
1

An adaptive cuckoo optimization algorithm for system design optimization

under failure dependencies

Mohamed Arezki Mellala,*, Enrico Ziob,c

aLMSS, Faculty of Engineering Sciences (FSI), M’Hamed Bougara University, Boumerdes, Algeria

mellal.mohamed@univ-boumerdes.dz, mellal.mohamed@gmail.com

bMines ParisTech, PSL Research University, CRC, Sophia Antipolis, France

cEnergy Department, Politecnico di Milano, Milano, Italy

Abstract

This paper presents an algorithm for optimal redundancy and repair teams allocation with

respect to minimum system cost and a system availability constraint. Four scenarios are

considered for the failures occurring in the subsystems of the system: independence, linear

dependence, weak dependence, and strong dependence. An adaptive cuckoo optimization

algorithm (AA-COA) is developed for solving the nonlinear integer optimization problem of

allocation. A series-parallel system with six subsystems is considered as a case study for

demonstration purposes. The results obtained highlight the good performance of the

developed algorithm.

Keywords: Redundancy allocation; Repair allocation; System availability; Failure

dependencies; Adaptive cuckoo optimization algorithm; Series-parallel system.

Notations

As system availability.

A0 system availability constraint value.

Ai availability of subsystem i.

m number of subsystems in the system.

2

N maximum number of allowable components in each subsystem.

ni number of components in subsystem i.

ri number of repair teams for subsystem i.

r =(r1, r2,…, rm), vector of repair teams for the system.

n =(n1, n2,…, nm), vector of redundancy allocated in the system.

i inherent failure rate of the component in subsystem i.

i repair rate of the component in subsystem i.

Cs system cost.

c
iC unit cost of components in subsystem i.

r
iC

unit cost of repair teams in subsystem i.

 j number of working components in subsystem i.

1. Introduction

Dependability of modern systems is optimized at the design stage, in order to satisfy the

customer requirements [1]. The dependability design optimization of a system considers all

five concepts building up dependability, i.e., reliability, availability, maintainability, safety,

and cost (RAMS+C) [2]. The main focus, then, depends on the target of the designer and the

design problem is formulated as an optimization problem. Evolutionary optimization methods

have been shown to provide very good results in solving RAMS+C optimization problems. In

[3], a particle-based simplified swarm optimization (PSSO) has been implemented to

maximize the system reliability. In [4], a novel genetic algorithm has been developed for the

optimal redundancy allocation problem in multi-state systems. The objective was to maximize

the system availability under the cost constraint. A penalty guided stochastic fractal search

(PSFS) has been proposed in [5] to maximize the system reliability or minimize the system

cost subject to a system reliability constraint. Various evolutionary optimization methods

have been applied in [6,7] to solve single objective system reliability optimization problems.

3

Some authors developed genetic algorithms for optimizing multiple targets of RAMS+C [2,8–

11]. In [12], a new adaptive particle swarm optimization has been developed for system

reliability-redundancy allocation, considering reliability, cost, volume and weight within a

multi-objective problem solved by using the weighted-sum method. The series-parallel

connection is one of the most used system configurations in industry. The optimization of

such a system has been investigated considering various issues [13–17]. In [13], the Pareto

front for system reliability and cost has been found using harmony search and particle swarm

optimization. The cold-standby strategy has been considered in [14] and the problem has been

solved using a penalty-guided fractal search algorithm. In [15], optimization models of

selective maintenance strategies for multi-state cases have been proposed. The authors used a

genetic algorithm to solve the problems. A new multi-objective redundancy allocation

strategy considering different types of redundant components have been proposed in [16]. The

system cost and availability under failure dependencies has been investigated in [17] using a

genetic algorithm. Availability is the relevant performance indicator for repairable systems

[18,19] and failure dependencies can impact the system availability [17,20–25].

The aim of the present work is to propose an adaptive cuckoo optimization algorithm

(AA-COA) for minimizing system cost subject to a system availability constraint. Four

scenarios are considered for the system availability constraint, i.e., independence, weak

dependence, linear dependence and strong dependence of the failure behaviors of the

subsystems. The approach developed is tested on a series-parallel system.

