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Abstract  

The rapid development of big data and smart technology in the natural gas industry requires 

timely and accurate forecasting of natural gas consumption on different time horizons. In this 

work, we propose a robust hybrid hours-ahead gas consumption method by integrating Wavelet 

Transform, RNN-structured deep learning and Genetic Algorithm. The Wavelet Transform is used 
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to reduce the complexity of the forecasting tasks by decomposing the original series of gas loads 

into several sub-components. The RNN-structured deep learning method is built up via combining 

a multi-layer Bi-LSTM model and a LSTM model. The multi-layer Bi-LSTM model can 

comprehensively capture the features in the sub-components and the LSTM model is used to 

forecast the future gas consumption based on these abstracted features. To enhance the 

performance of the RNN-structured deep learning model, Genetic Algorithm is employed to 

optimize the structure of each layer in the model. Besides, the dropout technology is applied in 

this work to overcome the potential problem of overfitting. In this case study, the effectiveness of 

the developed method is verified from multiple perspective, including graphical examination, 

mathematical errors analysis and model comparison, on different data sets.  

Key words: Natural gas demand forecasting; Deep Learning; Recurrent Neural Network; Genetic 

Algorithm; Long Short Time Memory model 

 

1. Introduction  

A rapid increase of demand of natural gas, as an important source of clean energy, is 

occurring in many countries. The important role of natural gas in the world energy portfolio and 

the increasing awareness of environment issues have accelerated the development of natural gas 

industry. The usage of natural gas has penetrated in varies field, e.g., power generation, urban 

heating supplying, public transportation, manufacturing and so on. On the other hand, the 

uncertainties in natural gas demand increase the difficulty of management of the gas production 

and distribution system and the risk of interruption of gas supply, which poses threats on the 

economy and society [1]. Robust and accurate forecasting of demand of natural gas is one of the 



critical problems for maintaining a reliable supply of gas for different applications. In this work, 

our research focuses on hourly gas forecasting at the customer level. In other words, the 

forecasting method aims to be used on the customer level, like power plants, factories and 

distribution companies. 

Efforts have been made to forecast well the gas demand. The literature surveys [2], [3] 

indicate that the exploration of natural gas forecasting can be divided according to different rules, 

such as forecasting horizon, forecasting tools, data type and applied area. For different types of 

forecasting work, i.e., different horizons and applied area, the methods used are different. 

According to Reference [2], the forecasting horizon can be hourly, daily, monthly, annually and 

combined. The applied area can refer to world level, national level, regional level, gas distribution 

system level and individual customer level. Methods to forecast natural gas demand should be 

carefully selected to fit the specific conditions of the forecasting problem. According to the 

literature research, the methods for gas demand forecasting can be mainly grouped as time series 

model, regression model, artificial neural network and hybrid method [4]. Generally, the choice of 

the forecasting method depends on the forecasting scenario and the type of input data.  

Time series (TS) models are used to forecast the gas demand based on the collected data, 

without prior knowledge [4]. The reports in literature indicate that TS models can be applied for a 

wide range of forecasting horizons (from annual to hourly). ARIMA model was applied to forecast 

annual or monthly gas demand of Turkey, with the consideration of GDP and price of gas [5]. A 

forecasting model based on SARIMAX was developed for short-term prediction of the daily gas 

demand, with the consideration of temperature, pressure, humidity and cloudiness [6]. Structural 

time series model was used to forecast the annual gas demand considering multiple factors, such 



as future trend of natural gas consumption, determinants income and natural gas price [7]. The 

results of literature indicate that SARIMA and SARIMAX have better performances in capturing 

seasonal factors in the time series of the demand than ARIMAX, which is able to provide qualified 

annual forecasting for demand of gas [4]. 

Besides time series models, regression models are also widely used for natural gas demand 

forecasting. Generally, linear regression models are preferred for long-term horizons, country level 

forecasting, based on some main independent factors [8], [9]. For example, linear regression was 

applied to forecast annual natural gas demand in South Korea with four variables: population, 

GDP, export and import amounts [10]. Linear regression model considering temperature, GDP per 

capita and natural gas price was applied for long-term forecasting of natural gas demand at the 

country level [11]. Besides linear regression models, the OLS (ordinary least squares) regression 

model [6] and some nonlinear-regression based statistical methods [12] have shown good abilities 

for natural gas demand forecasting at different levels.  

