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Abstract  

Reliable gas supply for minimum risk of supply shortage and minimum power demand for 

low energy cost are two fundamental objectives of natural gas pipeline networks. In this paper, a 

multi-objective optimization method is developed to trade-off reliability and power demand in the 

decision process. In the optimization, the steady state behavior of the natural gas pipeline 

networks is considered, but the uncertainties of the supply conditions and customer consumptions 

are accounted for. The multi-objective optimization regards finding operational strategies that 

minimize power demand and risk of gas supply shortage. To quantify the probability of supply 
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interruption in pipeline networks, a novel limit function is introduced based on the mass 

conservation equation. Then, the risk of interruption is calculated by combining the probability of 

interruption and its consequences, measured in utility terms. The multi-objective optimization 

problem is solved by the NSGA-II algorithm and its effectiveness is tested on two typical pipeline 

networks, i.e., a tree-topology network and a loop-topology network. The results show that the 

developed optimization model is able to find solutions which effectively compromise the need of 

minimizing gas supply shortage risk and reducing power demand. Finally, a sensitivity analysis is 

conducted to analyze the impact of demand uncertainties on the optimization results. 

Keywords: Natural gas pipeline network; Multi-objective optimization; Supply reliability; Power 

demand; NSGA-II algorithm 

1. Introduction  

Nomenclature 

A cross sectional area of pipeline Q Volumetric flow rate 

c Sound speed Qi,j 

Flow rate into delivery node i from 

connecting pipeline j 

c1-c6 
Constants depending on compressor 

units 
R Gas constant 

C Heat capacity  Sg Specific gravity of natural gas 

D Diameter of the pipeline SR Shortage risk (SR) of Customer 

EC 
Energy cost T Temperature 

f Frictional factor K The factor for limited function 

Li 
Gas uploaded to (Li<0) or Downloaded 

from (Li >0) the pipeline network 
Ui(Li) Utility for Customer i of demand Li 

H Value of headz yi Mole fraction of component i 

Lmn Length of pipeline m-n v Gas velocity 

Mair Molecular mass of air vi,t, ki,t 
Constant parameters for untility 

calculation 

NR,min Minimal speed of compressors Z Compressible factor 

NR,max Maximal speed of compressors  Angle between pipeline and 



ground 

N.F.S No feasible solution  Reliability index 

pd Outlet pressure of compressor n  Density 

ps Inlet pressure of compressor  Efficiency 

pm Pressure at node m  Absolute roughness of pipeline 

pmin Acceptable minimal pressure  ,  

Mean value and standard deviation 

of the stochastic variables, 

respectively 

pmax Acceptable maximal pressure  Darcy friction factor 

preference Reference delivery pressure t 
Average duration of line-pack 

capacity consumption 

pi,potential 
Delivery pressure after line-pack 

consumption 
x 

Length of pipeline influenced by 

line-pack capacity consumption 

Plim,i Required minimum delivery pressure  
Standard normal distribution 

function 

Natural gas plays a crucial role in the world energy consumption portfolio, as a clean energy 

resource. It is transported from resources to demands via pipeline systems. During the process of 

gas transportation in pipelines, there are pressure drops because of the friction between the pipe 

inner surface and the gas. To maintain reliable supply to the customers, the pressure drops are 

compensated by compressor stations located along the pipeline network system. These compressor 

stations are usually equipped with gas turbines, operated with spilled natural gas. According to the 

literature, the gas consumption of these stations accounts for 3-5% of the total amount of natural 

gas transported in the pipelines and the cost of compressors operation constitute 25-50% of the 

overall company operation budget (Demissie, Zhu, and Belachew 2017). Then, optimizing the 

compressors operation and minimizing the fuel cost of compressor stations are important issues. 

