desirable to simplify the analysis due to computational constraints or other reasons. The 

approximation can either be explicit or implicit. 

▪ Abundance of information or knowledge: People are incapable of assimilating many pieces of 

data and information simultaneously. The analyst usually focuses on those parameters and 

those pieces of data and information that are considered to be more important, while neglecting 

the others. This type of uncertainty is related to biases in subjective probability assignments 

(see Kahneman and Tversky [73] and Aven [74]). 

▪ Conflicting nature of pieces of information/data: When there is conflicting data, increasing the 

amount of available information and data would not decrease the uncertainty. More data may 

just increase the conflict among different pieces of information and data. Some information are 

affected by errors creating the conflict, although the analyst cannot identify them, or otherwise, 

the model used by the analyst is poor.  

▪ Measurement errors: The measurement of a physical quantity, such as temperature, weight, 

length, is always affected by the precision of the measurement capability.  

▪ Linguistic ambiguity: An expert may express that something is big, but the meaning of “big” 

is ambiguous, and can be interpreted in different ways. 

▪ Subjectivity of analyst judgments: There can be different interpretations of the same 

information and data, depending on cultural background and competence of the analyst. 

Uncertainty analysis involves identifying and studying the sources of uncertainty and 

propagating the effects onto the output of the model. Uncertainty analysis determines the 



uncertainty in the model output that results from uncertainty in the model inputs (Helton et al. 

[75]). In the practice of reliability engineering and quantitative risk analysis, it is common to 

distinguish between aleatory and epistemic uncertainty (Apostolakis [76], Helton and Oberkampf, 

[77]). Aleatory uncertainty refers to phenomena occurring randomly, so probabilistic modeling is 

appropriate to describe such occurrences. Epistemic uncertainty involves quantifying the degree 

of belief of the analysts on how well it represents the actual system. It is typically expressed as 

subjective probabilities of the parameters of the probability models. It can be reduced by gathering 

information and data to improve the knowledge on the system behavior. 

For system reliability optimization, uncertainty must be properly accounted for. It is often 

important to consider the uncertainty in the system reliability estimation so that risky solutions 

with unsatisfactorily high reliability estimation uncertainty can be avoided. System designers and 

users are generally risk-averse. Decision makers would generally prefer the design of a system 

whose reliability is estimated with large confidence, as assured by the low uncertainty of its 

estimation. Thus, maximization of the system reliability and minimization of its estimation 

uncertainty is an important formulation, that should be emphasized. 

System reliability optimization research originally did not consider the uncertainty in the 

reliability estimation, although Rubinstein et. al. [78] is an early example to a model to maximize 

the expectation of a series-parallel system reliability estimate with component uncertainty. 

However, maximization of the expectation of the reliability estimate may not be adequate, if it is 

important to avoid system designs with unacceptably high uncertainty. It is therefore desirable to 

use a multiple-objective optimization algorithm, which explicitly considers the component 

uncertainty. 

In Marseguerra et al. [79], a multi-objective GA is developed to select optimal network 

designs that balance the dual objectives of high system reliability and low uncertainty in its 

estimation. Monte Carlo simulation is used to evaluate the objective function and Pareto optimality 

is introduced to handle the multiple preference criteria. The decision variables are the numbers of 

components, xij, of a given type j to be allocated in the various sections (node pairs & links) i of a 

network system, i = 1, 2,…, s, and j = 1, 2, …, mi. The network is designed to maximize the 

expectation of the network reliability and minimize the variance of the estimate (by maximizing 

the negative variance). Introducing cost and weight constraints, the multi-objective optimization 



problem may be formulated as follows: 

Problem P  
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This is an appropriate formulation for a risk-averse decision maker, as opposed to most 

optimization algorithms that require or assume risk-neutrality. Many decision makers may prefer 

a risk-averse solution, with a marginally lower expected value of reliability compared to a solution 

with a higher expected value, but with unacceptable uncetainty. Epistemic uncertainty has also 

been accounted for in MSS optimization for solving RAP, including by interval and fuzzy multi-

state models [67, 80-82].  

4.3 Different Types of Redundancy  

The original formulations of the system reliability optimization problems assumed that all 

redundancy was active redundancy. This is a convenient assumption because the failure time of a 

parallel subsystem of components is the maximum of individual component failure times, and the 

reliability, or probability of survival for some mission time, can be expressed using standard 

probability principles that are independent of any failure time distribution assumptions. However, 

many actual subsystem design problems, use a variety of active, cold, warm or hot standby, often 

within the same design, and therefore the original formulations and solution methods were not 

practical or applicable for many actual problems. 

