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Abstract

In this work, we propose a multi-perspective framework of analysis of critical infras-

tructures (CIs) with respect to supply service, topology and controllability. The framework

enables identifying the role of CI elements and quantifying the consequences of scenarios

of multiple failures, with respect to the different perspectives considered. To present the

analysis framework, a benchmark network representative of a real gas transmission network

across several countries of the European Union (EU) is considered. The information ex-

tracted from such analysis can help us to identify the critical elements and how the properties

of the network are affected by failures, and to propose corresponding improvements for CIs.

The findings of this paper demonstrate the interest of considering several perspectives in the

analysis of CIs for providing useful information for ensuring their safe and reliable operation.

Keywords: Critical infrastructures, Multi-perspective analysis, Complex networks, Sup-

ply, Controllability, Gas transmission network.
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1 Introduction

Critical infrastructures (CIs), like power grids or gas transmission and distribution systems,

rail and road transport or communication networks, are essential to the operation of mod-

ern society [1]. They need to be designed, maintained and protected to provide optimal

performance, reliable operation and functional safety for long periods of time [2,3]. Hence,

the great attention and priority given to the “care” of these systems by the EU, US and

other national and transnational administrations [4–7], which calls for the risk assessment

and resilience evaluation of CIs [8, 9].

As CIs evolve and rely on information technologies more intensively, it is essential to

understand their controllability and it is desirable to develop a control framework able

to steer the network dynamics toward states with optimal performance, while avoiding

undesired or unfavorable states. Control is a fundamental property for the safe and reliable

operation of CIs, under a general control perspective, system safety can be framed as a

control “problem” [10,11], whereby, accidents result from inadequate control or insufficient

enforcement of safety-related constraints on the development, design, and operation of the

system, leading to their violation and subsequently to accidents. According to Control

Theory, a dynamical system is controllable if, by a suitable choice of inputs, it can be

driven from any initial state to any desired final state within finite time [12,13]. However, the

control of the complex network systems that make up a CI remains a challenging problem.

Studying the controllability of complex networks requires an integration of classical control

theory and network theory. In this perspective, the notion of structural controllability

has been introduced in [14]. In [13], analytical tools have been developed to characterize

the controllability of directed networks. In [15], an exact controllability measure has been

proposed to generalize the determination of the set of driver nodes to arbitrary network

structures and link weights. Several related topics can be considered under this framework,

such as control centrality [16], achieving whole control by using only one controller [17],

minimization of control inputs [18], control capacity [19], control mode [20], control of edge

dynamics [21], structural controllability of temporal networks [22], control energy [23], etc.

Supply performance is the fundamental functional requirement of a CI and the security

of supply is being addressed by an increasing number of researchers. Paper [24] presents

a probabilistic model to study the security of supply in a gas network. The model is

developed into a Monte Carlo simulation and graph-based tool aiming at the evaluation of

CIs for different purposes, including reliability, vulnerability, bottleneck analysis, etc.

The fact that CIs are complex networks of interacting components raises the interest in
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studying their topological characteristics [25–29]. A number of recent studies have proposed

various measures to evaluate the structural properties of networks and addressed topological

investigations to identify critical elements. Among these measures, topological centrality

(including degree, closeness, betweenness and information centrality) [30, 31] and network

efficiency [32] are two important and classical measures, quantifying the importance of

individual network nodes and evaluating the connectivity of the whole network, respectively.

Topological properties have also been studied in relation to vulnerability and risk analysis.

For example, in [33] the authors analyze the structural vulnerability of the Italian GRTN

power grid. In [34], electric power delivery networks are modelled as graphs and their

topological characteristics are studied. In [35], centrality analysis is applied to identify the

most important components of a railway infrastructure. Given the relationship between the

topology of a network and its vulnerability and safety properties, the association between

network topological features and system reliability is also of relevance. A common measure

of network reliability is the so called K-terminal reliability, which calculates the probability

that every two nodes in a specific subset of K nodes are connected by a path of operational

edges [36]. Specifically, due to the requirement of reliable operation and the complex nature

of CIs, the all-terminal reliability is of particular interest and often considered as a necessary

condition for function-based reliability.

