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Abstract

In this work, complex network theory is applied for the first time in the field of nuclear reactor physics to
present a new approach for the evaluation of the multiplication factor of a nuclear system. The approach
describes the random walk of a neutron in a network representative of the nuclear system. The network is
consituted by multiple layers, each one representing a type of reaction (scattering, fission and capture) and
each layer is constituted by different nodes, each one representing a different spatial position in the nuclear
system. The probability of a neutron to jump from a node to another is governed by the material cross sections.
A correction procedure is also proposed to account for non-reaction probability, obtaining a good agreement
between the predictions of the proposed method and of Monte Carlo simulation.

The outcome of this work constitutes a starting point for further research on the application of complex network
theory to the field of nuclear reactor physics, while, at the same time, the experience retrieved from the
application of complex networks may give useful insight for the improvement of classical approaches to
nuclear reactor analysis.

KEYWORDS: Complex Networks, Reactor Physics, Neutronics.
1. Introduction

Complex networks represent an interdisciplinary research area which, over the years, has gathered the interest
from physicists, engineers, social scientists, computer scientists, biologists and many others. Complex network
structures describe a large plethora of systems of scientific and technical interest. Chemical and biological
systems, financial, social and communication networks, and spreading of epidemics are just few examples
(Barabaési, 2016).

Complex network theory represents a simple and yet effective approach to describe and understand the
structure of many complex systems of different nature. As anticipated, it has been applied in many research
fields, such as chemistry (Hayat, 2017; Orlova et al., 2018), biology (Duran-Nebreda and Bassel, 2017; Fionda,
2018), epidemiology (Yuan et al., 2013; Sun et al., 2014; Schimit and Pereira, 2018), social sciences (Raducha
and Gubiec, 2017; Zareie and Sheikhahmadi, 2018), computer science (Yang et al., 2013; Gan et al., 2014)
and criminology (Calderoni et al. 2017).

On the other hand, reactor physics is traditionally studied by means of point kinetics (Hamieh et Saidinezhad,
2012; Cervi et al., 2018; Cervi and Cammi, 2018; Holschuh and Marcum, 2018), neutron diffusion theory
(Aufiero et al., 2014; Cervi et al., 2017), neutron transport theory (Fiorina et al., 2017; Tramm et al., 2018)
and Monte Carlo method (Leppénen et al., 2013; Chiesa et al., 2016). However, to the best of the authors
knowledge, up to now, there is no application to the field of nuclear reactor physics.

In nuclear systems, reactions take place between the neutrons and the nuclei of the fuel, coolant and structural
materials. Notably, in scattering reactions, neutrons bounce on nuclei, changing their momentum and kinetic
energy; in captures, they are absorbed from a fertile or coolant nucleus, disappearing from the neutronics
balance of the system; in fission reactions, a neutron is absorbed from a fissile nucleus, which splits into two
smaller fragments, emitting other neutrons (Lamarsh, 1969). Neutrons and nuclei can be seen as the costituents
of a network, interacting with each other through reactions of scattering, capture, and fission.

In this view, complex network theory may constitute a useful approach to nuclear reactor physics, sheding
light on new aspects or providing innovative and efficient ways to study nuclear systems. Thanks to its limited
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A fuel pin of different reactor types (pressurized water reactor, PWR, sodium fast reactor, SFR, and lead fast
reactor, LFR) is modelled from a complex network theory perspective and a simple procedure is set up for the
evaluation of the main neutronics parameters of a nuclear reactor. More in details, the fuel pin is discretized
as a lattice of nodes, and the system multiplication factor and Doppler reactivity coefficient are evaluated by
considering the random walk of a neutron in this complex network.