The structure of the paper is as follows. Section 2 presents the optimization. Section 3

describes the proposed solution approach. A numerical case study involving six subsystems

connected in series-parallel is presented in Section 4. Section 5 provides a discussion on the

results obtained and on the applicability of the approach proposed. Finally, the last section

draws some conclusions and perspectives.

4

2. Problem description

Let us consider a system consisting of m subsystems connected in series-parallel [17]. The

failure behaviors of these subsystems are dependent. For simplicity of the analysis, but with

no loss of generality in the optimization problem, it is assumed that the components of the

subsystems can only be in two states, working or failed, the repair rate of each component in

each subsystem is constant, each repair team can repair only one component at a time, and the

failure rates of the operating components increase with the number of failed components. The

goal of the design optimization problem is to minimize the system cost:

 
1

Minimize (,)
m

c r
s i i i i

i

C n r n C rC


  (1)

subject to

 0(,)sA n r A (2)

,

1, 2,...,

i i

i i

n r

r n

i m







where n=(n1,n2,…,nm) and r=(r1,r2,…,rm) are the vectors of redundancy and repair teams

allocation for the system, respectively; m is the number of subsystems in the system, c
iC and

r
iC are the unit cost of components and unit cost of repair teams in subsystem i, respectively;

Cs is the system cost; As is the system availability; and A0 is the system availability constraint

value.

The mathematical expression of the system availability As is written according to the

dependence function. The dependence refers to the interactions between the failures of the

components in the system. A graphical parameter modeling these interactions defines the

level of dependence [20,26]. Four main cases (classes of dependence) can be considered [17]:

5

Case 1: Independence

1

1 11

!
1 1

! !()!

i ii i i

i i

j jn rn r njm
ii i i i

s
i i ij j n ri

r r r
A

j j n j

 

 




   

      
        

       

  (3)

Case 2: Linear dependence

1

1 11

!
1 1

()!

i ii i i

i i

j jn rn r nm
j ii i i

s i
i i ij j n ri

r r
A r

n j

 

 




   

      
        

       

  (4)

Cases 3 and 4: Weak dependence (0 < l < 1) and strong dependence (l > 1)

1
1

1

1 11

!(!)
1 1 (!)

()!

i ii i i

i i

j jn rn r n lm
j l ii i i

s i
i i ij j n ri

r r j
A r j

n j

 

 


 



   

      
        

       

  (5)

where j is the number of working components, i is the repair rate of a component in

subsystem i and i is the failure rate of a component in subsystem i. It can be seen that the

above metrics are nonlinear and include integer decision variables. Also, the number of repair

teams allocated to subsystem i is taken to be less than or equal to the number of

components (ri≤ni).

3. Adaptive cuckoo optimization algorithm

The basic cuckoo optimization algorithm (COA) has been developed by Rajabioun [27]. It is

inspired by the lifestyle of the cuckoo bird in laying eggs and in migrating. The cuckoo is

capable of laying eggs only in nests of other bird species, called host nests. The eggs of the

host nests are mimicked by the cuckoos to increase the discretion. Sometimes, the birds of the

host nests recognize the cuckoos’ eggs and destroy it. Furthermore, some growing cuckoos’

chicks are thrown out from the nests by the host birds or starve, because they are bigger than

the other birds and need more food. When the cuckoos’ chicks become mature, they move

6

away to a better living place. The original cuckoo optimization algorithm is based on egg

laying radius and k-means clustering for creating potential solutions for the problem to be

optimized.

The cuckoo optimization algorithm has proven its effectiveness in solving several

engineering optimization problems, such as optimal controller design [27], energy production

cost minimization [28,29], optimal data clustering [30], optimal machining parameters [31–

33], optimal job scheduling [34], and optimal replacement strategy of obsolete industrial

components [35,36]. The main disadvantage of COA is the difficulty of handling integer

variables and strongly nonlinear constraints. In this respect, the basic COA cannot be

implemented for system cost optimization with availability constraint. For this reason, in this

paper the algorithm is modified and adapted to an adaptive cuckoo optimization algorithm

(AA-COA). The main steps of AA-COA are described as follows.