The complexity of CIs calls for approaches capable of viewing the problem from multiple

perspectives [37–39]. System analysis, reliability engineering, graph theory and others have

been propounded to study the behavior and performance of complex systems, also with

respect to failure events, their protection and resilience [27, 40, 41]. Integration of the

different perspectives and analysis of their relations is necessary. For example, in [42]

an electrical transmission system is analyzed with the objective of identifying the most

critical elements in terms of four different perspectives: topological, reliability, electrical

and electrical-reliability. In [43], the correlation between connectivity reliability and con-

trollability of network systems is studied. In [41], the authors perform network reliability

analysis considering spatial constraints.

The context described above shows that the design and operation of CIs are multi-

objective problems, in which the multiple objectives account for different functionality per-

spectives. Several multi-objective optimization methods have been developed, including

Evolutionary Algorithms (EAs), which have proved very efficient thanks to their powerful

meta-heuristics search ability and population-based framework. References [44–47] solve

the optimization problems of network design considering all-terminal reliability and cost
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as objectives. Reference [48] considers the optimal expansion of a power transmission net-

work with respect to the transmission reliability efficiency and the cost. References [49,50]

solve the multi-objective optimization of cascade-resilient design of electrical power infras-

tructures. Reference [51] treats a three-objective optimization of economic cost, hydraulic

reliability and greenhouse gas emissions, and analyzes the nature of the tradeoffs among

the objectives for achieving different solutions. Multi-objective evolutionary algorithms

(MOEAs), including Strength Pareto Evolutionary Algorithm (SPEA) [52], SPEA2 [53],

non-dominated sorting genetic algorithm (NSGA) [54], (NSGA-II) [55], have been success-

fully used to solve problems with two or three objectives: however, when encountering

optimization problems with more than three objectives, so called many-objective problems,

significant algorithmic difficulties and computational challenges arise [56,57], such as: (1) the

increase in the number of objectives causes a large proportion of non-dominated individuals

in a population and, thus, leads to the ineffectiveness of Pareto optimality: algorithms based

on the ε-domination principle [58, 59] have been proposed to address this problem; (2) the

extremely large size of the search space of the optimization problem weakens the effects

of the evolutionary operators of crossover and mutation: reference-point based algorithm

NSGA-III [60] and decomposition methods such as MOEA/D [61] have been introduced;

(3) the conflict between convergence and diversity of solutions is aggravated as the number

of objectives increases. Given the level of integration and the number of functionalities of

today’s systems and CIs, many-objective optimization is attracting a lot of attentions for

real-world applications [62–64], but approaches capable of simultaneously addressing all the

related challenges mentioned above are still needed [57].

In this work, we develop a framework of analysis considering several perspectives (sup-

ply service, controllability and topology). Compared to previous works, which typically

consider reliability and topology only, we include the control perspective into the safety

and reliability analysis of CIs. The analysis is performed by simulation and the failure

scenarios are generated by the software ProGasNetwork proposed in [65]. The complex

network representative of a real EU gas transmission system supplying several countries is

considered as case study to illustrate the analysis framework. The main contributions of

this work are:

• Development of a multi-objective framework of analysis of CIs.

• Identification of the role of each component and quantification of the consequences of

multiple failure scenarios, with respect to the different perspectives considered.
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• Proposals for CIs reliable performance improvement.

The rest of the paper is organized as follows: Section 2 introduces the three system-

level indexes considered in this paper. Section 3 describes the modelling of the considered

gas transmission network. Section 4 presents the analysis of link importance and Section

5 presents the consequences of the failure scenarios from the three perspectives. Finally,

conclusions and ideas for future work are provided in Section 6.

2 System-level indexes

In this work, we consider three perspectives of the CI assessment: supply, control and

topology. For each perspective, we propose an index to evaluate the network performance.

2.1 Non-supplied demand

Supply performance is the fundamental functional requirement of a CI. Consider a CI net-

work of N nodes and L links, which supplies service or products from Ns supply nodes

(sources) to Ny user nodes (users) through a number of transmission nodes.