In recent years, a number of forecasting models based on artificial neural networks have been 

developed and these models significantly improve the accuracy and efficiency of natural gas 

demand forecasting. Feedforward neural network, fuzzy neural network, recurrent neural network 

or some hybrid neural networks have been applied at different horizons and levels [13]–[15]. The 

comparison of the forecasting results show that the neural network-based models have strong 

abilities for natural gas demand forecasting [16]. For example, reference [17] indicated that the 

developed neural network model outperforms the condition demand analysis method and the 

engineering model. The comparison carried out in [10] showed that the developed multilayer 

perceptron model has better prediction performance than a linear regression model and an 



exponential model.  

Among the neural network models, recurrent neural network (RNN) models, which process 

data by internal memory loops and maintain a chain-structure, are more suitable to learn the 

features of time series data [18], [19]. However, the deep chain-like structure increase the 

difficulty of training RNN models by backpropagation. This is not the case for long-short time 

memory (LSTM) model [20], whose great power of LSTM mode for analyzing data sequence has 

been proved by successful applications in many areas, including speech recognition [21], human 

trajectory prediction [22], traffic prediction [23], etc. However, the potential advantages of LSTM 

model for forecasting are far from being totally exploited because most of LSTM-based 

forecasting models are shallow-structured and the knowledge embedded in the data can not be 

fully learned [24]. Also, because time series data are fed chronologically to a LSTM model, the 

information is passed in forward direction along the chain-like structure and the traditional LSTM 

model can learn only the forward relationship in the data. This results in the fact that LSTM 

models may filter out valuable information of backward dependencies of data. This is quite 

relevant for the case that of interest because, generally, demands of natural gas have relatively 

strong periodicity and regularity, which means that backward temporal dependencies constitude an 

important part of the natural gas demand pattern. 

Various works have explored the abilities of hybrid forecasting models. In general, hybrid 

forecasting models have better performance in flexibility, robustness, computing efficiency than 

most individual forecasting methods. For example, in reference [25], different methods including 

wavelet transform, genetic algorithm, adaptive neuro-fuzzy inference system and feedforward 

neural network were integrated for day-ahead demand forecasting in Greece.  



According to the above literature survey, we can tentatively conclude that the critical part of 

demand forecasting relates to finding the inherent features and relationships hidden in the natural 

gas demand data. In this paper, we originally develop a robust natural gas demand forecasting 

model by integrating Wavelet Transform, stacked Bi-Directional LSTM model, Genetic Algorithm 

(GA) and LSTM model. The wavelet transform is used to decompose the original demand data, to 

reduce the difficulties to learn the relationships in data. The stacked Bi-Directional LSTM model 

can comprehensively learn the inherent knowledge from both forward and backward directions in 

each decomposed component. GA method is used to optimize the structure of the stacked 

Bi-Directional LSTM model to improve its performance of feature learning. Finally, the LSTM 

model with a dropout part is applied for hourly demand forecasting based on 

chronologically-arranged data. This hourly forecasting method can contribute to fulfill research 

and application for predictive optimization of natural gas pipeline networks and real-time demand 

side management in gas supply systems. 

The main contribution of this work is summarized as follows: 

(1) This paper proposes a hybrid model, which is able to effectively learn the knowledge in 

natural gas demand data and make accurate forecasting, with high efficiency. Natural gas 

consumption data has the characteristics of series data, but these have not been paid enough 

attention for gas demand forecasting. Under this consideration, the deep RNN model for time 

series data analysis is originally used for natural gas demand data forecasting in this work. To the 

best of the authors’ knowledge, this is the first time that deep recurrent neural networks are used 

for natural gas demand forecasting.  

(2) This paper originally proposes the idea of bi-direction feature learning, to fundamentally 



improve the performance of natural gas demand forecasting by effectively mining the features 

from the sequential structured consumption data. The results prove that considering the backward 

relationship can significantly improve the accuracy of forecasting and shorten the model training 

process.  

 

2. Development of natural gas demand forecasting method  

For a clear illustration, the developed forecasting method is introduced in three parts: data 

decomposing part, data feature learning part and demand forecasting part.  