Step 1: Generate a random area of cuckoos.

An area consisting of M peer habitats is considered at each iteration as follows:

1 2
1

1 2

1 2
2

1 2

1 2

1 2

{ , ,..., }

{ , ,..., }

{ , ,..., }

{ , ,..., }

{ , ,..., }

{ , ,..., }

a m

b m

a m

b m

a m
M

b m

Nest n n n
Habitat

Nest r r r

Nest n n n
Habitat

Area Nest r r r

Nest n n n
Habitat

Nest r r r

 
 


 
  

  


 

 
 

 (6)

where Nesta is the vector containing the numbers of redundant components and Nestb is the

vector of the numbers of repair teams. One cuckoo only is considered in each habitat and one

egg only in each nest.

7

At first, the random nest of redundant components (Nesta) in each habitat is generated,

ni{1,…,N}, where N is the maximum number of redundant components in each subsystem.

The real numbers are rounded to the nearest integer values.

Then, a random nest of repair teams (Nestb) r1{1,…,n1}; r2{1,…,n2};…; rm{1,…,nm}

is generated, accounting for the constraint ri ≤ ni.

Step 2: Evaluate the system cost and handle the system availability constraint.

The numbers of redundant components and repair teams generated in Step 1 are introduced

into Eqs. (1) and (2). The constrained problem is transformed to an unconstrained one by

using a penalized function [37]:

0(,) Min{0, (,) }sP n r w A n r A    (7)

where w is the penalty value allowing to handle the degree of constraint violation. The

feasible constraint values are reset as zero. In this paper, this value changes (adaptive value)

during successive iterations; if in all the previous iterations the best solution was infeasible,

then, the penalty value is increased, if in all the previous iterations the best solution was

feasible, then, w is decreased; otherwise, it is kept constant.

Therefore, the penalized function is written as follows:

0(,) (,) Min{0, (,) }s s sC n r C n r w A n r A    (8)

Step 3: Select the best habitat (solution) and destroy worst habitats.

The habitat with a minimum system cost is selected and saved. For the remainder habitats,

it is assumed that the eggs have been recognized by the host birds and are destroyed. Thus,

these habitats are considered worst. On the other hand, it is assumed that one cuckoo’s chick

only will survive and the others starve.

Step 4: Migrate the cuckoo

8

The cuckoo’s chick becomes mature and migrates for mating. Then, the best solution saved

in Step 2 is introduced in the next iteration (new area) for improving the fitness. It should be

noted that in the next iteration the number of new random habitats is (M1).

Step 5: Repeat Steps 1 to 4 until the number of iterations is reached, than, the minimum

system cost with the best vectors of redundant components and repair teams are displayed.

Algorithm below shows the pseudo-code of the implemented AA-COA, and Figure 1

shows its flowchart.

Algorithm 1 – Pseudo-code of the implemented AA-COA.

1: Input the parameters: A0, N, w, M, NIter.

2: While z ≤ NIter

3: Generate a random area according to Eq. (6).

4: Evaluate the system cost (each habitat) and constraint handling according to

Eq. (8).

5: Increase, decrease or keep constant the value of w.

6: Select the best habitat and destroy the eggs of the worst habitats.

7: Migrate the cuckoo by introducing the best solution in the next iteration.

8: End While

 9: Display the minimum system cost and the vectors of the numbers of

redundant components and repair teams.

Insert Figure 1 – Flowchart of the proposed AA-COA.

4. Numerical case study

The system considered (Figure 2) consists of 6 subsystems (m=6) connected in

series-parallel [17]. Therefore, the optimization problem involves 12 integer decisions

variables (6 for the numbers of redundant components and 6 for the numbers of repair teams

to allocate to the 6 subsystems). Three values of system availability constraint (A0) are

considered: 0.90, 0.95, and 0.99. The maximum number of allowable redundant components

in each subsystem is 15 (N=15). The adopted values of l in Eq. (5) are 0.5 for weak

dependence and 1.5 for strong dependence. Table 1 summarizes the relevant data of the

9

system.