Many efforts have been done for the optimization of natural gas pipeline networks. Literature 

reviews have been written to summarize the methods and the achievements (Ríos-Mercado and 

Borraz-Sánchez 2015). In general, the optimization problems can be classified into operation 



problems and design problems (Demissie et al. 2017; Guerra et al. 2016). The optimization 

methods for design problems focus on the system structure design, material selection, compressor 

station configuration and components location (Üster and Dilaveroǧlu 2014). The target of design 

optimization is to optimize system transmission capacity (Alves, Souza, and Costa 2016), 

operation flexibility (Fodstad, Midthun, and Tomasgard 2015) and future expansion plans 

(Mikolajková et al. 2017), with the minimum cost of investment. The optimization of operation 

considers different targets, such as operation cost minimization (Misra et al. 2015; Ríos-Mercado, 

Kim, and Boyd 2006), delivery capacity maximization (Fasihizadeh, Sefti, and Torbati 2014), 

line-pack maximization (Ernst et al. 2011; Ríos-Mercado and Borraz-Sánchez 2015), greenhouse 

gas emission minimization (Yang et al. 2017), etc. Due to the complexity of these optimization 

problems including non-linearity and non-convexity, they are very difficult to solve with feasible 

computational efforts. Methods have been developed, including Dynamic Programming 

(Ahmadian Behrooz and Boozarjomehry 2017), Mixed Integer Non-Linear Programming (Wang, 

Liang, et al. 2018; Wang, Yuan, et al. 2018; Zhou et al. 2019), Graph Theory (Praks, Kopustinskas, 

and Masera 2015; Su, Zhang, et al. 2018), Intelligence algorithm (Cortinovis et al. 2016; 

MohamadiBaghmolaei et al. 2014; Su, Zio, Zhang, Yang, et al. 2018; Zhang et al. 2018), 

distributed optimization(Won and Kim 2017) and so on. Among these methods, the nondominated 

sorting genetic algorithm (NSGA) has been chosen to achieve very good results in many 

applications (Deb et al. 2007). However, in most cases, the multi-objective optimization problem 

is simplified to a single-objective optimization problem, by converting part of the objectives to 

constraints. With the increase in computational capacity, some efforts have been conducted to 

solve multi-objective optimization problems in natural gas pipeline systems (Demissie et al. 



2017).  

In light of the occurrences of the disasters of natural gas interruption in recent years (Flouri et 

al. 2015), reliability of supply of natural gas pipeline systems has become an important concern: A 

number of methods have been developed to analyze the reliability of critical infrastructures from 

different perspectives (Lappas and Gounaris 2018; Mo, Li, and Zio 2016; Su et al. 2017; Zio 

2016). According to the literature survey, most of the supply reliability analyses of natural gas 

pipeline networks are concerned with the long-term design (McCarthy, Ogden, and Sperling 2007; 

Praks et al. 2015; Su et al. 2017; Su, Zio, Zhang, and Li 2018), and the short-term supply 

reliability is always addressed either by putting a pressure buffer dimensioned according to the 

contract required pressures and engineering experience, or by maximizing the line-pack at the 

demand side (Ahmadian Behrooz and Boozarjomehry 2017). Demand uncertainty is also 

considered as an important factor in the optimization. (Ahmadian Behrooz 2016; Ahmadian 

Behrooz and Boozarjomehry 2017).  

In spite of these efforts, the relationship between operation strategies and short-term supply 

reliability have been mainly developed based on engineering experience. Generally, a high level of 

supply reliability requires large pressure buffers for the overall system, which needs more fuel 

consumption by the compressor stations to maintain the high pressures. To effectively enhance the 

supply reliability and the system efficiency at the same time, a scientific method to optimize the 

pressure buffer and the operation cost in natural gas pipeline networks is in need.  

In this work, a multi-objective optimization method is developed to find operational 

strategies for optimize the two conflicting objectives, i.e., minimize supply shortage risk and 

power demand. To quantify the risk of shortage in a short-term (hourly), the shortage probability is 



calculated based on a simplified hydraulic model of pipelines and demand uncertainties. The 

consequences of shortages are quantified via Utility Theory (Sheikhi, Bahrami, and Ranjbar 2015). 

Power demands of pipeline networks are calculated by a steady-state hydraulic model including 

pipelines and compressor stations. Finally, the developed multi-objective optimization problem is 

solved by a powerful Genetic Algorithm, NSGA-II (Azadeh et al. 2017; Deb et al. 2007; 

Kuznetsova et al. 2014).  

The main contribution of this work is to propose a multi-objective decision-making method, 

considering two critical targets in natural gas pipeline systems, namely supply shortage risk 

minimization and power demand reduction. To support this decision-making process, a novel 

method to quantify the short-term risk of supply is developed based on hydraulic properties of 

pipelines, uncertainties of gas demands and characteristics of customers.  