2.1 Decomposition of the original time series of natural gas demand   

Data pre-processing is usually performed to improve the performances of prediction. Most of 

the time series data of natural gas demand contain trends and volatilities, which means forecasting 

difficulty. To handle this difficulty, wavelet transform is applied to decompose the original time 

series of gas demands into several high-frequency and one low-frequency subseries in the wavelet 

domain, in order to reduce the difficulty of feature learning and improve the forecasting 

performance [26], [27]. 

A wavelet transform can provide useful information in both time and frequency, especially 

when the time series is non-stationary, like natural gas demand. Generally, wavelet transforms can 

be classified in Discrete Wavelet Transform (DWT) and Continuous Wavelet Transform (CWT). 

The CWT is performed based on continuously scaling and translating the mother wavelet, which 

leads to a great amount of redundant information. DWT samples the coefficients to reduce the 

information redundancy[25]. In the DWT method, the coefficient W (a, b) is: 
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where f denotes the original series;  denotes the mother wavelet; T denotes the length of the 

original series; t represents the index of the discrete time. A fast DWT [28] is used here which 

contains four filters: decomposition high-pass filter, decomposition low-pass filter, reconstruction 

high-pass filter and reconstruction low-pass filter. The Fig. 1 presents the process in which the 

original series can be successively decomposed into lower resolution components. In this paper, 

we perform a 3-level wavelet decomposition of the original natural gas demand series using the 

order 5 Daubechies wavelet. The original series can be obtained by reversely summing the 

high-frequency components (d1-d3) and the low-frequency component a3. 

 

Fig. 1 Multi-level wavelet decomposition 

2.2 The deep forecasting model based on bidirectional LSTM and LSTM model  

2.2.1 Bidirectional LSTM and LSTM model  

In recent years, deep learning has showed great powers in many applications. As a 

representative deep learning method, the great power of LSTMs for sequence data processing has 

been proved by its successful application in many real-world problems [29]. Many results have 

shown that LSTM works well on sequence data with long time dependencies [24], [30]. The 

structure of a LSTM memory cell is shown in Fig. 2. The self-loop in the cell makes it able to 

store temporal information encoded into the state of this cell.  



 

Fig. 2 The structure of a LSTM memory cell 

To overcome the training problem of exploding/vanishing in traditional RNN models, three 

types of operations are supplemented in the LSTM cell, including reading, writing and erasing 

[31]. These operations are carried out by the output gate, input gate and forget gate, respectively. 

For example, the input gate is able to decide whether the updated data should modify the memory 

state by applying an activation function, which works as a switch depending on the previous 

output and the current input. The memory state will not be affected by the updated data if the 

related input gate value is close to zero. The mathematical representations of the operation in the 

LSTM cell are introduced by the following equations: 

 ( )1

g

t ix t im ii sigm iW O W b−= + +   (2) 

 ( )1

g

t fx t fm ff sigm iW O W b−= + +   (3) 

 ( )1

g

t Ox t Om OO sigm iW O W b−= + +   (4) 

 ( )1tanh t ux t um uu iW O W b−= + +   (5) 

 
1

g g

t tx f x i u−= +   (6) 

 ( )tanhg

tO O u=   (7) 



where og represents the output gate, ig represents the input gate, fg represents the forget gate, xt 

denotes the state at time step t, u represents the update signal and Ot is the output of the cell. 

An efficient forecasting method of natural gas demands need to comprehensively capture 

their features, especially the regularity and periodicity. However, the LSTM model can only learn 

forward dependency of arranged sequence data, which means that valuable information on 

backward relationships is ignored. In this research, the bidirectional LSTM (Bi-LSTM) model is 

applied to perform feature-learning by considering the dependencies of demand data from both 

forward and backward directions [32].  

The structure of the bidirectional LSTM model is presented in Fig. 3. The mechanism of the 

Bi-LSTM mode can be interpreted as the combination of a forward LSTM and a backward LSTM, 

which are used to process the time series data in positive time sequence (from t0 to tn) and reversed 

sequence (from tn to t0), respectively. In the two LSTMs of different directions, the outputs 

obtained based on the Equations 8. Then, these output are combined into the outputs of the 

Bi-LSTM model: 

 ( ),t ttY G O O=   (8) 

where function G is used to generate new outputs based on the outputs of the forward LSTM and 

the backward LSTM. The type of function G can be multiplication function, average function, 

summation function and so on, and should be selected based on the problem and the data.    