The present work is organized as follows. In Section 2, the reader is introduced to the basic concepts of
complex network theory. In Section 3, the modelling approach and the considered case study are introduced,
while in Section 4 the results are presented and compared to Monte Carlo simulation to assess their validity.
In addition, in Section 5, a correction procedure is proposed, accounting for the non-reaction probability of the
different materials, in order to improve the accuracy of the method in non-uniform multiplying media. In the
same section, the corrected approach is tested against Monte Carlo simulation and compared to the uncorrected
one. Conclusions and future perspectives of research are given in Section 6.

2. Fundamentals of complex network theory

In this section, the basic concepts of complex network theory are provided, to introduce the nuclear commuity
to the topic and guide the reader in understanding its formalism. For a deeper insight into complex network
theory, the reader is referred to specialized textbooks (e.g., Newman, 2010; van Steen, 2010; Barabasi, 2016).

2.1. Nodes and links

To understand a complex system, the first thing is to understand how its parts are related to each other. A graph
of the network is well suited for this, to describe the interactions between the network components. To this
aim, a new branch of mathematics, the so called complex network theory, was developed. According to
complex network theory, a network can be described with an array of nodes, representative of the network
components, and of links (or edges), representative of the relations between the components.

An example is provided by Fig. 1, showing a protein-protein interaction network. Each protein constitutes a
node of the network, while all the possible bindings between them constitute the links. Even if the nature of
the nodes and of their interactions may change (e.g., in computer or social networks), the same graph
representation can be used.

-

Figure 1. Protein-protein interaction network (Barabasi, 2016).
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Most networks of scientific interest are weighted, i.e., their links can have in general different weights. In a
protein network, weights may represent the probability of a binding between two molecules. The topology of
a weighted network can be described by a so called adjacency matrix A, whose generic element a;; represents
the weight of the link going from the node i to the node j. In case of an unweighted network, all the elements
of A are equal to one, and links represent merely qualitative interactions, without providing any quantitative
information.

Finally, complex networks can be distinguished between directed and undirected networks, depending on
whether their links have a specified direction or not (see Fig. 2). The protein network shown in Fig. 1 is
undirected, while phone calls, for example, where one person calls the other, can be thought as a directed
network.

Figure 2. Directed (a) vs. undirected (b) networks.
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3. Case study

3.1. System geometry

A simplified two-dimensional fuel cell, constituted by a fuel pin and surrounding coolant, is considered as a
case study for the present work. The pin radius is 0.475 cm, while the half pitch is 0.63 cm. This geometry is
discretized in a certain number of spatial nodes, as shown in Fig. 3.

Figure 3. Geometry of the fuel cell and discretization in nodes. For simplicity, only 25 nodes are shown in
this picture, but a higher number of nodes are used troughout this work.

Each node represents a position which could be occupied by a neutron during its path and is characterized by
a set of cross sections depending on the specific material at that node. Homogenized, group-constant cross
sections for the fuel and the coolant can be obtained by Monte Carlo simulation: thus, the nodes falling in the
fuel region are characterized by the fuel cross sections and the nodes falling in the coolant region are
characterized by the coolant cross sections. In this work, spatial effects within material regions are neglected,
i.e., nodes belonging to the same region have the same set of cross sections.

3.2. Neutron random walk

Given the cross sections, the probability of each reaction can be calculated. In particular, for each node:

SfLsston 5

fission probability = p; = Zz?lssmn ®)
total

' 6

scattering probability = ps = w (6)

total

_— 7

capture probability = p, = ch:apture 7
total

These probabilities govern the neutron random walk from a node to another. In this paper, the total, scattering,
capture and fission cross sections of the fuel and of the coolant are calculated using the Monte Carlo reactor
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physics code Serpent 2 (Leppénen et al., 2015), adopting the JEFF-3.1.1 libraries for the cross section data
(Santamarina et al., 2009).

Since three different types of reaction may occur (fission, scattering and capture) a three-layer network is
constructed, with each layer representing a reaction type (see Fig. 4). For each spatial position, there is a node
in the fission layer, a node in the scattering layer and a node in the capture layer, representing respectively a
fission, a scattering and a capture occurring at that given position.