System designs with active redundancy have fully activated components that can continue 

to provide needed design functions in the advent of failure of a primary component, until all 

redundant components have failed as well. Cold standby redundancy involves the use of non-

activated components that can be switched-on in response to failure of a primary component. Often 

systems are designed with both types of redundancy within different parts of the system, and there 

are examples where the redundancy type is also a design variable. Cold standby redundancy 

requires switches to detect failure and activate redundant units. However, the switches can also 

fail and must be considered in the optimization model. It is assumed that components in cold-

standby do not failure, while components in warm standby can fail, but at a lower rate those 



comparable active or hot standby components. Components in hot standby still require a switching 

mechanism, but fail at the same rate as active components.  

A solution methodology was developed to determine optimal design configurations for 

nonrepairable series-parallel systems with cold-standby redundancy by Coit [83], who considered 

a components with non-constant component hazard functions and imperfect switching. There were 

multiple component choices available for each subsystem and component failure times are 

distributed according to an Erlang distribution. Optimal solutions are determined using IP with 0-

1 decision variables.   

There are other engineering system design projects the choice of redundancy type becomes 

an additional design variable. System design optimization was demonstrated in Coit [84] to 

maximize reliability when either active or cold-standby redundancy can be selectively chosen for 

individual subsystems. Formulation of the problem allowing a choice of redundancy strategies is 

more realistic and practical. Optimal solutions to the problem are found using IP considering 

imperfect switching of standby redundant components [84]. The optimal system design is 

distinctly different from the corresponding design obtained with only active or only cold standby 

redundancy. The same problem was later solved using a GA [85]. Most recent research on systems 

with imperfect switches has been done by Kim [8] and Levitin et al [86].  

The problem with a choice of redundancy strategies has been extended in several original 

ways including a mixed strategy [87] combining both active and cold-standby components within 

the same subsystem. Other recent meaningful system reliability optimization research considering 

mixed component redundancy have provided important models for more varied and practical 

applications [88-90]. There have also been multiple objective formulations to the problem with 

different redundancy types [91, 92]. 

More recently, other different redundancy strategies or types of problems have been 

considering including the standby element sequencing problem and the combined sequencing and 

inspection/checkpointing/allocation policy optimization for different types of standby (hot, cold, 

warm, mixed). Some research efforts combining system structure optimization with optimal 

standby component sequencing are included in [8, 9, 93, 94]. 



5. Era of Active Reliability Improvement 

 There are currently some very promising on-going research activities that can be 

considered collectively as an era of active reliability improvement. System reliability optimization 

is not a static model, but it is being conducted continuously in response to new data being collected 

on failures, component and system degradation, environmental stresses and usage histories. As an 

integral part of the optimization process, system performance can be optimized and improved 

dynamically as new data is collected and analyzed to provide a better understanding of usage 

conditions and failure behavior, or to compensate for changing conditions. Modern sensor and 

communications technologies facilitate the collection and transmission of data so that the optimal 

system design and maintenance plans can be continually enhanced. 

Standard assumptions for most system reliability optimization models have been that 

component failure times form a homogeneous population, and that the failure time distributions, 

or reliability for a fixed time, are static or stationary. In practice, both assumptions are at best 

approximations of actual conditions. Although a population of components may form a 

homogeneous population, their corresponding failure times are influenced by specific 

environmental stresses and user requirements/stresses that can vary appreciably for specific sub-

populations of users or applications. Also, there can be systemic trends in stresses, that can result 

in shifting failure time distributions over time. In these cases, there is not actually a homogeneous 

population of identically distributed failure times, and therefore, most optimization models cannot 

accommodate these realities 

The era of mathematical programming resulted in entirely new insights on optimizing 

system design, and demonstrated how advanced mathematics can be used to solve this problem. 

The era of pragmatism has the potential to extend the more theoretical models or develop new ones 

to address actual conditions of fielded systems. However, in both of these eras, the optimization 

results were a final result. The solution to these difficult optimization problems was intended to be 

performed once, perhaps with associated sensitivity analyses. Of course, as new data was collected, 

the analysis could be repeated, but the optimization process did not directly integrate changing 

conditions. In the era of active reliability improvement, the changing conditions and data analyses 

are an integral part of the model. 

5.1 Dynamic System Reliability Models Responding to New Data 



Dynamic optimization of system reliability has the potential to achieve responsive system 

designs, which are highly reliable with changing or diverse conditions. To achieve the highest level 

of reliability and minimum cost, engineering designs and maintenance plans must address 

changing conditions or new data that provides better estimates of model coefficients or parameters. 

To accomplish this, the optimization must be dynamic. The model is solved over-and-over or 

continually as part of the optimization in response to new data/conditions/etc. as the system is 

operated. 

Yildirim et al [95, 96] present two comprehensive models that involve integrating sensor-

based degradation modeling and remaining life distributions with classic mathematical 

programming specifically mixed integer programs. The resulting model optimizes predictive 

maintenance decisions for a complex system to minimize cost. The application being solved is the 

unit-commitment problem, a well-studied optimization problem, pertaining to power generation 

and transmission. Yildirim [97] considers opportunistic maintenance scheduling again within an 

integrated framework that combines mixed integer programming and sensor-based degradation 

models. 