 

Fig. 3 Illustration of the unfolded structure of a Bi-LSTM model 

2.2.2 Stacked Bi-LSTM and LSTM model  

RNN models have been used in many real world forecasting problems. Most of the proposed 

models are developed based on shallow structures with one hidden layer [33]. Recent studies 

indicate that deep-structured RNNs with several hidden layers can be very effective in sequence 

data learning [34]. Deep RNN architectures (Fig. 4) are built up by stacking several RNN neural 

networks together, in which the output of the former RNN is fed to the subsequent layer as input. 

Such type of deep structure is here used to improve the ability of feature learning and forecasting 

of natural gas demands.  

 

Fig. 4 Illustration of the deep structure RNN model 

To comprehensively learn the complex features of natural gas demand data, several Bi-LSTM 



layers are used. In this feature learning process, the characteristic of Bi-LSTM can help to 

effectively capture the information of sequence data and learn the complex relationships between 

the decomposed gas demand data and the selected factors (for example, calendar and weather 

conditions). On the top of the deep architecture, a LSTM layer is used to predict the future value 

along the forward direction based on the learned features form the stacked Bi-LSTM layers. 

Finally, the forecasting method is built up by combining the wavelet transform and the developed 

deep RNN model.  

2.2.3 Enhancement of the performance of the deep forecasting model  

The developed deep-structure network model is capable to learn the complex relationships of 

the data and the selected factors, but many of these so-called relationships may be just noises. In 

this condition, overfitting would be a serious problem, threatening the forecasting accuracy. To 

address this problem, the dropout technique is introduced in this model. The dropout technique 

can efficiently prevent overfitting by randomly dropping a unit [35]. With reference to the generic 

layer, classical dropout mechanism can be explained by the following equations:  
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where * represents an element-wise product. For the specific layer l, r(l) denotes a vector of 

independent Bernoulli random variables, whose probability of being equal to 1 is p. This vector is 

randomly sampled and, then, multiplied element-wise by the outputs of the layer (y(l)), to obtain 

the “thinned” outputs 
( )ˆ
l

y . Then the outputs
( )ˆ
l

y are fed into the next layer. The dropout operation 



is repeated at each layer.  

It is necessary also to optimize the architecture of the proposed deep-learning model, i.e., the 

number of neurons in each layer, to enhance its forecasting performance[36]. In this work, we 

used Genetic Algorithm, which has been effectively employed to solve many kinds of 

optimization problems [25], [37]–[39]. In this work, the GA minimizes the Root Mean Square 

Error (RMSE) between the forecasted natural gas demands F and the real natural gas demand data 

T. The optimization problem is formulated by Equations 13-14 below. The framework of the deep 

forecasting method and the enhancements are shown in Fig. 5. 

 ( ): ,Minimize RMSE F T   (13) 
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in which P represents the deep forecasting model needing to be optimized. D represents the vector 

of the input data of natural gas, Mi denotes the vector of the decision variables which determine 

the structure of the deep RNN model for the component i, Ni denotes the number of neurons of the 

LSTM model for the component i, T represents the real natural gas demand data. The ranges for 

the search of the decision variables are pre-defined. 

The prediction model P is composed by four major sub-models, including Discrete Wavelet 

Transform model DWT (shown in Equation 1), stacked Bidirectional LSTM model  (shown in 

Equation 2), LSTM model  (shown in Equation 3) and Inverse Wavelet Transform model 

InverseWT (shown in Equation 4). 

DWT model takes the input D and provides in output the decomposed signal components d1, 

d2, d3 and a3, as follows: 
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where d1, d2, d3, a3 and D
1 NR  . 

The stacked Bi-LSTM model (j) takes in input the decomposed signal component 𝒊(𝑗), 

outputs the feature 
( ) 1 N

* j
Y R , with the number of neurons in the Bi-LSTM layers given by 

Mj. 
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where j denotes the index of the decomposed signal component obtained by DWT in Eq. 15, 

j=1,2,3,4, corresponding to the components d1, d2, d3, a3, 
( ) 1j N Ri denotes the input, i.e., the 

j-th decomposed signal component, i∈{d1, d2, d3, a3}, Mj denotes the number of neurons in the 

Bi-LSTM layers. 