Consider the random walk of a neutron, which is initially in the scattering layer:

The neutron may induce a fission in a fissile nucleus, thus making a transition from the scattering layer
to the fission layer with probability p;. Upon fission, the original neutron ceases to exist, and new
neutrons are generated at that position. Then, the random walk proceeds considering the path of these
neutrons, returning to the scattering layer with a probability equal to 1.

The neutron may be captured by a fertile nucleus, transferring from the scattering layer to the capture
layer with probability p.. Also in this case, the neutron ceases to exist once it is captured. The path of
a new neutron is, then, considered in the same position where the capture occurred. This choice is
made to have the least impact on the neutron random walk, restarting it where it is interrupted. Other
options have been considered (e.g., starting new neutrons at fission nodes), verifying that the adopted
choice is the best in terms of result accuracy.

The neutron can be scattered with probability ps. In this case, the neutron moves from a node to another
in the scattering layer. Considering four discrete directions in two dimensions, as represented in Fig.
4, and assuming isotropic scattering, the neutron can move to one of the four adjacent nodes with
probability pg /4.

1 |ps
nRE

Figure 4. Three-layer network adopted to describe the fuel pin.

Summarizing, a nuclear reaction is sampled with a probability which depends on the corresponding cross

section of the material at the node position and, if scattering occurs, a direction is sampled from a uniform

distribution (for the isotropic scattering assumption).




3.3. The global network
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3.4. Evaluation of the multiplication factor

During the random walk, if the system is critical, the number of neutrons produced by fissions must be equal
to the number of neutrons lost by captures. Hence, the following relation must be valid:

-1 Usy = Usc (10)

where u is the global probability that the neutron induces a fission, in which one neutron is absorbed and v
new neutrons are produced, while uy, is the global probability that the neutron is lost by capture.

Eqg. (10) is satisfied only in the case of a critical system. Then, in analogy with the k-eigenvalue method adopted
in the Monte Carlo approach, the multiplication factor k is defined as the eigenvalue that makes the system
stationary, bringing it back to criticality:

(% - 1) Usp = Usc (11)

from which the multiplication factor can be obtained as:
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_ Vg (12)
Uge + Usr

4, Results

Once k is known, the reactivity p can be calculated as:

k-1 (13)
p=—0

A comparison is, then, made between the reactivity calculated by the complex network theory approach and
the Monte Carlo results, in order to assess the accuracy of the proposed method. A comparison is also made
between the Doppler reactivity coefficients, defined as:

_ p(T2) — p(Ty) (14)
T

Monte Carlo calculations are carried out using the continuous-energy code Serpent 2 (Leppénen et al., 2015)
and the JEFF-3.1.1 cross section library (Santamarina et al., 2009). All the simulations are performed with 100
million neutron histories (10000 generations, 10000 neutrons per generation and one generation per batch),
obtaining a 5 pcm uncertainty on the multiplication factor. The same simulations are used to generate the
homogeneized one-group cross sections for the complex network theory approach (see Egs. (5) to (7)). A set
of cross sections is generated for each material region and for each value of the fuel temperature considered
for the evaluation of «,. It is also reminded that spatial effects in each material region are neglected. Therefore,
nodes belonging to the same region are characterized by the same cross sections.

The following different systems are considered as case studies:

e A Pressurized Water Reactor (PWR) UO; pin with 3.25% 2%*U atom enrichment;
e A Sodium Fast Reactor (SFR) MOX pin with 15% 2%Pu atom enrichment;

e A Lead Fast Reactor (LFR) MOX pin with 15% 23*Pu atom enrichment;

e A uniform 2*°*U medium.

In all cases, an infinite (or periodic) boundary condition is assumed. If a neutron is scattered out of the geometry
boundary, it returns in the domain from the opposite side of the boundary (see Fig. 6). This is equivalent to
assuming that the considered geometry is situated in an infinite medium, constituted by a periodic lattice. A
total number of 400 nodes (20 x 20) is used to discretize the pin. A sensitivity study on the number of nodes
has been carried out, verifying that the results are not modified by further refinements.