The rest of this paper is organized as follows: Section 2 illustrates the method, in three parts: 

Natural gas pipeline network modeling and power demand calculation (Section 2.1), Shortage risk 

of supply calculation for customers (Section 2.2) and multi-objective optimization modeling of the 

operation of natural gas pipeline networks (Section 2.3). The case study is performed in Section 3 

to verify the effectiveness of the developed method and the results are analyzed from different 

perspectives. Finally, Section 4 discusses the conclusions and the plans for future research on the 

topic. 

2. Methodology  

In natural gas transmission systems, a large part of energy is consumed by compressor 

stations. Hence, reducing their power demands can effectively increase the efficiency of the 

pipeline system and the operating profit. Besides, considering that most of the compressors are 



driven by the gas turbine, reducing the power demand of the compressor stations can also benefit 

the environment by reducing greenhouse gas emission. Considering this, it is no surprise that 

power demand reduction of compressors is a main target of optimization of gas transmission 

systems. 

Furthermore, in a natural gas pipelines system, there are various types of customers with 

different demands and the system needs to be operated in a way as to maintain the delivery 

pressures above the minimum contract pressure in order to satisfy the requirements. Because of 

unpredicted events, such as extreme weather conditions, the demands of customers can be quite 

uncertain, which requires “margins” in delivery pressures, i.e., pressure buffers at the demand 

points to make sure the minimum contract pressure can be satisfied in any case.  

However, the pressure buffers require extra power demands in the compressor stations, to 

maintain a high level of operating pressures in the overall pipeline network. Accordingly, the main 

challenge of operation optimization in natural gas pipeline systems is to figure out the trade-off 

between efficiency and security of supply. In real application, the delivery pressures at the demand 

sites are always determined by experience of operators and historical data of customers’ demands. 

In general, because of the complexity and nonlinear properties of natural gas pipeline networks, 

this kind of experience-based methods may not always give a good choice. In this part, the method 

introduced is able to help finding out the optimal pressure buffers to maintain a reliable supply 

with minimum cost of energy.  

2.1 Natural gas pipeline network modeling and power demand calculation 

Natural gas pipeline networks are complex systems. The following assumptions are made for 

their modeling (Ríos-Mercado and Borraz-Sánchez 2015; Szoplik 2016; Zhang, Wu, and Zuo 



2016): 

A. In this work, the optimization is carried out based on the system steady-state behavior, 

which means that it aims at finding optimal reference values of delivery pressure at demand sites;  

B. The pipeline segments are horizontal; 

C. Directions of gas flow in pipelines are specified; 

D. Gas flows in pipelines are isothermal; 

E. The compressibility factor remains constant throughout the transportation process. 

Based on the assumptions, the pipeline equations can be simplified as follows (Demissie et al. 

2017): 

( )2 23.629 mn
m n

g mn mn

D
Q p p

ZS Tf L
= − (1) 

where Q denotes the flow rate in Nm3/s; Dmn denotes the diameter of the pipeline m-n; pm and pn 

represent the pressure at nodes m and n in Pa; Z is the compressible factor; T is the temperature of 

gas in K; fmn denotes the frictional factor; Lmn denotes the length of pipeline m-n in m; Sg denotes 

the specific gravity. 

The frictional factor can be obtained by solving Nikuradse’s Equation (Coelho and Pinho 

2007): 
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2log
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mn ijf D

 
= −   

 

(2) 

where ij  is the pipe absolute roughness in mm. 

The specific gravity can be calculated by the following equation: 

NG
g

air

M
S

M
= (3) 

where Mair is the Molecular mass of air, g/mole; MNG is the Molecular mass of natural gas, which 



can be obtained via: 

NG i iM M y=  (4) 

where Mi represents the Molecular mass of component i in g/mole; yi is the mole fraction of 

component i. 

Compressors provide energy to natural gas to supplement pressure losses during the gas 

transmission process. The energy supplemented by the compressor is calculated as head, i.e., the 

amount of energy supplied per unit mass of gas. The value of head can be obtained by the 

following equation (Hesam Alinia Kashani and Molaei 2014): 
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in which k is calculated by (Pambour, Bolado-Lavin, and Dijkema 2016): 

pi i

pi i

C My
k

C My R
=

−




(6) 

On the basis of Equation 6, we can further calculate the energy provided to the gas in the 

compressor (Demissie et al. 2017): 

m

is

Q H
Power


= (7) 

The performance of centrifugal compressors can be described in terms of the specific 

properties of adiabatic head, adiabatic efficiency, inlet volumetric flow rate and compressor speed. 