We introduce the non-supplied demand (NSD) as a measure of the network’s capacity

to satisfy its users’ demands. The normalized NSD is introduced as a system-level index:

NSD = 1−
∑i=Ny

i=1 ωiyi∑i=Ny

i=1 ωiDi

(1)

where ωi is the weight of the ith of the Ny users and varies according to its role or

importance. yi is the supply to user i and Di is its demand, which is the target supply

to user i and is considered as a constraint when determining the supply to it; and, thus,

yi ≤ Di. Then, the second term in Equation (1) represents the satisfied proportion of users’

demand. The index NSD is normalized to take values in [0, 1]. NSD equals 0 when the

users’ demands are fully supplied.

2.2 Controllability

In control theory, a system is defined controllable if, by a suitable choice of inputs, it can

be driven from any initial state to any desired final state within finite time [12, 13]. From

a system safety perspective, controllability is the ability to guide the system’s behavior

towards a safe state through the appropriate choice of a few input variables [10].
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Considering the network of N nodes, we describe its state dynamics by:

x(t+ 1) = Ax(t) + Bu(t) (2)

where x(t) is the system state vector, describing the state of each node in the network at

time t; A is an N ×N coupling matrix, in which aij represents the weight of the directed

link from node i to node j (i.e. the interaction strength between node i and node j, for

example, the flow in the pipeline of a gas transmission network); B is an N ×M input

matrix (M ≤ N), identifying the nodes that are controlled by the time-dependent input

vector u(t), made of M independent control signals.

Based on dynamic control theory, the above system is controllable if and only if the

N × NM controllability matrix Ctrb = (B AB . . .An−1B) has full rank (the so-called

Kalman’s rank condition) [66]:

rank(Ctrb) = N (3)

For complex network systems, the controllability problem can be formulated in terms of

finding a suitable control matrix B consisting of a minimum number of driver nodes (ND)

so as to satisfy the Kalman’s rank condition (3). However, this requires the evaluation of

the rank of C for 2N possible combinations of the driver nodes [67]: for real CI network

systems, such a brute-force search is computationally prohibitive.

To overcome this problem, in [13], the authors have developed analytical methods to

determine the minimum number of driver nodes (ND) that are needed to fully control the

network, by finding the maximum matching, i.e. the maximum set of links that do not

share start or end nodes. Full control can be achieved if and only if each unmatched node is

directly controlled and there are directed paths from the input signals to all matched nodes.

The unmatched nodes determined by maximum matching are the so called driver nodes.

In [15], the exact controllability for arbitrary network structures and link weights (say

arbitrary matrix A) is introduced to calculate ND:

ND = max
i
{µ(λi)} (4)

and the minimum number of driver nodes ND is determined by the maximum geometric

multiplicity µ(λi) of the eigenvalue λi of A. In fact, these are the nodes corresponding to

the linearly-dependent rows: the controllers should be imposed on the linearly-dependent

rows to eliminate all linear correlations and ensure the controllability condition.
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The number of driver nodes ND can be taken as a measure of the controllability of the

network, indicating how many driver nodes are needed to control the network and directly

relating to the cost of the resources needed to keep or bring the system under control. If

ND = N , i.e. the total number of nodes in the network (this means that the external

control signal is applied to each node of the network), the likelihood of gaining full system

control is high, but so is the associated cost [18]. A small ND, instead, indicates a more

controllable network system, in the sense that it requires less effort to obtain full control

over the network.

To measure the structural controllability of the network system, we adopt the control-

lability index (Cind) first introduced in [43]:

Cind =
N −ND

N
(5)

Also, the index Cind is normalized to take values in [0, 1].

The occurrence of failures (represented as the removal of links) is likely to increase the

number of the linearly-dependent rows in matrix A and, thus, ND would increase and Cind

decreases; when the current number of control nodes is insufficient to obtain full control

over the whole system, there is no guarantee that the system can be brought back to the

designed operation condition.