The LSTM model (j)takes in input the output Y*(j) of the stacked Bi-LSTM model (j) and 

provide in output the prediction of the decomposed signal component Y(j), with the number of 

neurons in the LSTM layer Nj given by: 
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where 𝑗 denotes the index of the decomposed signal component obtained by DWT, j=1,2,3,4, 

corresponding to the component d1, d2, d3, a3.  

The InverseWT model takes in input all the predictions of the decomposed signal component 

and provides in output the prediction of the original data of natural gas demand D: 
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Finally, let DWT(D)(j) (j=1,2,3,4) denotes the decomposed signal component d1, d2, d3, a3, 

respectively. We get the detailed mathematical presentation of Eq. 14 as follows: 
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Fig. 5 Schematic representation of the integrated method with performance enhancement 

To illustrate the operation process of the forecasting method, the flowchart is shown in Fig. 6: 

 

Fig. 6 The flowchart of the forecasting method 

 



3. Applications   

3.1 Preparation  

The developed forecasting model is applied to two types of data. One type of data is 

artificially generated by the Mackey-Glass time-series model (Equation 15), which is often used to 

verify the effectiveness of prediction models because of its chaotic and periodical characteristics 

[40]:  
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where the parameters are set to be a=0.2, b=0.1, c=10, by trial and error, to generate a pattern of 

data similar to the fluctuation of gas consumption. The parameter M  determines the chaotic 

property of the defined time series. In this work, the value of M  is set to be 20. To simulate the 

time series, the 4th Runge-Kutta method is used here. Then the generated data is sampled at the 

interval of one hour. Further, to better test the predictive ability, a random term (1% of the value of 

the generated data) is introduced.  

As a second application, data of natural gas consumption is taken from OpenEI, a platform 

set up by the United States Department of Energy, providing structured energy information of 

different sectors.  

To quantify the performance of the forecasting method, four criteria are used here, which are 

Mean Absolute Error (MAE), Relative Error (RE), Mean Relative Error (MRE) and Root Mean 

Squared Error (RMSE): 
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where Fi denotes the forecasting results and Ti denotes the target value.  

Before training the model, we need to standardize the wavelet components:  

 
c
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where s represents the standardized value of component c; μ represents the mean value of c; σ 

denotes the standard deviation. 

The selection of the input size is important for the success of the prediction. The Pearson 

correlation coefficient is often used to explore the periodicity of the natural gas consumption [25]; 

this coefficient has a good ability to research the linear correlation of data. However, the 

regularities behind the data of natural gas consumption are much more complicated than linear 

correlation. Following the literature [41], the autocorrelation function (ACF) is used here to 

describe the correlation for time series data: 
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where y  is the mean value of the time series Y; k denotes the lag of forecasting; 
y is the 

variance of the time series. The calculation of ACF is performed for every wavelet component and 

the input sizes of the components are determined by the lengths of their first period (Figure 7). For 

example, the values of ACF of wavelet components of one group of data collected on OpenEI 

indicate that the input sizes for the wavelet components should be longer than around 25 hours 

(Figure 7). In the cases based on the real world data, the available information of date and time 



(hour) is also chosen as another input of the forecasting model and some other important 

information, such as weather, climate and gas price, should also be carefully selected as the inputs 

of gas consumption forecasting. 

 

 

 



 
 

 

 

 

Fig. 7 ACF analysis for different wavelet components 

3.2 Performance evaluation  

For each deep RNN model, the number of Bi-LSTM layer is set to 2, by trial and error. The 

numbers of neurons in the Bi-LSTM layers and the LSTM layer are optimized by GA in a search 

within the range of [100, 110, 120, 130, 140, 150], to find good structures for each RNN layer. 

The main parameters of the GA are set by trial and error as: population size=30, crossover 

probability=0.4 and mutation probability=0.6. For the application of the GA, one needs to trade 

off the performance improvement and the computational burden for the optimality search. For this 

reason, the number of generations in the GA is set to 100, leading to a significant improvement of 

the forecasting accuracy with acceptable computation time. Considering that, the maximal number 

of generations in the GA are set by 100, which can effectively improve the forecasting accuracy 

under acceptable computation time consuming. During the training process, the maximum number 

of epochs is 600. The dropout rate is set by 0.4, to avoid the overfitting problem.  