Insert Figure 2  Series-parallel system.

Insert Table 1  Data of the system.

5. Results and discussion

The adaptive cuckoo optimization algorithm has been programmed using MATLAB 2015 and

run with 20 habitats and over 200 iterations (4000 function evaluations) on a PC Intel

Pentium G620 (2.60 GHz, 4 GB of RAM, Sandy Bridge, 3Mo Cache, Windows 7, 32 bits).

The total computation time for the optimization search has been of 33.41s in case of

independence, 50.06s in case of linear dependence, 3911s in case of weak dependence, and

4822s in case of strong dependence.

Insert Table 2  Optimal solutions when A0=0.90.

Insert Table 3  Optimal solutions when A0=0.95.

Insert Table 4  Optimal solutions when A0=0.99.

Tables 24 summarize the results obtained by GA in [17] and by the AA-COA proposed in

this work, for A0=0.90, A0=0.95 and A0=0.99, respectively. The best results are bolded in

the Table. In Table 2, the system costs (in arbitrary units) when A0=0.90 are 1355 for the

independence case, 1225 for the linear dependence, and 160 for the strong dependence. These

results are similar between the GA and the AA-COA. However, the system cost in weak

dependence is found to be 1285 by the GA, and 1235 by the AA-COA.

Table 3 reports the optimal solutions when A0=0.95 and it can be observed that the results

of AA-COA improve those obtained by the GA. The system costs are GA: 1615, AA-COA:

1355 in case of independence, GA: 1410, AA-COA: 1390 in case of weak dependence, GA:

1275, AA-COA: 1270 in case of linear dependence, and GA: 1185, AA-COA: 1175 in case of

10

strong dependence.

When the system availability constraint value is 0.99 (see Table 4), the system costs

obtained by GA and AA-COA are as follows: 2135 and 2125 in case of independence, 1810

and 1770 in case of weak dependence, 1590 and 1565 in case of linear dependence, 1410 and

1405 in case of strong dependence. In all cases, AA-COA outperforms the GA solution found

in [17].

The comparison of the results clearly shows that the newly proposed AA-COA performs

well, providing better results than GA. Moreover, GA used 25000 function evaluations in the

search, whereas AA-COA only 4000.

6. Conclusions

In this paper, a novel optimization algorithm has been presented for minimizing system cost

subject to an availability constraint and in case of dependencies in the failure behaviors of the

subsystems. Specifically, an adaptive cuckoo optimization algorithm (AA-COA) has been

developed. Four scenarios of failure dependencies have been considered: independence, weak

dependence, linear dependence and strong dependence.

A series-parallel system consisting of six subsystems has been worked out using the

proposed algorithm under three values of the system availability constraint. The results

obtained demonstrate the effectiveness of the optimization algorithm.

Further work will focus on the development of a multi-objective AA-COA, for

multi-objective RAMS+C problems and the consideration of uncertainties.

11

References

[1] Habchi G, Barthod C. An overall methodology for reliability prediction of mechatronic

systems design with industrial application. Reliab Eng Syst Saf 2016;155:236–54.

doi:10.1016/j.ress.2016.06.013.

[2] Torres-Echeverría AC, Martorell S, Thompson HA. Design optimization of a safety-

instrumented system based on RAMS+C addressing IEC 61508 requirements and

diverse redundancy. Reliab Eng Syst Saf 2009;94:162–79.

doi:10.1016/j.ress.2008.02.010.

[3] Huang C-L. A particle-based simplified swarm optimization algorithm for reliability

redundancy allocation problems. Reliab Eng Syst Saf 2015;142:221–30.

doi:http://dx.doi.org/10.1016/j.ress.2015.06.002.

[4] Sun MX, Li YF, Zio E. A novel genetic algorithm developed on a reduced search space

for optimal redundancy allocation in multi-state series-parallel systems. ESREL 2015

Eur. Saf. Reliab. Conf., Zurich, Switzerland: n.d.