The relationships between them are usually represented via performance maps in which H is 

plotted as a function of Q at different compressor speeds NR (in rpm). The performance map is 

different for different compressors. In this work, the performance maps are adopted from 

Reference (Demissie et al. 2017). To analyze the working conditions of the compressor, the curves 



on the map are approximated by quadratic polynomial functions (Equations 8-9), and the constants 

in the fitting functions are obtained via the least squares method.   

2

1 2 32

ac ac

R R R

Q QH
c c c

N N N

   
= + +   

   
(8) 

2

4 5 6
ac ac

is

R R

Q Q
c c c

N N


   
= + +   

   
(9) 

The performance of the compressor is mainly limited by two constraints: (1) the rotational 

speed NR must remain within the operational range in Equation 10, (2) the operational range of the 

compressor is limited by its surge and stone wall, as in Equation 11. 

,min ,maxR R RN N N  (10) 

,,

,min ,max
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        
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(11) 

2.2 Shortage risk of supply calculation for customers 

The reliable supply of natural gas in pipeline networks is a fundamental requirement for 

operation optimization. However, most optimization works focus on economic efficiency 

improvement or greenhouse gas emission reduction. The reasons of that are: (1) supply reliability 

of natural gas is always considered as a long-term issue and should be dealt with at the design 

stage; (2) it is difficult to properly evaluate the supply reliability from the perspective of 

short-term operations which relates to the operation strategy, the hydraulic properties of the 

natural gas flow and the uncertainties of consumption. Considering these problems, here we 

propose a novel method to evaluate the short-term supply reliability of natural gas pipeline 

networks. 

Generally, pipeline systems must maintain the supply pressures at the customers higher than 

the minimum pressures required by contract (Fig. 1). In some conditions, the gas flows into the 



pipeline may be less than the consumption by its connected customer, which generates an 

imbalance between the supply and the demand of the customer. To fill the gap of gas from the 

imbalance, gas is supplemented by the line-pack capacity, which leads to the decrease of the 

delivery pressure at the customer. For this reason, gas pipeline operators need to retain a pressure 

buffer between the delivery pressure and the minimum required pressure.  

 

Fig. 1 Dynamic behavior of pressure at a delivery point 

The key point to perform the operation optimization with the consideration of supply 

reliability is to mathematically describe the relationship between the delivery pressure, the 

customer’s consumption of gas and the conditions of the pipeline network system, and, then, inject 

the uncertainties into this relationship.  

2

0ncp Q

t A x

 
+ =

 
(12) 

( ) ( )2

n nn

n sin 0
2

v v vv p
g

t x x D

 
 

 
+ + + + =

  
(13) 

The mass equation and the momentum equation (Equations 12-13) are typically the basics to 

model the hydraulic properties of the natural gas flow in the pipelines. We here use the mass 

equation to model the relationship between the delivery pressure, the customer’s consumption of 

gas and the system condition, by transforming Equation 12 as Equation 14 (Pambour et al. 2016). 



We consider the continuity equation at the nodes in the network system, and Eq. 12 shows that the 

change of pressure at a node is caused by the imbalance between its inflows and outflows of 

natural gas. Based on this assumption and referring to the mathematical transformation in Ref 

(Pambour et al. 2016), we replace the term Q  in Eq. 12 by ,

1

k

i j i

j

Q L
=

 
− 

 
 . Then, Eq. 12 can 

be transformed by Eq. 14.  
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=

=

 
= − − 
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


(14) 

where，Qi,j represents the gas flow into delivery node i from the connecting pipeline j; when gas 

flows from the pipeline j to the delivery node i, Qi,j is positive; otherwise Qi,j is negative. Li 

represents the gas uploaded to (Li<0) or downloaded from (Li >0) the pipeline network; when the 

node represents a junction, Li =0. Hence, Eq. 14 represents the changes in the delivery pressures at 

the demand sides along with the fluctuations of the line-pack values.   