The developed forecasting model is used on the simulated data by the Mackey Glass model 

and to predict the gas consumption based on two sets of real world data (named as Set I and Set II). 

For these latter, only the consumption data of winter are used. Considering this research focuses 



on hourly gas load forecasting, the prediction time interval of these presented applications is 

chosen as 10 hours. For the three different forecasting tasks, the structures of the deep RNN 

models, each of which includes four stacked Bi-LSTM layers and four LSTM layers, are 

optimized by the GA. The optimization variables are the numbers of neurons in every layer of the 

deep RNN model. For example, in the model for forecasting the simulated data, the optimized 

numbers of the neurons of the two-layer Bi-LSTM parts and the LSTM parts for the wavelet 

components of d1, d2, d3 and a3 are [130, 120, 130], [130, 110, 100], [120, 130, 120], [130, 110, 

100], respectively. During the training processes of the deep RNN models, the developed models 

show good convergence rates. The normalized RMSEs of the training processes are lower than 0.1 

after around 100 epochs. Some oscillation are observed because of the dropout technique.     

Both the prediction results of the original series and the wavelet components are shown in the 

Figs 8-10, to give a comprehensive picture of the performances of the forecasting model.  

 

 



 

 

 
Fig. 8 “Predicted demands” compared with “actual demands” on data generated by Mackey- Glass 

model 

 

 
 



 

 

 
Fig. 9 Predicted demands compared with actual demands on data Set I 

 

 



 

 
Fig. 10 Predicted demands compared with actual demands on data Set II 

These Figures show that the developed forecasting model is able to make accurate 

predictions and this indicates that the deep RNN model has a strong ability to capture the features 

behind the gas consumption data. However, the model shows relatively poor performance on the 

wavelet components of d1, whose periodical behaviors are not obvious compared with the other 

components. From the opposite perspective, this observation indicates that the data decomposition 

process, via the wavelet method, can reduce the complexity of the forecasting task and improve 

the accuracy of the overall results.  

The error measures are listed in Table 1. The errors are given based on different lengths of 

forecasting horizon, which are 1 hours, 5 hours and 10 hours, to present a comprehensive 

information of model performance and its sensitivity under different requirements of forecasting 

time horizon.  

Table 1 Prediction performances for different forecasting horizons (winter data for data Set I and 

Set II) 



Data basis Task MAE MRE RMSE 

The Mackey Glass series 

1 hour forecasting 0.0596 0.0017 0.1182 

5 hours forecasting 0.1960 0.0054 0.5537 

10 hours forecasting 0.5724 0.0157 1.0719 

Set I 

1 hour forecasting 19.0497 0.0058 25.9278 

5 hours forecasting 53.9272 0.0180 69.6089 

10 hours forecasting 125.7692 0.0584 167.1491 

Set II 

1 hour forecasting 81.4731 0.0061 109.5693 

5 hours forecasting 124.0326 0.0119 154.3480 

10 hours forecasting 594.2678 0.0678 744.4329 

The error analysis results in Table 1 indicate that the developed model is capable to perform 

accurate forecasting on different data sets. The forecasting based on Mackey Glass series has an 

accuracy level of about 99%, even when the forecasting horizon is increased to 10 steps ahead. 

For the real world data in Set I and Set II, the MREs of the forecasting errors are maintained (at 

acceptable values of 5.84% and 6.78%), even when the model is used to perform 10-steps ahead 

predictions.  

We notice that the forecasting performance of the developed model degenerates as the 

forecasting horizon extends. Generally, the reason of this degeneration is that the strength of the 

relationship between the future data of consumption and the current data decreases as the 

forecasting horizon increases, and this increases the difficulty for the Deep RNN model to learn 

such relationship. Hence, if we need to make a forecasting for a relatively long time in a real 

application, it is not a good choice to extend the forecasting horizon of the model without 



limitation. To overcome this problem, one needs to firstly determine the limitation of the 

forecasting model based on the data and the accuracy requirement, and, then, apply controlled 

recursive processes that make use of the forecasting results to enhance the ability of the deep 

learning model [42]. 

