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Abstract 7 
 8 
In this work, complex network theory is applied for the first time in the field of nuclear reactor physics to 9 
present a new approach for the evaluation of the multiplication factor of a nuclear system. The approach 10 
describes the random walk of a neutron in a network representative of the nuclear system. The network is 11 
consituted by multiple layers, each one representing a type of reaction (scattering, fission and capture) and 12 
each layer is constituted by different nodes, each one representing a different spatial position in the nuclear 13 
system. The probability of a neutron to jump from a node to another is governed by the material cross sections.  14 
A correction procedure is also proposed to account for non-reaction probability, obtaining a good agreement 15 
between the predictions of the proposed method and of Monte Carlo simulation.  16 
The outcome of this work constitutes a starting point for further research on the application of complex network 17 
theory to the field of nuclear reactor physics, while, at the same time, the experience retrieved from the 18 
application of complex networks may give useful insight for the improvement of classical approaches to 19 
nuclear reactor analysis. 20 
 21 
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1. Introduction 24 
 25 
Complex networks represent an interdisciplinary research area which, over the years, has gathered the interest 26 
from physicists, engineers, social scientists, computer scientists, biologists and many others. Complex network 27 
structures describe a large plethora of systems of scientific and technical interest. Chemical and biological 28 
systems, financial, social and communication networks, and spreading of epidemics are just few examples 29 
(Barabási, 2016). 30 
Complex network theory represents a simple and yet effective approach to describe and understand the 31 
structure of many complex systems of different nature. As anticipated, it has been applied in many research 32 
fields, such as chemistry (Hayat, 2017; Orlova et al., 2018), biology (Duran-Nebreda and Bassel, 2017; Fionda, 33 
2018), epidemiology (Yuan et al., 2013; Sun et al., 2014; Schimit and Pereira, 2018), social sciences (Raducha 34 
and Gubiec, 2017; Zareie and Sheikhahmadi, 2018), computer science (Yang et al., 2013; Gan et al., 2014) 35 
and criminology (Calderoni et al. 2017).  36 
On the other hand, reactor physics is traditionally studied by means of point kinetics (Hamieh et Saidinezhad, 37 
2012; Cervi et al., 2018; Cervi and Cammi, 2018; Holschuh and Marcum, 2018), neutron diffusion theory 38 
(Aufiero et al., 2014; Cervi et al., 2017), neutron transport theory (Fiorina et al., 2017; Tramm et al., 2018) 39 
and Monte Carlo method (Leppänen et al., 2013; Chiesa et al., 2016). However, to the best of the authors 40 
knowledge, up to now, there is no application to the field of nuclear reactor physics.  41 
In nuclear systems, reactions take place between the neutrons and the nuclei of the fuel, coolant and structural 42 
materials. Notably, in scattering reactions, neutrons bounce on nuclei, changing their momentum and kinetic 43 
energy; in captures, they are absorbed from a fertile or coolant nucleus, disappearing from the neutronics 44 
balance of the system; in fission reactions, a neutron is absorbed from a fissile nucleus, which splits into two 45 
smaller fragments, emitting other neutrons (Lamarsh, 1969). Neutrons and nuclei can be seen as the costituents 46 
of a network, interacting with each other through reactions of scattering, capture, and fission.  47 
In this view, complex network theory may constitute a useful approach to nuclear reactor physics, sheding 48 
light on new aspects or providing innovative and efficient ways to study nuclear systems. Thanks to its limited 49 
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computational requirements, the proposed approach could be useful for core design optimization, especially 50 
in pre-conceptual design phases in which several changes are made and a fast-running tool is needed for their 51 
assessment. In addition, complex network theory has been succesfully applied to stability analysis (Liu and 52 
Tan, 2013), control theory (Zañudo et al., 2017) and optimization of the number and position of measurement 53 
instruments and detectors (Leitold et al., 2017). These applications are also of interest in the nuclear field, thus 54 
justifying the development of a first approach to nuclear reactor analysis using complex network theory. In 55 
this framework, the purpose of this paper is to lay down a path between complex network theory and reactor 56 
physics, providing a preliminary evaluation of the potentialities of this method in nuclear engineering 57 
applications and defining a baseline approach for the analysis of nuclear reactors, which is fundamental as a 58 
starting point for more detailed analyses.  59 
A fuel pin of different reactor types (pressurized water reactor, PWR, sodium fast reactor, SFR, and lead fast 60 
reactor, LFR) is modelled from a complex network theory perspective and a simple procedure is set up for the 61 
evaluation of the main neutronics parameters of a nuclear reactor. More in details, the fuel pin is discretized 62 
as a lattice of nodes, and the system multiplication factor and Doppler reactivity coefficient are evaluated by 63 
considering the random walk of a neutron in this complex network.   64 
The present work is organized as follows. In Section 2, the reader is introduced to the basic concepts of 65 
complex network theory. In Section 3, the modelling approach and the considered case study are introduced, 66 
while in Section 4 the results are presented and compared to Monte Carlo simulation to assess their validity. 67 
In addition, in Section 5, a correction procedure is proposed, accounting for the non-reaction probability of the 68 
different materials, in order to improve the accuracy of the method in non-uniform multiplying media. In the 69 
same section, the corrected approach is tested against Monte Carlo simulation and compared to the uncorrected 70 
one. Conclusions and future perspectives of research are given in Section 6. 71 
 72 
2. Fundamentals of complex network theory 73 