To clearly present this relationship, Equation 14 is further transformed as Equation 15 by the 

finite difference method, which is a numerical method to transform the differential equations in 

time into algebraic equation: 
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where pi,potential represents the delivery pressure after the time interval t  with the line-pack 

consumption rate of ,

1

k

i j i

j

Q L
=

 
− 

 
 . preference represents the reference delivery pressure, obtained 

by adjusting the operating conditions of the compressors in the pipeline network. In general, the 

flow rate should be calculated based on both the mass equation and the momentum equation, by 



mathematical iteration methods. But in this work, to evaluate the supply reliability at the delivery 

node, we need to know the probability rather than an exact value of pressure. For this reason, we 

consider as stochastic variables both the flow rate Q and the customer consumption L and predict 

the potential risk of supply shortages. Here the uncertainties of the flow rates, which is 

hypothetically represented by their standard deviations, in the pipelines connecting the customers 

are used to represent the uncertainties of the system supply capacity, due to the uncertain changes 

in the system running conditions. This is because the changes of working conditions in the 

pipeline network will eventually reflect on the flow rates to the customers, from the supply 

reliability perspective. Based on that, a limit function is developed as: 

  ( ) ( ), lim, lim,, , ,i ij i i t i ij ij i reference ig Q L P P K a Q L t p P= −  + − (16) 

in which Plim,i denotes the contract required minimum delivery pressure; gi<0 represents the 

occurrence of supply shortage at Customer i; the factor K is calculated by Equation 17: 
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i j i j
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K
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=

= −


(17) 

in which t  is the average duration of time that the consumption of the line-pack capacity may 

continue; ,i jx  is the length of the pipeline j influenced by the imbalance between the delivery 

gas volume and the demand of Customer i. Hence, gi<0 represents the fact that the future delivery 

pressure, pi,potential= ( )ij ij i referenceK a Q L t p−  + , is incapable of fulfilling the needs of 

Customer i.  

Usually, the limit state function needs to be solved by a huge number of Monte-Carlo 

simulations. However, in this work the limit state function is conveniently built up as a linear 

function of the stochastic variables, by which the probability of shortage of natural gas can be 



directly obtained by Equations 18-19. The process derivation is performed based on the First order 

second moment method (Beck et al. 2015), which is always used for analysis of structure 

reliability. The key point of the method is to obtain the reliability index , according to the 

moments of the linear limited function (Eq. 16). The reliability index , is, then, used to calculate 

the failure probability, based on the assumption that the variables follow the Gaussian distribution. 

  0 ( )i iP g  =  − (18) 
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lim,
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2 2 2 2 2

ij i i

ij i i
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ij Q L P

K a t p

K a t
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
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−  − +
=

−  −




(19) 

 

in which  and  represent the mean value of the stochastic variables, respectively.  

For the consequences, we use utility, a concept from microeconomics. More specifically, in 

this paper, we use a quadratic utility function to describe the utilities of the natural gas customers 

(Sheikhi et al. 2015) (Equation 20). 

( ) , 2

,
2

i t

i i i t i i

k
U L v L L= − (20) 

in which Ui(Li) represents the utility for the Customer i of the demand of Li; vi,t and ki,t are positive 

parameters. 

The supply shortage risk (SR) of Customer i can be calculated by Equation 21, by combining 

Eqs. 18 and 20: 

( )i i iSR U =  − (21) 

2.3 Multi-objective optimization modeling of the operation of natural gas 

pipeline networks 

In many works, the operation optimization problems are simplified as single-objective 



optimizations. In this paper, we develop a multi-criteria decision-making process to obtain the 

optimal trade-off of supply reliability maximization and operation cost minimization.  

The decision variables of the multi-criteria decision-making process are the rotational speed 

of the compressors and the pressures of the nodes. The two objective functions are given 

Equations 22-23 below: 

Objective 1: minimizing the supply shortage risk (SR) 

 min
i

SR (22) 

Objective 2: minimizing the power demand (PD) of the compressors  

min m

is

Q H



 
 
 
 (23) 

The constraints are Equations 24-27 below: 

Constraint 1: Flow balance at the nodes under steady state 

, ,m in m outQ Q=  (24) 

Constraint 2: the limits of the compressors as Equations 8-11. 