To further verify the effectiveness of the forecasting model, a comparison of the forecasting 

performance is performed among the developed model, a three-layer-LSTM model and a 

Non-linear Autoregressive (NAR) model. The three-layer-LSTM model is introduced here to 

verify the effectiveness of the Wavelet Transformation and the Bi-LSTM model. The Non-linear 

Autoregressive model is a classical method for time series prediction and is used here to compare 

the overall performance of the developed model. The three-layer-LSTM shares the same structure 

with the optimized Deep RNN model. These three models are used to forecast the data of 10 hours 

ahead (10 steps) in the future, based on the three data sets. Then, the forecasting performances are 

presented by relative errors and compared with each other in the form of Cumulative Distribution 

Function (CDF). The analysis results are shown in Figs. 11-13. 

 

 

Fig. 11 Performance comparison based on the CDFs of the relative error values (the Mackey Glass 



series) 

 

Fig. 12 Performance comparison based on the CDFs of the relative error values (the Set I) 

 

Fig. 13 Performance comparison based on the CDFs of the relative error values (the Set II) 

 

From Figs. 11-13, we can conclude that the developed forecasting model outperforms the 

other models on different types of data sets. According to Figs. 12-13, we can also observe that the 

developed model has superior capacity compared to the three-layer-LSTM, in spite of the same 

deep structures of them. This is because the relationships behind the data of the real-world gas 



consumption is complicated by the regularity, the customer habit and the market properties, and 

the deep Bi-LSTM is more powerful to capture this kind of relationship. Besides that, the Figures 

show that both the three-layer-LSTM and the developed model have better forecasting accuracies 

than the NAR model, which confirm the power of RNN models with deep structures, for natural 

gas demand forecasting.  

The developed model has been observed to have a relatively good performance on the winter 

data. It remains to verify its performance for the other climate conditions. For this, we consider on 

the summer part of the data in Set II and on a 10-hours-forecasting. Figs. 14-16 present a 

relatively accurate forecasting for the gas demand also in the summer period: by comparing the 

forecasting performances of different forecasting horizons, we can observe very small differences 

between the real demands and the predictions.  

 

Fig. 14 Predicted demands compared with actual demands on the data summer (1 hour ahead) 

 

Fig. 15 Predicted demands compared with actual demands on the data summer (5 hours ahead) 



 

Fig. 16 Predicted demands compared with actual demands on the data summer (10 hours ahead) 

The error measures are presented in Table 2. 

Table 2 Prediction performances for different forecasting horizons (summer data for data Set II) 

Data basis Task MAE MRE RMSE 

Set II 

1 hour forecasting 10.2701 0.0094 11.8352 

5 hours forecasting 11.9608 0.0110 14.1134 

10 hours forecasting 55.1135 0.0501 69.2558 

 

4 Conclusions  

The aim of this work is to introduce a new and highly reforming hourly forecasting method 

of natural gas demand forecasting. The method is developed based on the integrated Wavelet 

Transform, Bi-LSTM model, LSTM model and Genetic Algorithm. The Wavelet Transform is 

used to decompose the original series into sub-components, to reduce the difficulty of forecasting. 

Several Bi-LSTM models are stacked together to comprehensively learn the complicated 

relationships behind each sub-components and the LSTM model is adopted to forecast the future 

values of these components. To enhance the forecasting performances, the structures of the 

Bi-LSTM models and the LSTM models are optimized by the GA method. To avoid potential 

overfitting, dropout is performed during the training process. 

The developed model is applied to three sets of data to verify its effectiveness: one simulated 



set and two real gas consumption data. To test the robustness of the model, the forecasting is 

performed on different horizons, i.e., 1 hour, 5 hours and 10 hours. The experimental results show 

that the model is capable to achieve a high forecasting accuracy even when the horizon is 

increased to 10 steps ahead of the current data. The degeneration of performances at large 

forecasting horizons can be controlled by recursive processes method: this will developed in the 

future research.  

The forecasting performance of the developed model is compared with a three-layer-LSTM 

model and a Non-linear Autoregressive (NAR) model. The results of the comparison show that the 

developed model outperforms the three-layer-LSTM model and the NAR model, which indicates 

that the Bi-LSTM model has a solution capacity to learn the complicated features of the actual 

data.  

In the future work, we will further improve the forecasting accuracy via exploring different 

advanced methods and performing more detailed analysis on different influencing variables. 

Furthermore, the ability of deep RNN models for natural gas demand forecasting on longer time 

horizons, e.g., days or months, will be explored.   
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