Hao et al [98] addresses dynamic optimization of workload assignment to actively control 

the degradation and failure time for multiple-units system. Components are degrading and failing, 

but the rate of degradation is a function of workload assignment. Multiple units are arranged in 

parallel, and several identical machines may need to operate together to simultaneously produce 

products to meet the high production demand. This parallel configuration is designed with 

redundancy to compensate for unexpected events. As data is collected, there is Bayesian updating 

of degradation model parameters and re-optimization of workloads. 

Recent developments by Li et al [99] have proposed providing industrial assets with a 

degree of agency, in order to enable real time prognostics and optimization of the asset's operation 

conditions. They consider the feasibility of improving system-level performance in industrial 

systems by integrating social networks into the IoT (Internet of Things) concept. 

Bascifti et al [100] considers a complex system of buses, generators and transmission lines. 

The model considers the scenarios where unexpected failures happen based on the updated 

remaining life distributions. The modeling framework in this case is a stochastic optimization 

model with chance constraints that leverages sensor-based remaining life predictions. 



5.2 System Reliability Optimization Customized for Specific Subsets of Users 

Data analytics can also be exploited such that the optimal system design can reflect 

differences within a population. There can be regional differences or fundamental differences 

within the user population, and by observing and quantifying specific usage conditions and failure 

patterns, an optimal design can simultaneously correspond to a collection of diverse users or 

conditions. A failure time distribution can be considered as a function of usage and environmental 

stresses, and specific reliability values can then naturally vary to reflect these differences. 

Ramanan et al [101] studies an advanced distributed optimization problem. There are 

several interesting aspects and challenges to this problem. The first relates to the computational 

challenges associated with large scale decentralized optimization and the second relates to the 

underlying high-performance computing architecture that is would be suitable for such 

decentralized systems. Advanced data processing of large data sets within subnetworks (local 

utility companies) is required. 

Bei et al. [102] presents a model to fully investigate the integrated redundancy allocation 

and maintenance planning problem with the presence of uncertain future usage stresses. 

Component failure time distributions are expressed as a function of environmental and usage 

stresses. A component system design, with component choices and redundancy levels is selected 

by the optimization model, but specific preventive maintenance intervals are selected for different 

usage and environmental stress vectors. The problem is formulated as a two-stage stochastic 

optimization problem with discrete scenarios defined for different usage and environmental 

conditions. Zhu et al [103] extends this model by considering uncertain aperiodic changing 

stresses. 

6. Future challenges in system reliability optimization 

The safe and productive performance of industrial systems depends on optimal designs that 

use equipment in a reliable way, and on testing and maintenance activities that assure the required 

high level of reliability, availability and maintainability of the equipment. This is done through the 

efficient assignment of resources that are usually limited. A number of challenges arise in relation 

to the modern complex systems reliability optimization: 

• Integration and response to continual streams of data proving new and updated information. 



• Accounting for both aleatory and epistemic uncertainties within the decision-making 

framework of system reliability optimization 

• Cooperative optimization of multi-agent systems, with individual objectives to be optimized 

within an overall system optimization 

• Integrated optimization of reliability design, maintenance, spare parts inventory and logistics 

management 

• Dynamic optimization of evolving systems under changing conditions 

7. Conclusions 

In this paper, we have provided an organized lookout on the evolution of the subject of 

complex system reliability optimization, which is at the heart of reliability engineering. We have 

presented how the development of solutions to such problem, and their application, have evolved 

as a continuum of ideas and techniques, which we have chronologically organized into the three 

eras of Mathematical Programming, Pragmatism, Active Reliability Improvement. 

In this flow of development and advancement, we have highlighted the joint pull force 

coming from the fields of operations research and optimization theory, and from the evolution of 

technology. Their combination has led to the advancement of research ideas and theories, brought 

new perspectives from the engineering world, and resulted in the development and continuous 

improvement of methods and techniques to address reliability optimization problems of 

increasingly complex systems. 

The underlying message that emerges from this is that system reliability optimization is an 

ongoing topic of scientific development and will always be so. The research is actively pulled by 

the advancements in mathematics, operations research and optimization theory, and in response, 

researchers will continually develop new methods and algorithms to solve, more efficiently than 

before, broader classes of problems, and larger and more difficult problems. At the same time, the 

research is pushed by the changes in technology, and in the engineering and social worlds, 

practitioners will continually demand for new developments to cope with the practical challenges 

encountered on the field.  

In conclusion, today we are treating problems that involve more complex systems and more 

realistic reliability behaviors of the components, including multi-state, uncertain behaviors, and 

we are starting to address them dynamically, as new data is collected and analyzed to provide a 



better understanding of usage conditions and failure behavior, or to compensate for changing 

conditions, so that the optimal system design and maintenance plans can be continually enhanced 

thanks to the collection and transmission of data by modern sensor and communications 

technologies. Yet, always expect new opportunities and challenges arising, to find efficient ways 

of solutions to new problems or problems previously unsolvable.  
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