Constraint 3: the limits of the pressure variables. 

min max

j j jp p p  (25) 

In this work, the multi-objective optimization problem is solved by an evolutionary 

optimization algorithm, named as NSGA-II, which finds multiple Pareto-optimal solutions 

(Kuznetsova et al. 2014). The optimization process is described in the flowchart of Fig. 2: 



 

Fig. 2 Flowchart of the NSGA-II algorithm 

Then, in this paper, we use the popular “max-min method” to select an optimal compromise 

solution from the Pareto set (Zio and Bazzo 2011). Consider a Pareto point (PD, SR) as the 

coordinates in the criterion space; then we can define the deviation from the best values by: 
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max minEC

PD PD
z

PD PD

−
=

−
(26) 

min

max minSR

SR SR
z

SR SR

−
=

−
(27) 

in which PDmin and SRmin represent the minimum values of PC and RS in the Pareto solutions. 

Based on that, we can obtain the compromise optimal Pareto solution by: 

 min max ,PD RS   (28) 

 

3. Case study  



To verify the effectiveness of the operation optimization developed model, we have 

performed two applications on pipeline networks, i.e., a tree-topology pipeline network and a 

loop-topology pipeline network.  

 

Fig. 3 The layout of the tree-topology natural gas pipeline network 

In Fig. 3, the tree-topology natural gas pipeline network has two compressor stations, which 

are both equipped with six compressors arranged in parallel. In this pipeline network, there is a 

gas source supplying natural gas to three different kinds of customers at the ends of the branches. 

The basic parameters are presented in Fig. 3. In Fig. 4, the loop-topology pipeline system has two 

compressor stations, also with six parallel compressors each. It connects one pipeline importer and 

three customers. The import pressure is set at about 50 bar. Besides, the basic parameters of the 

pipeline network and the customer demands are given in Figs. 3-4. In this application, customers 

have the same contract minimum delivery pressure of 45 bar. The range of the compressor speed is 

set to 5200-9500 rpm and the pressure of the pipelines should not exceed 70 bar. We assume that 

the line-pack consumption impacts 10 km of the pipeline connecting to the customers and the 

average duration of the consumption is around half an hour. The parameters of the quadratic 

polynomial functions (Equations 8-9) are set by c1=8.43270 × 10-7, c2=1.04130 × 10-3, 



c3=-9.03270×10-1, c4=1.74291×10, c5=1.43376×105, c6=-8.00511×107, respectively. The 

developed multi-objective optimization models are solved by the GA algorithm in MATLAB, 

whose basic parameters are: population size=300, crossover fraction=0.8 and maximum number of 

generations in the GA = 300. The adaptive mutation is used to create the mutated children. The 

function tolerance is used as the convergence criterion, and its value in MATLAB is determined 

by 1×10-4. 

 

Fig. 4 The layout of the loop-topology natural gas pipeline network 

Fig. 5 presents the Pareto fronts trading-off power demand of the compressor stations and 

probabilities of supply interruption to customers. In the case study, we separate the results from 

the summation curve to individual ones of each customer, for better presenting the solution sets 

for the customers and identifying the impact of each customer to the solutions. Utilities are used 

for the multi-objective optimization process to better distinguish the importance of the different 

customers, but for the illustration of the results, we use the probability of interruption for more 

intuition. In the assumed natural gas pipeline network in Fig. 4, Demand Sides A and B 

(Customers 1 and 2) are neighbors whose pressures and supply shortage risks (by Eqs. 18-21) are 

nearly the same based on Eqs. 1-6. And, because of the differences of topology locations and 



physical conditions between Demand Side C and Demand Sides A-B, the results of risk 

calculation at Demand Side C can be very different from the others. This means that, based on the 

representation of the risk objective function in the summation form, the GA put more “weights” on 

Demand Sides A-B to find the Pareto front from the system perspective. This affects the ability of 

the GA to give good results on Demand Side C. 

 

Fig. 5 Left and the right Figures, respectively, present the Pareto fronts of the Tree-topology 

pipeline network and the Loop-topology pipeline network  

Considering that in this work, the operation strategy is adjusted by controlling the speed of 

the compressors equipped in the stations, the Pareto fronts are also presented in the form of 

trade-off between the interruption probability and the compressor speeds, as in Fig 6. Compressor 

speed I denotes the speed of the compressors located in Station I and Compressor speed I 

represents those in Station II. 