—e | L ] [ ] L ] | y—

A neutron enters
/ from the opposite
direction

A neutron is \
scattered outside

Figure 6. Periodic boundary condition (for simplicity, 25 nodes are shown in this picture, but 400
nodes are adopted for the calculations).
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4.1. PWR fuel pin

The multiplication factor and the Doppler reactivity coefficient of a PWR fuel pin are calculated at different
fuel temperatures and their values are compared to those obtained by Monte Carlo simulation. The results are
reported in Tables I to Il

Table 1. Multiplication factor and reactivity difference with respect to the value obtained by Monte Carlo

simulation for a PWR fuel pin, for Tf,; = 600°C and Tppiane = 300°C.

Complex network Monte Carlo
k 1.32760 1.31253 + 0.00005
PcN — Pmc 865 pcm 0

Table I1. Multiplication factor, reactivity difference with respect to the value obtained by Monte Carlo
simulation and Doppler coefficient for a PWR fuel pin, for T, = 900°C and T;4014n: = 300°C.

Complex network Monte Carlo
k 1.31489 1.30022 + 0.00005
Pcn — Pmc 858 pcm 0
ap (Tryer = 600 +900°C) | -2.428 pcm/°C -2.404 + 0.020 pcm/°C

Table I11. Multiplication factor, reactivity difference with respect to the value obtained by Monte Carlo
simulation and Doppler coefficient for a PWR fuel pin, for T¢,,,; = 1200°C and T;401an: = 300°C.

Complex network Monte Carlo
k 1.30441 1.28993 + 0.00005
PcN — Pmc 861 pcm m
ap (Tryer = 900 +1200°C) | -2.037 pcm/°C -2.045 = 0.020 pcm/°C

4.2. SFR fuel pin

For the SFR fuel pin, the results are summarized in Tables 1V to VI.

Table 1V. Multiplication factor and reactivity difference with respect to the value obtained by Monte Carlo

simulation for a SFR fuel pin, for Tz, = 600°C and T¢po1ane = 425°C.

Complex network Monte Carlo
k 1.45900 1.47637 + 0.00005
Pcn — Pmc -807 pcm 0

Table V. Multiplication factor, reactivity difference with respect to the value obtained by Monte Carlo
simulation and Doppler coefficient for a SFR fuel pin, for Tz, = 900°C and T;401n: = 425°C.

Complex network Monte Carlo
k 1.45341 1.47065 + 0.00005
Pcn — Pmc -807 pcm 0
ap (Tryer = 600 + 900 °C) -0.879 pcm/°C -0.878 + 0.015 pcm/°C

Table VI. Multiplication factor, reactivity difference with respect to the value obtained by Monte Carlo
simulation and Doppler coefficient for a SFR fuel pin, for Tz, = 1200°C and Teppiane = 425°C.

Complex network Monte Carlo
k 1.44990 1.46704 + 0.00005
PcN — Pmc -806 pcm m
@ p (Tryer = 900 + 1200 °C) | -0.555 pcm/°C -0.558 + 0.015 pcm/°C
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4.3. LFR fuel pin
For the LFR fuel pin, the results are summarized in Tables VII to IX.

Table VII. Multiplication factor and reactivity difference with respect to the value obtained by Monte Carlo
simulation for a LFR fuel pin, for T, = 600°C and Tppiqne = 440°C.

Complex network Monte Carlo
k 1.43541 1.44919 = 0.00005

PcN — Pmc -676 pcm 0

Table VIII. Multiplication factor, reactivity difference with respect to the value obtained by Monte Carlo
simulation and Doppler coefficient for a LFR fuel pin, for Tr,; = 900°C and Teppian: = 440°C.