[5] Mellal MA, Zio E. A penalty guided stochastic fractal search approach for system

reliability optimization. Reliab Eng Syst Saf 2016;152:213–227.

[6] Mellal MA, Zio E. System reliability-redundancy allocation by evolutionary

computation. 2017 2nd Int. Conf. Syst. Reliab. Saf., Milan, Italy: IEEE; 2017, p. 15–9.

[7] Mellal MA, Williams EJ. Large scale reliability-redundancy allocation optimization

problem using three soft computing methods. Model. Simul. based Anal. Reliab. Eng.,

CRC Press Francis & Taylor; 2018, p. 199–214.

[8] Marseguerra M, Zio E, Martorell S. Basics of genetic algorithms optimization for

RAMS applications. Reliab Eng Syst Saf 2006;91:977–91.

doi:10.1016/j.ress.2005.11.046.

[9] Martorell S, Villanueva JF, Carlos S, Nebot Y, Sánchez A, Pitarch JL, et al. RAMS+C

informed decision-making with application to multi-objective optimization of technical

specifications and maintenance using genetic algorithms. Reliab Eng Syst Saf

2005;87:65–75. doi:10.1016/j.ress.2004.04.009.

[10] Konak A, Coit DW, Smith AE. Multi-objective optimization using genetic algorithms:

A tutorial. Reliab Eng Syst Saf 2006;91:992–1007. doi:10.1016/j.ress.2005.11.018.

[11] Chebouba BN, Mellal MA, Adjerid S. Multi-objective system reliability Optimization

in a power plant. 3rd Int. Conf. Electr. Sci. Technol. Maghreb, Algiers, Algeria: 2018.

[12] Mellal MA, Zio E. An adaptive particle swarm optimization method for multi-objective

12

system reliability optimization. J Risk Reliab 2019. doi:10.1177/1748006X19852814.

[13] Zhao J, Si S, Cai Z, Su M, Wang W. Multiobjective optimization of reliability-

redundancy allocation problems for serial parallel-series systems based on importance

measure. J Risk Reliab 2019. doi:10.1177/1748006X19844785.

[14] Juybari MN, Abouei Ardakan M, Davari-Ardakani H. A penalty-guided fractal search

algorithm for reliability–redundancy allocation problems with cold-standby strategy.

Proc Inst Mech Eng Part O J Risk Reliab 2019. doi:10.1177/1748006X19825707.

[15] Dao CD, Zuo MJ, Pandey M. Selective maintenance for multi-state series-parallel

systems under economic dependence. Reliab Eng Syst Saf 2014.

doi:10.1016/j.ress.2013.09.003.

[16] Safari J. Multi-objective reliability optimization of series-parallel systems with a choice

of redundancy strategies. Reliab Eng Syst Saf 2012;108:10–20.

doi:10.1016/j.ress.2012.06.001.

[17] Hu L, Yue D, Li J. Availability analysis and design optimization for a repairable series-

parallel system with failure dependencies. Int J Innov Comput Inf Control

2012;8:6693–705. doi:10.4156/aiss.vol3.

[18] Neil M, Marquez D. Availability modelling of repairable systems using Bayesian

networks. Eng Appl Artif Intell 2012;25:698–704. doi:10.1016/j.engappai.2010.06.003.

[19] Mellal MA, Zio E. Availability optimization of parallel-series system by evolutionary

computation. 3rd Int. Conf. Syst. Reliab. Saf., Barcelona, Spain: 2018.

[20] Yu H, Chu C, Châtelet E, Yalaoui F. Reliability optimization of a redundant system

with failure dependencies. Reliab Eng Syst Saf 2007;92:1627–34.

doi:10.1016/j.ress.2006.09.015.

[21] Yuan L. Reliability analysis for a k-out-of-n:G system with redundant dependency and

repairmen having multiple vacations. Appl Math Comput 2012;218:11959–69.

doi:10.1016/j.amc.2012.06.006.

[22] Yu H, Chu C, Châtelet É. Availability optimization of a redundant system through

dependency modeling. Appl Math Model 2014;38:4574–85.

doi:10.1016/j.apm.2014.03.006.