2.3 Network topological efficiency

Network topological efficiency is a measure of the connectivity of the whole network, i.e.

of how well the nodes of a network exchange flow [32]. This measure is based on the

assumption that the flow in a network travels along the shortest routes. In the case of

gas transmission networks, a typical priority supply pattern, especially during gas crises, is

distance-based [24]: nodes geographically closer to the gas source are served first, since gas

pressure drops at the points far from the supply source: where the distance from the source

is shorter, the demand is more likely to be served, thus, the efficiency of gas transmission is

higher. Then, the efficiency in the communication between two nodes i and j, εij , is inversely

proportional to their shortest path length dij ; this latter is defined as the smallest sum of

physical distances throughout all the possible paths in the weighted network: εij = 1/dij .

When there is no path between i and j, dij = +∞, i.e εij = 0. The topological efficiency of

the whole network is given by:

E[G] =

∑
i 6=j∈G εij

N(N − 1)
=

1

N(N − 1)

∑

i 6=j∈G

1

dij
(6)
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3 Case study

3.1 Network description and graph representation

We consider the case study from [65]. The system is visualized in Figure 1 and represents

a real gas transmission network for supply across several countries in the EU. The gas

transmission network includes 56 nodes and 74 links, where nodes represent sources or

substations and links represent the gas transmission pipelines connecting the nodes. Among

the 74 links, 10 links are virtual links representing the virtual connection of parallel pipelines,

and their failure is not considered.

Figure 1: Gas transmission network [65]

The gas transmission network is modeled as an undirected graph G. Its connectivity
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structure can be defined by its N×N adjacency matrix Adj, whose entries [Adjij ] are equal

to 1 if there exists a link joining node i to node j and 0 otherwise.

Each link in the network is characterized by its capacity, i.e the maximum amount of

flow that it is able to supply, and its length. The capacity matrix K contains information

about the capacity constraints of the network elements including source nodes, demand

nodes and pipeline capacities. The length matrix Len contains the lengths of the edges

between nodes: entry Lenij is the length of the pipeline connecting the i-th and j-th nodes;

an entry of 0 indicates that the i-th and j-th nodes are not connected.

We distinguish: Ny = 35 demand nodes with deterministic daily demands for a total

system daily demand of 45.9 millions of cubic meters (mcm), one LNG terminal (node 10),

two compressor stations (nodes 11 and 12), two storage devices (nodes 10 and 19) and two

pipeline source nodes (nodes 2 and 29).

The properties of the four nodes considered as supply nodes (sources), numbered 2, 10,

19 and 29, are presented in Table 1. The properties of the 35 demand nodes are shown

in Table 2. The capacities and demands are expressed in millions of cubic meters per day

(mcm/d). The data of supply and demand are realistic and they are expressed at a daily

scale, in order to assume peak gas demand during one peak day (in winter) with extreme

high gas demand [24]. These data are intended to represent the most stressed conditions

for the gas transmission network. Depending on the purpose of the analysis, variable values

of demand or supply can be considered, and the user demands satisfaction can be evaluated

as the average over a simulation horizon, with associated uncertainty.

Given the capacities of the links connecting the nodes and the constraints on the sources

and users, the supply to each user is used to calculate the non-supplied demandNSD defined

in Equation 1 by maximum flow algorithms [24]. In the case study, for illustration purposes

and with no loss of generality, we assume that all users have the same importance and ωi

is equal for the user nodes.

Node Capacity Type

2 31 Pipeline source

10 10.5 LNG terminal

19 25 Underground storage

29 4 Pipeline source

Table 1: Sources properties
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Node Demand Node Demand Node Demand

4 0.1 27 3.0 44 0.7

5 3.2 28 6.0 45 1.3

6 0.1 30 0.5 47 0.1

8 0.1 33 0.5 48 1.8

9 0.1 34 0.5 49 0.2

10 1.0 35 0.1 51 7.0

13 0.5 36 4.2 52 0.6

17 0.1 37 1.3 53 0.1

18 8.5 39 0.3 55 0.2

20 0.6 41 0.6 57 0.2

25 0.5 42 0.6 58 0.3

26 0.8 43 0.2

Table 2: Demands of the 35 users

3.2 Failure modelling

We consider the failure of the LNG station, compressor stations, storages and 64 pipelines.

