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Abstract   

This paper presents an algorithm for optimal redundancy and repair teams allocation with 

respect to minimum system cost and a system availability constraint. Four scenarios are 

considered for the failures occurring in the subsystems of the system: independence, linear 

dependence, weak dependence, and strong dependence. An adaptive cuckoo optimization 

algorithm (AA-COA) is developed for solving the nonlinear integer optimization problem of 

allocation. A series-parallel system with six subsystems is considered as a case study for 

demonstration purposes. The results obtained highlight the good performance of the 

developed algorithm. 
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Notations  

As system availability. 

A0 system availability constraint value. 

Ai availability of subsystem i. 

m number of subsystems in the system. 
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N maximum number of allowable components in each subsystem.  

ni number of components in subsystem i. 

ri number of repair teams for subsystem i. 

r =(r1, r2,…, rm), vector of repair teams for the system. 

n =(n1, n2,…, nm), vector of redundancy allocated in the system. 

i inherent failure rate of the component in subsystem i. 

i repair rate of the component in subsystem i. 

Cs system cost. 

c
iC  unit cost of components in subsystem i. 

  
r
iC

 
unit cost of repair teams in subsystem i. 

 j number of working components in subsystem i. 

1. Introduction  

Dependability of modern systems is optimized at the design stage, in order to satisfy the 

customer requirements [1]. The dependability design optimization of a system considers all 

five concepts building up dependability, i.e., reliability, availability, maintainability, safety, 

and cost (RAMS+C) [2]. The main focus, then, depends on the target of the designer and the 

design problem is formulated as an optimization problem. Evolutionary optimization methods 

have been shown to provide very good results in solving RAMS+C optimization problems. In 

[3], a particle-based simplified swarm optimization (PSSO) has been implemented to 

maximize the system reliability. In [4], a novel genetic algorithm has been developed for the 

optimal redundancy allocation problem in multi-state systems. The objective was to maximize 

the system availability under the cost constraint. A penalty guided stochastic fractal search 

(PSFS) has been proposed in [5] to maximize the system reliability or minimize the system 

cost subject to a system reliability constraint. Various evolutionary optimization methods 

have been applied in [6,7] to solve single objective system reliability optimization problems. 
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Some authors developed genetic algorithms for optimizing multiple targets of RAMS+C [2,8–

11]. In [12], a new adaptive particle swarm optimization has been developed for system 

reliability-redundancy allocation, considering reliability, cost, volume and weight within a 

multi-objective problem solved by using the weighted-sum method. The series-parallel 

connection is one of the most used system configurations in industry. The optimization of 

such a system has been investigated considering various issues [13–17]. In [13], the Pareto 

front for system reliability and cost has been found using harmony search and particle swarm 

optimization. The cold-standby strategy has been considered in [14] and the problem has been 

solved using a penalty-guided fractal search algorithm. In [15], optimization models of 

selective maintenance strategies for multi-state cases have been proposed. The authors used a 

genetic algorithm to solve the problems. A new multi-objective redundancy allocation 

strategy considering different types of redundant components have been proposed in [16]. The 

system cost and availability under failure dependencies has been investigated in [17] using a 

genetic algorithm. Availability is the relevant performance indicator for repairable systems 

[18,19] and failure dependencies can impact the system availability [17,20–25]. 

The aim of the present work is to propose an adaptive cuckoo optimization algorithm  

(AA-COA) for minimizing system cost subject to a system availability constraint. Four 

scenarios are considered for the system availability constraint, i.e., independence, weak 

dependence, linear dependence and strong dependence of the failure behaviors of the             

subsystems. The approach developed is tested on a series-parallel system. 

The structure of the paper is as follows. Section 2 presents the optimization. Section 3 

describes the proposed solution approach. A numerical case study involving six subsystems 

connected in series-parallel is presented in Section 4. Section 5 provides a discussion on the 

results obtained and on the applicability of the approach proposed. Finally, the last section 

draws some conclusions and perspectives. 
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2. Problem description 

Let us consider a system consisting of m subsystems connected in series-parallel [17]. The 

failure behaviors of these subsystems are dependent. For simplicity of the analysis, but with 

no loss of generality in the optimization problem, it is assumed that the components of the 

subsystems can only be in two states, working or failed, the repair rate of each component in 

each subsystem is constant, each repair team can repair only one component at a time, and the 

failure rates of the operating components increase with the number of failed components. The 

goal of the design optimization problem is to minimize the system cost:   
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where n=(n1,n2,…,nm) and r=(r1,r2,…,rm) are the vectors of redundancy and repair teams 

allocation for the system, respectively; m is the number of subsystems in the system, c
iC  and 

r
iC  are the unit cost of components and unit cost of repair teams in subsystem i, respectively; 

Cs is the system cost; As is the system availability; and A0 is the system availability constraint 

value. 