Complex network Monte Carlo
k 1.43178 1.44581 + 0.00005
PcN — Pmc -678 pcm 0
a p (Tryer = 600 + 900 °C) -0.545 pcm/°C -0.538 + 0.016 pcm/°C

Table IX. Multiplication factor, reactivity difference with respect to the value obtained by Monte Carlo
simulation and Doppler coefficient for a LFR fuel pin, for T, = 1200°C and Teypian: = 440°C.

Complex network Monte Carlo
k 1.42974 1.44376 £ 0.00005
PcnN — Pmc -679 pcm 0
ap (Tryer = 900 + 1200 °C) | -0.332 pcm/°C -0.327 £ 0.016 pcm/°C

4.4. Uniform medium

In this section, the multiplication factor of a uniform 23U medium is calculated. The value obtained with the
complex network theory approach is kqy = 2.26534, while the value from Monte Carlo is kyc =
2.275353. The reactivity difference between the two methods is -198 pcm.

For this simple case, the multiplication factor can be calculated also analytically. Using the one-group
formulation of the neutron diffusion equation (Lamarsh, 1969), it can be easily found that:

Y (15)
2a

where the absorption cross section Y., is the sum of the fission and capture cross sections. It can be observed
that Eq. (15) is formally equivalent to Eq. (12). In fact, substituting into Eq. (15) the same homogenized cross
sections used for the complex network theory method, the predicted multiplication factor is kp;rr = 2.26534,
which is exactly coincident with k., independently from the number of nodes of the network.

k

4.5. Discussion of results

The results presented in the previous sections point out that the multiplication factor predicted with the
complex network theory approach agrees with the Monte Carlo results within 600-900 pcm, with the exception
of the uniform medium, for which the reactivity difference is lower than 200 pcm.

Good agreement is obtained between the Doppler coefficients predicted by the two approaches. This can be
expected, since the homogeneized cross sections adopted in the complex network theory approach are
generated from the same Monte Carlo simulations that are used for the comparison (and therefore, both the
methods predict the same reactivity variations). However, considering the simplicity of the proposed approach,
such agreement is still an interesting result.
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381

382  Asdiscussed in Section 4.5, the non-rection probabilities in different material regions should be accounted to
383  improve the accuracy of the proposed approach. This issue is addressed by means of the following procedure,
384  which is inspired to the Woodcock’s delta-tracking method (Woodcock et al., 1965):

385 e amajorant cross section is defined as the maximum of the material total cross sections:
Ymajorant = MaX {Xtorar where m = materials} (16)
386 o for each material, the reaction probabilities are redefined as follows:
" Ztotal Zfission _ Zfission (17)
p — =
Zmajorant Ztotal Zmajorant
r_ Ztotal Zscattering _ Zscattering (18)
L= =
Zmajorant Ztotal Zmajorant
1 Ztotal anpture _ anpture (19)
Pc = =
Zmajorant Ztotal Zmajorant
387 e anon-reaction probability is defined as:
Pnr =1 —DpF — s — D¢ (20)
388 o finally, the reaction cross sections are again redefined according to the following relations:
P; =Py (21)
Ps = Ds + Pnr (22)
Pc = Pc (23)

389  The general idea of this approach is to homogenize the medium with the introduction of the majorant cross
390  section, so that all the materials have the same “virtual” total cross section. Then, by replacing Y.;,¢q; With
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Ymajorant IN EQs. (16), (17) and (18), the reaction probabilities are corrected by the “weight” of each node,

i.e. by the probability that a reaction occurs in that node. Hence, the non-reaction probability must be defined
as the complement to unity of the reaction probabilities, since the sum of probabilities must be equal to 1.
Finally, the non reaction-probability is included in the scattering probability, so that the scattering layer of the
network becomes not only representative of the scattered neutrons, but also of the non-reacting ones (see Fig.
7).

Fission

Scattering + non reacting

g / N
{ ) Capture

Figure 7. Complex network including non-reacting event
5.1. PWR fuel pin
For the LFR fuel pin, the results are summarized in Tables X to XIlI.