The failure of the LNG terminal and of the storage devices is modeled as the total ca-

pacity loss of each pipeline connected to it. According to [65], the monthly failure frequency

of the LNG (node 10) is set to fLNG = 1.25E − 2, and the monthly failure frequency of the

storage (node 19) is fS = 8.33E − 3.

In case of a compressor station failure, the capacity of each pipeline connected to it will

reduce by 20%. The monthly failure frequency of the two compressor stations (nodes 11

and 12) are fCS = 2.08E − 2.

According to the EGIG report [68], the average failure frequency of a European gas

transmission pipeline is 3.5E − 4 per kilometer-year. We consider the total rupture of a

pipeline and we assume that 10% of the failures reported in a year cause such a rupture.

Thus, the monthly failure frequency of a pipeline is fP = 2.92E − 6 per kilometer [65].

4 Analysis of link importance

We focus on the importance of a link in terms of its influence on the three system properties

considered.

Table 3 presents the values of the three indexes introduced in Section 2, calculated for

the nominal network configuration G. For the analysis of link importance, we systematically
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NSD Cind E

0 0.9107 0.6327

Table 3: Indexes values for the nominal configuration

disconnect one link at a time from the original network to obtain and compute the indexes

of the new network configuration reached, G′. We identify the most important nodes in

terms of NSD, Cind and E, respectively. Table 4 presents the ten most critical links in

terms of NSD, the three most critical links in terms of Cind, and the single most critical

link in terms of E.

Link NSD Cind E

3-11 0.363 0.9107 0.6319

3-46 0.209 0.9107 0.6327

21-28 0.131 0.8929 0.6327

2-50 0.126 0.9107 0.6325

11-50 0.120 0.9107 0.6323

6-44 0.106 0.9107 0.6321

44-46 0.081 0.9107 0.6327

36-47 0.048 0.8929 0.6327

4-48 0.039 0.8929 0.6318

34-37 0.028 0.8929 0.6327

44-45 0.028 0.9107 0.6318

18-40 0.026 0.9107 0.6325

6-35 0.002 0.8750 0.6325

11-43 0 0.8750 0.6326

18-23 0 0.8750 0.6327

18-34 0 0.9107 0.6318

Table 4: Indexes values associated to the removal of the most critical links

With the removal of single links, the NSD value ranges from 0 to 0.363. Pipelines

represented by links 3-11 and 3-46 are of large capacity, so they are essential to supplying

the demand nodes in their neighborhood, and thus their importances are significant in terms

of supply. A similar explanation applies for the removal of links 6-44 and 44-46.

Node 28 is a large demand node, and therefore, the removal of link 21-28, which is its

only connection to the network, will affect the overall network NSD. The same explanation

also applies for the impact of links 4-48, 34-37 and 44-45. Link 4-48 and link 44-45 are
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critical in terms of efficiency E, because their removal disconnects the end nodes 48 and

45, respectively and, thus, decreases the network efficiency; moreover, considering that they

are relatively short pipelines, the value of E drops much more than for the removal of links

34-37 and 21-28, which are long pipelines.

Links 2-50 and 11-50 connect the main source (node 2) to the rest of the network, and

their removal leads to a deficit in supply capacity, since the remaining sources 10, 19 and

29 are not capable of fully supplying the total demands.

Link 18-34 is also a critical link in terms of topological efficiency: when it fails, the

network will break into two separate parts and no gas flow can be transferred between

them, so that, the topological efficiency E drops.

To rigorously quantify the importance of a link, we compute its Risk Achievement (RA)

metric [69] with respect to NSD, Cind and E:

IMNSD
ij = NSD[G(base)]−NSD[G′(xij = 1)] (7)

IMCind
ij = Cind[G(base)]− Cind[G′(xij = 1)]

=
ND[G′(xi = 1)]−ND[G(base)]

N

(8)

IME
ij = E[G(base)]− E[G′(xij = 1)] (9)

where G′(xij = 1) is the graph of the network obtained by removing the link i− j from the

original network G(base).

Figure 2: Link importance in terms of NSD, Cind and E

Figure 2 shows the links importance values in terms of the three indexes: the left vertical

axis is the values for NSD (triangles) and Cind (squares), while the right vertical axis is
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the topological efficiency E (circles). It is seen that NSD presents the largest range, while

a single link disconnection has little impact on controllability and E has the smallest range.