[23] Habib M, Chehade H, Yalaoui F, Chebbo N, Jarkass I. Availability optimization of a

redundant dependent system using genetic algorithm. IFAC-PapersOnLine

2016;49:733–8.

[24] Siju KC, Kumar M. System reliability estimation and cost analysis of series-parallel

13

systems in the presence of repair dependence function. Int J Reliab Saf 2016;10:48–71.

[25] Lin YH, Li YF, Zio E. Component importance measures for components with multiple

dependent competing degradation processes and subject to maintenance. IEEE Trans

Reliab 2016;65:547–57. doi:10.1109/TR.2015.2500684.

[26] Habib M, Yalaoui F, Chehade H, Jarkass I, Chebbo N. Multi-objective design

optimisation of repairable k-out-of-n subsystems in series with redundant dependency.

Int J Prod Res 2017. doi:10.1080/00207543.2017.1346319.

[27] Rajabioun R. Cuckoo optimization algorithm. Appl Soft Comput 2011;11:5508–5518.

[28] Mehdinejad M, Mohammadi-Ivatloo B, Dadashzadeh-Bonab R. Energy production

cost minimization in a combined heat and power generation systems using cuckoo

optimization algorithm. Energy Effic 2016. doi:10.1007/s12053-016-9439-6.

[29] Mellal MA, Williams EJ. Cuckoo optimization algorithm with penalty function for

combined heat and power economic dispatch problem. Energy 2015;93:1711–8.

doi:10.1016/j.energy.2015.10.006.

[30] Amiri E, Mahmoudi S. Efficient protocol for data clustering by fuzzy cuckoo

optimization algorithm. Appl Soft Comput 2016;41:15–21.

[31] Mellal MA, Williams EJ. Parameter optimization of advanced machining processes

using cuckoo optimization algorithm and hoopoe heuristic. J Intell Manuf

2016;27:927–42.

[32] Mellal MA, Williams EJ. Total production time minimization of a multi-pass milling

process via cuckoo optimization algorithm. Int J Adv Manuf Technol 2016;87:747–

754. doi:10.1007/s00170-016-8498-3.

[33] Mellal MA, Williams EJ. Cuckoo optimization algorithm for unit production cost in

multi-pass turning operations. Int J Adv Manuf Technol 2015;76:647–56.

doi:10.1007/s00170-014-6309-2.

[34] Rabiee M, Sajedi H. Job scheduling in grid computing with cuckoo optimization

algorithm. Int J Comput Appl 2013;62:38–44.

[35] Mellal MA, Adjerid S, Williams EJ, Benazzouz D. Optimal replacement policy for

obsolete components using cuckoo optimization algorithm based-approach:

Dependability context. J Sci Ind Res (India) 2012;71:715–21.

[36] Mellal MA, Adjerid S, Williams EJ. Optimal selection of obsolete tools in

manufacturing systems using cuckoo optimization algorithm. Chem Eng Trans

2013;33:355–60. doi:10.3303/CET1333060.

14

[37] Chootinan P, Chen A. Constraint handling in genetic algorithms using a gradient-based

repair method. Comput Oper Res 2006;33:2263–81. doi:10.1016/j.cor.2005.02.002.

Figure captions

Figure 1 – Flowchart of the proposed AA-COA.

Figure 2 – Series-parallel system.

Table captions

Table 1 – Data of the system.

Table 2 – Optimal solutions when A0=0.90.

Table 3 – Optimal solutions when A0=0.95.

Table 4 – Optimal solutions when A0=0.99.

15

Figure 1  Flowchart of the proposed AA-COA.

Evaluate the system cost and use the
penalized function

Number of
iterations
reached?

Create random nests of
redundant components in

each habitat

Start

Select the best habitat

Save the best habitat and destroy
the eggs of the other habitats

Display the minimum system cost and the vectors of the
numbers of redundant components and repair teams

 End

Create random nests
of repair teams in each

habitat

Migrate the cuckoo by introducing
the best solution in the next iteration

 No

 Yes

16

Figure 2  Series-parallel system.