Table X. Multiplication factor and reactivity difference with respect to the value obtained by Monte Carlo
simulation for a PWR fuel pin, for Tf,; = 600°C and Tppiane = 300°C.

Complex network | Monte Carlo
k 1.31341 1.31253 + 0.00005

PcN — Puc 51 pcm N

Table XI. Multiplication factor, reactivity difference with respect to the value obtained by Monte Carlo
simulation and Doppler coefficient for a PWR fuel pin, for T¢,,,; = 900°C and T¢pp1qn: = 300°C.

Complex network | Monte Carlo
k 1.30108 1.30022 + 0.00005
PcnN — Puc 51 pcm I
@ p (Tryer = 600 =900 °C) | -2.405 pcm/°C -2.404 £ 0.020 pcm/°C

Table XI1. Multiplication factor, reactivity difference with respect to the value obtained by Monte Carlo
simulation and Doppler coefficient for a PWR fuel pin, for T¢,,,; = 1200°C and T;401n: = 300°C.

Complex network | Monte Carlo
k 1.29090 1.28993 + 0.00005
Pcn ~ Puc 58 pcm 0
ap (Tryer = 900 +1200°C) | -2.020 pcm/°C -2.045 + 0.020 pcm/°C
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5.2. SFR fuel pin

For the SFR fuel pin, the results are summarized in Tables XIII to XV.

Table XI11. Multiplication factor and reactivity difference with respect to the value obtained by Monte Carlo

simulation for a SFR fuel pin, for Tz, = 600°C and T¢po1n: = 425°C.

Complex network | Monte Carlo
k 1.47202 1.47637 £ 0.00005
PcN — Pmc -200 pcm 0

Table XIV. Multiplication factor, reactivity difference with respect to the value obtained by Monte Carlo
simulation and Doppler coefficient for a SFR fuel pin, for Tz, = 900°C and T;401n: = 425°C.

Complex network | Monte Carlo
k 1.46631 1.47065 + 0.00005
Pcn — Pmc -201 pcm 0
@ p (Tryer = 600 + 900 °C) -0.882 pcm/°C -0.878 + 0.015 pcm/°C

Table XV. Multiplication factor, reactivity difference with respect to the value obtained by Monte Carlo
simulation and Doppler coefficient for a SFR fuel pin, for Tr,,.; = 1200°C and T¢pp10ne = 425°C.

Complex network | Monte Carlo
k 1.46271 1.46704 £ 0.00005
PcN ~ Pmc -202 pcm 0
ap (Tryer = 900 +1200°C) | -0.559 pcm/°C -0.558 £ 0.015 pcm/°C

5.3. LFR fuel pin

For the SFR fuel pin, the results are summarized in Tables XVI to XVIII.

Table XVI. Multiplication factor and reactivity difference with respect to the value obtained by Monte Carlo

simulation for a LFR fuel pin, for T¢,.; = 600°C and T¢ppqne = 440°C.

Complex network | Monte Carlo
k 1.44528 1.44919 + 0.00005
Pcy — Pmc -187 pcm 0

Table XVII. Multiplication factor, reactivity difference with respect to the value obtained by Monte Carlo
simulation and Doppler coefficient for a LFR fuel pin, for T, = 900°C and T;4014n: = 440°C.

Complex network | Monte Carlo
k 1.44190 1.44581 + 0.00005
PcnN — Puc -187 pcm u
ap (Tryer = 600 +900°C) | -0.541 pcm/°C -0.538 + 0.016 pcm/°C

Table XVII1. Multiplication factor, reactivity difference with respect to the value obtained by Monte Carlo
simulation and Doppler coefficient for a LFR fuel pin, for T, = 1200°C and T¢pp1qne = 440°C.