Among the 64 links, only 23 links have impact on NSD and most of them also have an

impact on E, but only five links influence the controllability index.

The influence of a link is not the same for the three perspectives, which confirms the

need of a multi-perspective framework of analysis.

5 Simulation and analysis

We have run 106 dynamic simulations by ProGasNet [65], sampling nodes and links accord-

ing to their occurrence probabilities, as introduced in Section 3.2. A total of 335 different

gas transmission states (cases) emerge from the sampled configurations. The most frequent

state sample is the one with no link failures.

We classify the 334 failure cases into different categories by their combination of failures.

We consider the thirty most frequent states and investigate how these affect the three

system-level indexes considered. For each of the indexes, we quantify their consequences

and analyze the impacts of different types of failures.

5.1 Classification by failure types

Both links and nodes of the gas transmission network may fail and multiple failures may

occur. In order to understand the influence of different types of failures and of their com-

binations, we classify the 334 failure cases into seven classes as:

• Single link failure (SL)

• Single node failure (SN)

• Single link failure and single node failure (SL-SN)

• Single link failure and multiple node failures (SL-MN)

• Multiple link failures (ML)

• Multiple link failures and single node failure (ML-SN)

• Multiple node failures (MN)

Single node failure (SN) includes 4 cases (only four nodes may fail according to our

definition), but they cover 83.23% of the failure configurations. Single link failure (SL)
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includes 61 cases and is the second most frequent class. The cases of SL-MN, ML and

ML-SN only occur once in all simulations performed. Figure 3 shows the number of cases

for each class and their counts.

As we are analyzing an existing gas transmission network, it is reasonable to have low

probabilities for multiple failures scenarios; however, the failures of low frequency of occur-

rence may have an important impact on the properties of the system, which is one of our

interests in this study. Therefore, although the probability of their occurrence is small, it

is interesting to consider such multiple-element failures and understand the corresponding

consequences, which provides additional information for CIs design.

Figure 3: Histogram: number of cases and frequency

5.2 30 most frequent cases

We consider the 30 most frequent cases and apply the analysis framework. Table 5 sum-

marizes the failure types and frequencies of the 30 most frequent cases. Node failure is the

most common failure type, the four most frequent failure cases being the four single node

failure (SN) cases.
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Type Cases
Frequency

(over 106 simulations)

Failure free 1 929 013

SN 4 59 040

SL 21 6 238

MN 4 1 098

Table 5: 30 most frequent cases

5.3 The three indexes

We analyze the three indexes separately, with the objectives of identifying the failures affect-

ing each index, quantifying their consequences in terms of loss in the properties considered

and calculating their frequency.

5.3.1 Non-supplied demand

Figure 4 shows the NSD index value for the 335 cases, where the abscissa axis is the

frequency rank of the 335 cases. The non-supplied demand NSD ranges from 0 to 0.64. In

the presence of multiple failures, the network may reach a much higher level of non-supplied

demand NSD. The highest value 0.64 corresponds to the SN-SL case where both node 19

and link 2-50 are failed. Node 19 is the second largest source and its failure alone results in

NSD = 0.2261, since without it, some demand nodes far from the main source (e.g. node

2) are not fully supplied due to the limited capacity of pipelines connecting different areas

(e.g. link 18-34), even though the total supply capacity of the sources is able to cover all

demands. Combining with the failure of link 2-50, which cuts the supply from the main

source (node 2) to other nodes, the supply of the whole network drops even more.

NSD = 0 is the most frequent value. The case ranked 5 is the failure of node 19 and

has NSD = 0.2261. It occurs 7 888 times out of the one million simulations. Generally

speaking, high values of NSD (NSD > 0.3) tend to have low frequency. For 146 out of 335

cases (43.6%), the demand can not be fully supplied, i.e. NSD > 0.

Figure 5 shows the cumulative distribution function (CDF) of NSD for the failure

configurations. The mean value of NSD is 0.0285 over the 70 987 configurations with

failures and 0.0020 over all 106 configurations simulated.