 

Fig. 6 Left and the right Figures, respectively, present the Pareto fronts of the Tree-topology 

pipeline network and the Loop-topology pipeline network  

We, then, use the “max-min” method introduced in Section 2.3 to select a compromise 

solution, assuming several acceptable values of interruption probability and power demand. 

In Tables 1-2, we give the selected operation strategies for the two pipeline networks, based 

on the Pareto sets of Figs. 5-6. Because of the limitation of the page space, we only present the 

critical parameters, i.e., the delivery pressures at the customers and the compressor speeds. From 

these results, we can observe that, for different acceptable values of power demand, the method 

selects different operation strategies to satisfy the requirements of supply reliability. This is, to 

some extent, a concession of reliability on efficiency, which puts an important impact on the risk 

exposure management of the gas supply system. Besides, we see that, in the Pareto set, there is no 

possibility for the Loop-topology network to keep the interruption probabilities for all customers 

under 10-5. This indicates that this system maybe suffers from problem of design, which cannot be 

fixed by only optimizing the operation strategy.   

Table 1 Compromise solutions selected by the “max-min” method in the Tree-topology network 

Acceptable level of 

interruption 

probability 

Acceptable 

Power demand 

(kW)  

Optimal operation parameters 

Delivery pressure (bar) 
Compressor speed 

(rpm) 

PA PB PC I II 



<10-5 

10.5×104 54.77 54.78 52.33 8386 8471 

8.5×104 53.92 53.92 52.04 7726 7288 

6.5×104 N.F.S 

<10-4 

10.5×104 53.19 53.18 51.00 5218 8064 

8.5×104 53.19 53.18 51.00 5218 8064 

6.5×104 52.93 52.91 51.26 5890 6850 

 

Table 2 Compromise solutions selected by the “max-min” method in the Loop-topology network 

Acceptable level of 

interruption 

probability 

Acceptable 

Power demand 

(kW)  

Optimal operation parameters 

Delivery pressure (bar) 
Compressor speed 

(rpm) 

PA PB PC I II 

<10-5 

10.5×104 N.F.S 

8.5×104 N.F.S 

6.5×104 N.F.S 

<10-4 

10.5×104 52.41 54.92 54.92 8529 8935 

8.5×104 54.02 54.01 52.05 7763 7797 

6.5×104 53.05 53.04 51.52 6557 6799 

Uncertain levels of customer demands can impact the operation strategy optimization 

significantly. To analyze the sensitivity of the optimization results of this factor, a crude sensitivity 

analysis is conducted on the Loop-topology network, which also includes a Tree-topology part. 

This sensitivity analysis is performed on the pipeline network with the loop topology, which is the 

most complex one contains the other two topologies of one pipeline and tree-topology. This can 

help to uncover the impact of uncertain levels of demands on supply reliability and help engineers 

to notice the importance of input data pre-processing before the optimization. The analysis results 

are shown in Figs 7-9. By performing the multi-objective optimization for different values of the 

variances, we can observe the influences of their changes on the Pareto solutions of the operation 

optimization. Also, the impacts of the demand uncertainties are reflected on the performances of 

the optimized operation strategies, which are presented in Table 4. 

In the sensitivity analysis, the values of the demands are assumed distributed as normal 



distribution and the variances of Customers A, B and C are respectively set to five different values, 

as in Table 3. In the optimization process, the variances of the customers are introduced in terms 

of the standard deviations of their demands, which are represented as Li in Eq. 19. In the 

sensitivity analysis, we increase the values of Li of the customers to analyze the impacts of the 

uncertainties on the optimization results. The level of uncertainties in the demands, e.g., the values 

of Li, are set according to the experiences of natural gas pipeline operators and amounts of 

demands. But, in the real applications, these values should be calculated based on the historical 

data of natural gas demands. 