Complex network | Monte Carlo
k 1.43986 1.44376 + 0.00005
PcN — Pmc -188 pcm N
ap (Tryer = 900 + 1200 °C) | -0.328 pcm/°C -0.327 £ 0.016 pcm/°C
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6. Conclusions

In this work, an innovative approach to nuclear reactor analysis is proposed, bases on complex network theory.
For demonstration purposes, a nuclear reactor fuel pin is modelled as a complex network and the multiplication
factor and the Doppler reactivity coefficient are evaluated for a PWR, a SFR and a LFR fuel pin. For all the
considered case studies, the predicted reactivity agrees within 600-900 pcm with Monte Carlo simulation
results. A possible source of error is the “one-node approximation”, i.e., the assumption that a reaction must
take place every time a neutron moves from a node to an adjacent one, neglecting non-reaction. As discussed,
this approximation can be rigorously applied in infinite, homogeneous systems, in which cross sections (and,
as a consequence, the mean free path) are uniform in space. On the other hand, it can significantly affect results
in heterogeneous systems, in which the mean free path depends on the different materials encountered by the
neutron during the free flight. To address this issue, the medium is “homogeneized” by correcting the reaction
probability by a majorant cross section, allowing to account for non-reaction probability. Good agreement is
obtained between the corrected approach and Monte Carlo simulation, reducing the error to about 50-200 pcm.
In conclusion, this work paves, for the first time, a way for treating nuclear reactor physics by complex network
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Future work could regard the extension
of the present method to multiple neutron energy groups and by considering thermal-hydraulics, providing a
fully coupled description of a nuclear system.
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network theory approach are also used in the DRAGONS5 simulations, in order to carry out the comparison in
the same conditions. The multiplication factor and the reactivity difference with respect to Monte Carlo
obtained with DRAGONS are presented in Table A.l. For comparison, the complex network theory errors
Pcn — Pumc, Obtained with the 3,4 jorane COrrection (Sections 5.1, 5.2 and 5.3), are also reported.

It can be observed that the two approaches are comparable in terms of accuracy. For each case study, the
complex network theory errors (~50-200 pcm) are slightly smaller than the DRAGONS5 errors (~130-220 pcm).
As far as computational times are concerned, each DRAGONS simulation is carried out in approximately 2-3
seconds, while the complex network theory approach requires 20-25 seconds per calculation. However, it has
to be considered that the DRAGONS code is written in FORTRAN, which is a compiled programming
language, while the proposed approach is implemented in MATLAB®, which is based on an interpreted
language and therefore it is intrinsically slower. In principle, the complex network theory approach could be
implemented using other programming languages, possibly reducing computational times.

Table A.l. Comparison between DRAGONS5 and the complex network theory approach.

Case | Tryer (K) kpracon kuc PDRAGON ~ PMc PcnN — Pmc
(pcm) (pcm)
PWR 600 1.31023 1.31253 + 0.00005 -134 51
900 1.29795 1.30022 + 0.00005 -135 51
1200 1.28778 1.28993 + 0.00005 -129 58
SFR 600 1.47180 1.47637 + 0.00005 -210 -200
900 1.46600 1.47065 + 0.00005 -216 -201
1200 1.46243 1.46704 + 0.00005 -215 -202
LFR 600 1.44441 1.44919 + 0.00005 -228 -187
900 1.44117 1.44581 + 0.00005 -223 -187
1200 1.43912 1.44376 + 0.00005 -223 -188

Nomenclature

Latin symbols

a Link weight, -
Adjacency matrix, -
Matrix defined in Eqg. (8), -
Multiplication factor, -
Probability, -
Transition matrix, -
Probability vector, -
Temperature, K
Global transition matrix, -

S~ T Ama

Greek symbols

a Doppler coefficient, K

v Mean neutrons per fission, -

p Reactivity, -

X Macroscopic cross section, m*
Subscripts

c Capture

CN Complex network

cs Capture to scattering

D Doppler

f Fission

fs Fission to scattering
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MC Monte Carlo

nr Non reaction

s Scattering

sc Scattering to capture

sf Scattering to fission

t Time step
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