Figure 6 shows the NSD of the original network (Ori) and the mean values for all

sampled configurations (All), the failure configurations only (Failure), the 30 most frequent

cases (Top 30) and the seven classes of failures (SL, SN, SL-SN, SL-MN, ML, ML-SN, MN).
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Figure 4: Non-supplied demand for the 335 cases

Figure 5: CDF of non-supplied demand for the failure configurations

The NSD for the top 30 cases is higher than that for the nominal configuration and

comparable to that of all configurations. This indicates that, the most frequent cases have

non-negligible impact on the demand supply.

If we compare the seven failure classes, we see that, as a whole, node failures have a

more important impact in terms of non-supplied demand. In presence of node failure (SN,

SL-SN and SL-MN), the non-supplied demand NSD is higher than for the cases with single
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Figure 6: Non-supplied demand for different categories

link failure (SL). The combination of link failures only increases slightly the NSD: the

mean NSD of ML is slightly higher than that of SL. As for ML-SN, among all the possible

combinations of failures, only four cases occur once each, and they happen to have relatively

small influence in terms of NSD, the mean being 0.010. The class of multiple node failures

(MN) has a significantly high value of non-supplied demand. All MN cases without failure

of node 19 have NSD = 0. The failure of node 19 alone would lead to NSD = 0.2261,

and for the case where node 10, 11 and 19 are all failed at the same time, NSD = 0.3111.

In fact, the link 3-11 represents a large capacity pipeline and in the absence of gas supply

from the storages represented by nodes 10 and 19, the reduction of its capacity due to the

failure of node 11 would result in the non-supply to demand nodes in the vicinity, depending

mainly on the main source (node 2). Considering the relatively high failure probability of

node 19, the MN class has a high value of NSD.

5.3.2 Controllability index

Figure 7 shows the index value of Cind for the 335 cases and the abscissa axis is the frequency

rank of the 335 cases. The controllability index takes three values 0.9107, 0.8928 and 0.875

for the 335 cases, as for the removal of single links. Cind = 0.9107 is the most frequent

value. For 58 out of 335 cases (17.3%), the controllability index Cind is lower than that of

the failure-free network configuration. The lowest value 0.875 is more present for the less

frequent cases (i.e. Rank>150).

Figure 8 shows the cumulative distribution function (CDF) of Cind. Only 1 559 out

of the 70 987 failure configurations (2%) have Cind lower than 0.9107. The mean value of

Cind is 0.9102 over the 70 987 failure configurations and very close to 0.9107 over the 106
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Figure 7: Controllability index for the 335 cases

Figure 8: CDF of the controllability index for the failure configurations

simulations.

Figure 9 shows the mean value of Cind of the original network (Ori) and the mean values

for all sampled configurations (All), the failure configurations only (Failure), the 30 most

frequent cases (Top 30) and the seven classes of failures (SL, SN, SL-SN, SL-MN, ML, ML-

SN, MN). The mean of Cind of the top 30 cases is slightly lower than but still close to that

of the nominal network configuration.

Node failures have no impact on the controllability index, since they only concern the
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Figure 9: Controllability index for different categories

reduction of pipelines capacity but not their disconnection. Thus, link failures are the

only contribution to the loss in controllability. The mean of all cases containing single

link failures (i.e. SL, SL-SN and SL-MN) is 0.9069, slightly higher than that of the cases

containing multiple link failures (i.e. ML and ML-SN) cases, which equals to 0.9051. This

indicates that multiple failures have a more important impact on the controllability index,

with Cind reaching values no lower than 0.8750. For the SL, SL-SN and SL-MN cases, this

lowest value results from the failures of links 6-35, 11-43 or 18-23, the removal of each of

which decreases Cind to 0.8750. As for ML and ML-SN cases, the lowest value comes from

the combination of two link failures with no separate impact on Cind (links 9-10 and 10-53),

or the combination of two links whose removal decreases Cind to 0.8929 (links 22-24 and

34-37).