The mathematical expression of the system availability As is written according to the 

dependence function. The dependence refers to the interactions between the failures of the 

components in the system. A graphical parameter modeling these interactions defines the 

level of dependence [20,26]. Four main cases (classes of dependence) can be considered [17]: 



5 
 

Case 1: Independence 
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Case 2: Linear dependence 
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Cases 3 and 4: Weak dependence (0 < l < 1) and strong dependence (l > 1) 
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where j is the number of working components, i is the repair rate of a component in 

subsystem i and i is the failure rate of a component in subsystem i. It can be seen that the 

above metrics are nonlinear and include integer decision variables. Also, the number of repair 

teams allocated to subsystem i is taken to be less than or equal to the number of             

components (ri≤ni). 

3. Adaptive cuckoo optimization algorithm 

The basic cuckoo optimization algorithm (COA) has been developed by Rajabioun [27]. It is 

inspired by the lifestyle of the cuckoo bird in laying eggs and in migrating. The cuckoo is 

capable of laying eggs only in nests of other bird species, called host nests. The eggs of the 

host nests are mimicked by the cuckoos to increase the discretion. Sometimes, the birds of the 

host nests recognize the cuckoos’ eggs and destroy it. Furthermore, some growing cuckoos’ 

chicks are thrown out from the nests by the host birds or starve, because they are bigger than 

the other birds and need more food. When the cuckoos’ chicks become mature, they move 
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away to a better living place. The original cuckoo optimization algorithm is based on egg 

laying radius and k-means clustering for creating potential solutions for the problem to be 

optimized.  

The cuckoo optimization algorithm has proven its effectiveness in solving several 

engineering optimization problems, such as optimal controller design [27], energy production            

cost minimization [28,29], optimal data clustering [30], optimal machining parameters [31–

33], optimal job scheduling [34], and optimal replacement strategy of obsolete industrial 

components [35,36]. The main disadvantage of COA is the difficulty of handling integer 

variables and strongly nonlinear constraints. In this respect, the basic COA cannot be 

implemented for system cost optimization with availability constraint. For this reason, in this 

paper the algorithm is modified and adapted to an adaptive cuckoo optimization algorithm 

(AA-COA). The main steps of AA-COA are described as follows.  

Step 1: Generate a random area of cuckoos. 

An area consisting of M peer habitats is considered at each iteration as follows: 
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where Nesta is the vector containing the numbers of redundant components and Nestb is the 

vector of the numbers of repair teams. One cuckoo only is considered in each habitat and one 

egg only in each nest. 
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At first, the random nest of redundant components (Nesta) in each habitat is generated, 

ni{1,…,N}, where N is the maximum number of redundant components in each subsystem. 

The real numbers are rounded to the nearest integer values. 

Then, a random nest of repair teams (Nestb) r1{1,…,n1}; r2{1,…,n2};…; rm{1,…,nm} 

is generated, accounting for the constraint ri ≤ ni. 

Step 2: Evaluate the system cost and handle the system availability constraint. 

The numbers of redundant components and repair teams generated in Step 1 are introduced 

into Eqs. (1) and (2). The constrained problem is transformed to an unconstrained one by 

using a penalized function [37]: 

0( , ) Min{0, ( , ) }sP n r w A n r A                                                           (7) 

where w is the penalty value allowing to handle the degree of constraint violation. The 

feasible constraint values are reset as zero. In this paper, this value changes (adaptive value) 

during successive iterations; if in all the previous iterations the best solution was infeasible, 

then, the penalty value is increased, if in all the previous iterations the best solution was 

feasible, then, w is decreased; otherwise, it is kept constant. 

Therefore, the penalized function is written as follows: 

0( , ) ( , ) Min{0, ( , ) }s s sC n r C n r w A n r A                                           (8) 

Step 3: Select the best habitat (solution) and destroy worst habitats. 

The habitat with a minimum system cost is selected and saved. For the remainder habitats, 

it is assumed that the eggs have been recognized by the host birds and are destroyed. Thus, 

these habitats are considered worst. On the other hand, it is assumed that one cuckoo’s chick 

only will survive and the others starve. 

Step 4: Migrate the cuckoo 
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The cuckoo’s chick becomes mature and migrates for mating. Then, the best solution saved 

in Step 2 is introduced in the next iteration (new area) for improving the fitness. It should be 

noted that in the next iteration the number of new random habitats is (M1). 