 2

 1

 2

 1

 2

 1

 2

 1

 2

 1

Subsystem 1 Subsystem 2 Subsystem 3 Subsystem 4 Subsystem 5

 n1

 2

 1

Subsystem 6

 n2 n3 n4 n5 n6

17

Table 1  Data of the system.

Subsystem i i i
c
iC r

iC

1 0.03 0.10 40 15

2 0.04 0.13 50 20

3 0.05 0.14 30 10

4 0.06 0.20 70 30

5 0.07 0.18 65 25

6 0.09 0.27 80 35

Table 2  Optimal solutions when A0=0.90.

Subsystem i

Independence

(ni,ri)

Weak dependence

(ni,ri)

Linear dependence

(ni,ri)

Strong dependence

(ni,ri)

GA [15] AA-COA GA [15] AA-COA GA [15] AA-COA GA [15] AA-COA

1 (3,3) (3,3) (3,1) (3,2) (3,2) (3,2) (3,1) (3,1)

2 (3,2) (3,2) (3,2) (3,2) (3,2) (3,2) (2,2) (2,2)

3 (4,3) (4,3) (3,2) (4,2) (3,2) (3,2) (3,2) (3,2)

4 (3,2) (3,2) (3,2) (2,2) (2,2) (2,2) (2,2) (2,2)

5 (3,3) (3,3) (3,3) (3,2) (3,2) (3,2) (3,2) (3,2)

6 (3,2) (3,2) (3,2) (3,2) (2,2) (2,2) (2,2) (2,2)

Cs 1355 1355 1285 1235 1125 1125 1060 1060

As 0.9025 0.9025 0.9051 0.9031 0.9020 0.9020 0.9031 0.9031

18

Table 3  Optimal solutions when A0=0.95.

Subsystem i

Independence

(ni,ri)

Weak dependence

(ni,ri)

Linear dependence

(ni,ri)

Strong dependence

(ni,ri)

GA [15] AA-COA GA [15] AA-COA GA [15] AA-COA GA [15] AA-COA

1 (4,3) (4,3) (3,3) (4,2) (3,2) (3,2) (3,2) (3,1)

2 (3,3) (4,3) (3,2) (3,3) (3,3) (3,2) (3,2) (3,1)

3 (4,3) (4,3) (4,2) (4,2) (3,3) (3,2) (3,2) (3,2)

4 (4,3) (3,3) (3,3) (3,2) (3,1) (3,1) (3,1) (3,1)

5 (4,3) (4,3) (3,3) (3,3) (3,2) (3,3) (3,1) (3,2)

6 (3,3) (3,3) (3,3) (3,2) (3,2) (3,2) (3,1) (3,1)

Cs 1615 1595 1410 1390 1275 1270 1185 1175

As 0.9502 0.9506 0.9504 0.9502 0.9514 0.9503 0.9528 0.9526

Table 4  Optimal solutions when A0=0.99.

Subsystem i

Independence

(ni,ri)

Weak dependence

(ni,ri)

Linear dependence

(ni,ri)

Strong dependence

(ni,ri)

GA [15] AA-COA GA [15] AA-COA GA [15] AA-COA GA [15] AA-COA

1 (5,3) (5,4) (4,4) (4,4) (4,2) (4,3) (3,3) (4,1)

2 (5,4) (5,4) (4,3) (4,3) (4,2) (4,2) (3,2) (3,2)

3 (5,4) (5,5) (5,3) (4,4) (4,2) (4,3) (4,2) (4,3)

4 (5,3) (4,3) (4,4) (4,3) (4,2) (3,2) (3,2) (3,2)

5 (5,4) (5,4) (4,4) (4,3) (4,3) (4,2) (4,3) (4,2)

6 (5,3) (5,4) (4,2) (4,3) (3,3) (4,2) (3,2) (3,2)

Cs 2135 2125 1810 1770 1590 1565 1410 1405

As 0.9904 0.9900 0.9901 0.9900 0.9910 0.9902 0.9901 0.9901