5.3.3 Network topological efficiency

Figure 10 shows the values of E for the 335 cases, and the abscissa axis is the frequency

rank of the 335 cases. The network topological efficiency ranges from 0.6317 to 0.6327. The

most critical links are link 44-45 and link 18-34, whose removal decreases the efficiency to

0.6318. Multiple failures decrease the lowest value of E slightly. In fact, all the seven values

below 0.6318 are related to the failure of link 44-45 or link 18-34: the five first cases include

single link failures alone or together with single node failure, while the last two cases with

low values are multiple link failures.

Figure 11 shows the cumulative distribution function of E. The topological efficiency E

stays close to the value of the failure-free configuration. However, 10 581 out of the 70 987

failure configurations (14.91%) have E lower than the value of the failure-free configuration,
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Figure 10: Network topological efficiency for the 335 cases

Figure 11: CDF of the network topological efficiency for the failure configurations

and 10581 is the number of configurations with at least one link failure. This means that

failure of any link will influence the efficiency.

Figure 12 shows the mean value of E of the original network (Ori) and the mean values

for all sampled configurations (All), the failure configurations only (Failure), the 30 most

frequent cases (Top 30) and the seven classes of failures (SL, SN, SL-SN, SL-MN, ML,

ML-SN, MN).
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Figure 12: Network topological efficiency for different categories

Similar to the controllability index, node failures alone have no influence on topological

efficiency and multiple link failures have a more important influence than single link failures.

The mean of E over all cases of single link failure (i.e. SL, SL-SN and SL-MN) is 0.6326

and for the cases containing multiple link failures (i.e. ML and ML-SN) it is 0.6325.

Generally speaking, the variation of E is not significant, much less than the other two

indexes. This is reasonable, because the network is not a sequential one and multiple paths

exist between any two nodes: when one link fails, the gas flow can still be transferred via

an alternative path, although of longer distance.

5.4 Protective actions

From the above analysis, we understand that node failures have significant importance

in terms of supply, but do not affect other properties, that the link failures influence on

NSD is less important than that of node failures and that the consequences of failures on

controllability and topological efficiency are limited compared to NSD. This means that,

supply is the primary concern with respect to protection from failures, whereas network

connections and control are not so sensitive and more fault tolerant.

Node 19 is found to be an important node which may require protection priority, since

it has a relatively high failure probability and at the same time has a significant impact on

supply. Figure 13 compares the cumulative distribution function of NSD over all simulated

configurations and the 991 570 configurations in which node 19 is not failed: the mean value

of NSD of all configurations drops from 0.0020 to 0.0001, which is much lower.
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Figure 13: CDF of NSD for all configurations and for the configurations without failure

of node 19

6 Conclusions

Critical infrastructures, such as power grids, gas or water distribution networks, etc., are

complex networks designed and operated to supply the service demanded. The increasing

threats to the safety and security of their functions make it crucial to ensure safe and reliable

performance.

In this paper, we have developed an analysis framework considering three perspectives:

supply service, controllability and topology. By performing such an analysis, we are able

to identify the most critical elements within the network and quantify the consequences of

failure scenarios. The analysis framework has been applied to a gas transmission network.

In the current work, repair is not taken into account and only one failure level is simulated.

Even with such simplifications, the presented framework is able to identify the critical

elements in terms of different perspectives considered. In future work, a multi-state approach

and repair will be considered.

The results of the analysis show that the influence of a single link is not the same for the

three perspectives and neither are the various failure scenarios. Supply turns out to be the

most affected by failures, and can, thus, be used as the objective for the prioritization of
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investments for CI protection. However, other key performance indicators should be consid-

ered, including flexibility, recovery capacity, etc., which the other perspectives are sensitive

to; then, the integration of the three perspectives should be considered within a multi-

objective optimization for the multi-KPI design of CIs. This will be the object of future

work. The findings of this work show the importance of considering several perspectives of

analysis for CIs.

In the current paper, we emphasize the identification of the elements critical to the

perspectives considered and the stochastic approach is adopted. Consideration of cascading

effects and targeted attacks will complete the study in the continuation of this work, since

this can provide more information for understanding the correlation among the different

properties. Also, as CIs are more and more interconnected and automated, interdependen-

cies and multi-CIs modeling become of great interest. The framework will be expanded and

improved by taking into consideration the interdependencies in future works.
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