Step 5: Repeat Steps 1 to 4 until the number of iterations is reached, than, the minimum 

system cost with the best vectors of redundant components and repair teams are displayed. 

Algorithm below shows the pseudo-code of the implemented AA-COA, and Figure 1 

shows its flowchart. 

Algorithm 1 – Pseudo-code of the implemented AA-COA. 

1:  Input the parameters: A0, N, w, M, NIter. 

2:  While z ≤ NIter 

3:  Generate a random area according to Eq. (6). 

4:  Evaluate the system cost (each habitat) and constraint handling according to 

Eq. (8).    

5:  Increase, decrease or keep constant the value of w.     

6:  Select the best habitat and destroy the eggs of the worst habitats.     

7:  Migrate the cuckoo by introducing the best solution in the next iteration.  

8:  End While 

        9: Display the minimum system cost and the vectors of the numbers of 

redundant components and repair teams. 

Insert Figure 1 – Flowchart of the proposed AA-COA. 

4. Numerical case study 

The system considered (Figure 2) consists of 6 subsystems (m=6) connected in                    

series-parallel [17]. Therefore, the optimization problem involves 12 integer decisions 

variables (6 for the numbers of redundant components and 6 for the numbers of repair teams 

to allocate to the 6 subsystems). Three values of system availability constraint (A0) are 

considered: 0.90, 0.95, and 0.99. The maximum number of allowable redundant components 

in each subsystem is 15 (N=15). The adopted values of l in Eq. (5) are 0.5 for weak 

dependence and 1.5 for strong dependence. Table 1 summarizes the relevant data of the 
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system. 

Insert Figure 2  Series-parallel system. 

Insert Table 1  Data of the system. 

5. Results and discussion 

The adaptive cuckoo optimization algorithm has been programmed using MATLAB 2015 and 

run with 20 habitats and over 200 iterations (4000 function evaluations) on a PC Intel 

Pentium G620 (2.60 GHz, 4 GB of RAM, Sandy Bridge, 3Mo Cache, Windows 7, 32 bits). 

The total computation time for the optimization search has been of 33.41s in case of 

independence, 50.06s in case of linear dependence, 3911s in case of weak dependence, and 

4822s in case of strong dependence. 

Insert Table 2  Optimal solutions when A0=0.90. 

Insert Table 3  Optimal solutions when A0=0.95. 

Insert Table 4  Optimal solutions when A0=0.99. 

Tables 24 summarize the results obtained by GA in [17] and by the AA-COA proposed in 

this work, for A0=0.90, A0=0.95 and A0=0.99, respectively. The best results are bolded in          

the Table. In Table 2, the system costs (in arbitrary units) when A0=0.90 are 1355 for the 

independence case, 1225 for the linear dependence, and 160 for the strong dependence. These 

results are similar between the GA and the AA-COA. However, the system cost in weak 

dependence is found to be 1285 by the GA, and 1235 by the AA-COA.   

Table 3 reports the optimal solutions when A0=0.95 and it can be observed that the results 

of AA-COA improve those obtained by the GA. The system costs are GA: 1615, AA-COA: 

1355 in case of independence, GA: 1410, AA-COA: 1390 in case of weak dependence, GA: 

1275, AA-COA: 1270 in case of linear dependence, and GA: 1185, AA-COA: 1175 in case of 
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strong dependence. 

When the system availability constraint value is 0.99 (see Table 4), the system costs 

obtained by GA and AA-COA are as follows: 2135 and 2125 in case of independence, 1810 

and 1770 in case of weak dependence, 1590 and 1565 in case of linear dependence, 1410 and 

1405 in case of strong dependence. In all cases, AA-COA outperforms the GA solution found   

in [17].  

The comparison of the results clearly shows that the newly proposed AA-COA performs 

well, providing better results than GA. Moreover, GA used 25000 function evaluations in the 

search, whereas AA-COA only 4000. 

6. Conclusions 

In this paper, a novel optimization algorithm has been presented for minimizing system cost 

subject to an availability constraint and in case of dependencies in the failure behaviors of the 

subsystems. Specifically, an adaptive cuckoo optimization algorithm (AA-COA) has been 

developed. Four scenarios of failure dependencies have been considered: independence, weak 

dependence, linear dependence and strong dependence. 

A series-parallel system consisting of six subsystems has been worked out using the 

proposed algorithm under three values of the system availability constraint. The results 

obtained demonstrate the effectiveness of the optimization algorithm. 