Table 3 Uncertain levels of the demands of the three customers, represented by different variances 

(MMSCMD) 

 Level 1 Level 2 Level 3 Level 4 Level 5 

Customer A 0.2592 0.3024 0.3546 0.3889 0.4320 

Customer B 0.3110 0.3542 0.3974 0.4406 0.4838 

Customer C 0.2592 0.3024 0.3546 0.3889 0.4320 

 



 

Fig. 7 Impact of the demand uncertainty of Customer A on the Pareto solutions 

 

Fig. 8 Impact of the demand uncertainty of Customer B on the Pareto solutions 



 

Fig. 9 Impact of the demand uncertainty of Customer C on the Pareto solutions 

Table 4 Performances of the optimized operation strategies under different uncertainties of 

demands, under the requirements of different acceptable power demands and on acceptable level 

of interruption probability of 10-4 

Acceptable 

Power 

demand 

(kW)  

Variance 

level 

Optimizations performance 

Probability of interruption under optimized operation 

strategy (×10-4) 
Power  

(×104 

kw) 
Customer  

A 

Customer  

B 

Customer 

C 

10.5×104 

1 0.0011 0.0001 0.1122 10.19 

2 0.0047 0.0007 0.3429 10.25 

3 0.0348 0.0087 0.8748 9.52 

4 N.F.S 

5 N.F.S 

8.5×104 

1 0.0123 0.0017 0.1150 8.34 

2 0.0663 0.0152 0.5886 7.85 

3 N.F.S 

4 N.F.S 

5 N.F.S 

From Figs 7-9, we can observe that the uncertainties of the demands can significantly affect 

the operation optimization results. For example, if we increase the variance of the demand of 



Customer B from Level 1 to Level 2, the lowest interruption probability within the Pareto set 

degenerates from about 10-8 to 10-7. If the uncertain level is directly increased to Level 5, the 

interruption probability within the solution set degenerates about 2-3 orders of magnitude, which 

is a relatively large value. Hence, in real applications, the accuracy of the measurements of the 

demand variances is very important for the quality of the optimization results. Besides, the results 

in Table 4 indicate that with the increase of the uncertainties in the demands, the performances of 

the optimized operation strategies, under the given constraints of power demands, severely 

degenerate. The reason is that higher level of uncertainty of demands makes it more difficult for 

the supply system to deal with the potential abnormal peaks of natural gas consumptions with the 

current design. In the Levels 4-5, the system is even unable to find the operation point to satisfy 

the constraints of supply reliability, which means that it has to be expanded by supplementing 

more compressors, to overcome the uncertainties of demands. 

4. Conclusion and discussion  

In this work, we have developed a method for the multi-objective optimization of the 

operation of natural gas pipeline networks. In this method, both supply shortage risk minimization 

and power demand minimization are considered as the objectives. The optimization method is 

developed on steady hydraulic conditions of the pipeline networks. To quantify the supply 

reliability, a novel limit state function is established, which can provide a novel, easier way to 

consider supply issues besides the classical thermal-hydraulic simulation methods. The 

multi-objective optimization problem is here solved by the NSGA-II algorithm and the max-min 

method is used here to select compromise solutions from the obtained Pareto set.  

The method has been applied to a Tree-topology and a Loop-topology pipeline network, and 



the optimization results have been discussed in detail. A sensitivity analysis, reporting the impact 

of demand uncertainty on the optimization results has been carried out. This work introduces 

supply reliability of natural gas as an important consideration for optimizing the operation 

strategies of natural gas pipeline networks. The results of the case studies present the good ability 

of the developed model to find the compromise between power demands and supply reliability 

requirements. The optimization results can help to make more reasonable decisions for gas 

pipeline operators. And this method can also help to find the potential problems for pipelines with 

different structures. For example, by comparing Tables 1 and 2, we can see that the pipeline 

system with loop-topology suffers more risk of shortage than the tree-structured system, within the 

same power demand. Besides, the results of the sensitivity analysis indicate that the level of 

uncertainties of natural gas demands can significantly impact the optimization performances, 

which means that the demand uncertainty should also be considered as a critical issue from the 

perspective of design and operation of natural gas pipeline networks.  

Future research will analyze the robustness of natural gas supply capacity for a more 

comprehensive optimization framework, considering supply reliability, operation cost and 

greenhouse emission. Dynamic properties will also be included in the future work. Besides, to 

enhance the effectiveness of this method, we will develop better representations of the objectives, 

develop methods for hyper-parameter optimization and explore other algorithms, to find improved 

solutions. Finally, the developed model will be used to solve the real optimization problems, based 

on real pipeline network systems and historical data of natural gas demands. 
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