Further work will focus on the development of a multi-objective AA-COA, for               

multi-objective RAMS+C problems and the consideration of uncertainties.   
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Figure captions 

Figure 1 – Flowchart of the proposed AA-COA. 

Figure 2 – Series-parallel system. 

 

Table captions 

Table 1 – Data of the system. 

Table 2 – Optimal solutions when A0=0.90. 

Table 3 – Optimal solutions when A0=0.95. 

Table 4 – Optimal solutions when A0=0.99. 
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Figure 1  Flowchart of the proposed AA-COA. 
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Figure 2  Series-parallel system. 
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Table 1  Data of the system. 

Subsystem i i i 
c
iC  r

iC  

1 0.03 0.10 40 15 

2 0.04 0.13 50 20 

3 0.05 0.14 30 10 

4 0.06 0.20 70 30 

5 0.07 0.18 65 25 

6 0.09 0.27 80 35 

 

 

Table 2  Optimal solutions when A0=0.90. 

Subsystem i 

Independence  

(ni,ri) 

Weak dependence  

(ni,ri) 

Linear dependence  

(ni,ri) 

Strong dependence  

(ni,ri) 

GA [15] AA-COA GA [15] AA-COA GA [15] AA-COA GA [15] AA-COA 

1 (3,3) (3,3) (3,1) (3,2) (3,2) (3,2) (3,1) (3,1) 

2 (3,2) (3,2) (3,2) (3,2) (3,2) (3,2) (2,2) (2,2) 

3 (4,3) (4,3) (3,2) (4,2) (3,2) (3,2) (3,2) (3,2) 

4 (3,2) (3,2) (3,2) (2,2) (2,2) (2,2) (2,2) (2,2) 

5 (3,3) (3,3) (3,3) (3,2) (3,2) (3,2) (3,2) (3,2) 

6 (3,2) (3,2) (3,2) (3,2) (2,2) (2,2) (2,2) (2,2) 

Cs 1355 1355 1285 1235 1125 1125 1060 1060 

As 0.9025 0.9025 0.9051 0.9031 0.9020 0.9020 0.9031 0.9031 
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Table 3  Optimal solutions when A0=0.95. 

Subsystem i 

Independence  

(ni,ri) 

Weak dependence  

(ni,ri) 

Linear dependence  

(ni,ri) 

Strong dependence  

(ni,ri) 

GA [15] AA-COA GA [15] AA-COA GA [15] AA-COA GA [15] AA-COA 

1 (4,3) (4,3) (3,3) (4,2) (3,2) (3,2) (3,2) (3,1) 

2 (3,3) (4,3) (3,2) (3,3) (3,3) (3,2) (3,2) (3,1) 

3 (4,3) (4,3) (4,2) (4,2) (3,3) (3,2) (3,2) (3,2) 

4 (4,3) (3,3) (3,3) (3,2) (3,1) (3,1) (3,1) (3,1) 

5 (4,3) (4,3) (3,3) (3,3) (3,2) (3,3) (3,1) (3,2) 

6 (3,3) (3,3) (3,3) (3,2) (3,2) (3,2) (3,1) (3,1) 

Cs 1615 1595 1410 1390 1275 1270 1185 1175 

As 0.9502 0.9506 0.9504 0.9502 0.9514 0.9503 0.9528 0.9526 

 

Table 4  Optimal solutions when A0=0.99. 

Subsystem i 

Independence  

(ni,ri) 

Weak dependence  

(ni,ri) 

Linear dependence  

(ni,ri) 

Strong dependence  

(ni,ri) 

GA [15] AA-COA GA [15] AA-COA GA [15] AA-COA GA [15] AA-COA 

1 (5,3) (5,4) (4,4) (4,4) (4,2) (4,3) (3,3) (4,1) 

2 (5,4) (5,4) (4,3) (4,3) (4,2) (4,2) (3,2) (3,2) 

3 (5,4) (5,5) (5,3) (4,4) (4,2) (4,3) (4,2) (4,3) 

4 (5,3) (4,3) (4,4) (4,3) (4,2) (3,2) (3,2) (3,2) 

5 (5,4) (5,4) (4,4) (4,3) (4,3) (4,2) (4,3) (4,2) 

6 (5,3) (5,4) (4,2) (4,3) (3,3) (4,2) (3,2) (3,2) 

Cs 2135 2125 1810 1770 1590 1565 1410 1405 

As 0.9904 0.9900 0.9901 0.9900 0.9910 0.9902 0.9901 0.9901 

 