 74 
In this section, the basic concepts of complex network theory are provided, to introduce the nuclear commuity 75 
to the topic and guide the reader in understanding its formalism. For a deeper insight into complex network 76 
theory, the reader is referred to specialized textbooks (e.g., Newman, 2010; van Steen, 2010; Barabási, 2016). 77 
 78 
2.1. Nodes and links 79 

 80 
To understand a complex system, the first thing is to understand how its parts are related to each other. A graph 81 
of the network is well suited for this, to describe the interactions between the network components. To this 82 
aim, a new branch of mathematics, the so called complex network theory, was developed. According to 83 
complex network theory, a network can be described with an array of nodes, representative of the network 84 
components, and of links (or edges), representative of the relations between the components. 85 
An example is provided by Fig. 1, showing a protein-protein interaction network. Each protein constitutes a 86 
node of the network, while all the possible bindings between them constitute the links. Even if the nature of 87 
the nodes and of their interactions may change (e.g., in computer or social networks), the same graph 88 
representation can be used.  89 

 90 
 Figure 1. Protein-protein interaction network (Barabási, 2016).  91 



Most networks of scientific interest are weighted, i.e., their links can have in general different weights. In a 92 
protein network, weights may represent the probability of a binding between two molecules. The topology of 93 
a weighted network can be described by a so called adjacency matrix A, whose generic element 𝑎𝑖𝑗 represents 94 

the weight of the link going from the node i to the node j. In case of an unweighted network, all the elements 95 
of A are equal to one, and links represent merely qualitative interactions, without providing any quantitative 96 
information. 97 
Finally, complex networks can be distinguished between directed and undirected networks, depending on 98 
whether their links have a specified direction or not (see Fig. 2). The protein network shown in Fig. 1 is 99 
undirected, while phone calls, for example, where one person calls the other, can be thought as a directed 100 
network. 101 
 102 

 103 
 104 

Figure 2. Directed (a) vs. undirected (b) networks. 105 
 106 
2.2. Node centrality 107 

 108 
In complex systems, some elements may be more important than others (e.g., a specific protein may undergo 109 
more reactions then other molecules). In complex network theory, the importance of a node is also called 110 
centrality. Several centrality indicators can be found in literature for the analysis of a network, depending on 111 
the specific nature of a given system (Newman, 2010; van Steen, 2010). 112 
A possible way to evaluate node centrality is to study the path of a random walker through the network. Due 113 
to the stochastic nature of the neutron transport process, this technique can be particularly useful for nuclear 114 
applications. For this reason, this method is discussed in the present section. 115 
In a weighted network, a random walker can move from a node i to another node j with probability defined as 116 
follows: 117 

𝑝𝑖𝑗 =
𝑎𝑖𝑗

∑ 𝑎𝑖𝑗𝑗
 

(1) 

i.e., as the ratio between the weight of the link from i to j and the sum of the weights of all the links going from 118 
i to the other nodes. The probabilities 𝑝𝑖𝑗 form an N x N transition matrix 𝑷, where N is the number of nodes 119 

of the network.  120 
A state probability vector is also defined: 121 

𝝅𝑡 = (𝜋1,   𝜋2, …,   𝜋𝑁)𝑡 (2) 

whose elements 𝜋𝑖 represent the probability that the random walker is in the node i at time t. 122 

Indicating with [𝑡,   𝑡 + 1] a generic time interval between two events (i.e., two random steps), the state 123 
probability vector evolves according to the following equation: 124 

𝝅𝑡+1 = 𝑷 𝝅𝑡 (3) 

A network is said to be strictly connected if, for every pair of nodes i and j, there always exists a sequence of 125 
links going from i to j. If this condition is verified, it can be proved that there is a unique stationary state 126 
probability vector 𝝅, which is strictly positive (i.e., 𝜋𝑖 > 0 for every i) and satisfies the following equation 127 
(Piccardi, 2011): 128 



𝝅 = 𝑷 𝝅 (4) 

The time index is omitted in Eq. (4), since in stationary conditions the state probability vector is no longer 129 
dependent on time. It is stressed that 𝝅 is a probability vector, meaning the random walker can still move from 130 

a node to another, but the probability to be in a generic node i is constant in time. 131 
The stationary elements 𝜋𝑖 represent the fraction of time spent by the random walker in the node i in stationary 132 
conditions and, as a consequence, can be assumed as a centrality indicator of that node. 133 
   134 
3. Case study 135 

 136 
3.1. System geometry 137 

 138 
A simplified two-dimensional fuel cell, constituted by a fuel pin and surrounding coolant, is considered as a 139 
case study for the present work. The pin radius is 0.475 cm, while the half pitch is 0.63 cm. This geometry is 140 
discretized in a certain number of spatial nodes, as shown in Fig. 3. 141 

 142 
Figure 3. Geometry of the fuel cell and discretization in nodes. For simplicity, only 25 nodes are shown in 143 

this picture, but a higher number of nodes are used troughout this work. 144 
 145 

Each node represents a position which could be occupied by a neutron during its path and is characterized by 146 
a set of cross sections depending on the specific material at that node. Homogenized, group-constant cross 147 
sections for the fuel and the coolant can be obtained by Monte Carlo simulation: thus, the nodes falling in the 148 
fuel region are characterized by the fuel cross sections and the nodes falling in the coolant region are 149 
characterized by the coolant cross sections. In this work, spatial effects within material regions are neglected, 150 
i.e., nodes belonging to the same region have the same set of cross sections. 151 
 152 
3.2. Neutron random walk 153 

 154 
Given the cross sections, the probability of each reaction can be calculated. In particular, for each node: 155 

𝑓𝑖𝑠𝑠𝑖𝑜𝑛 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 𝑝𝑓 =
∑𝑓𝑖𝑠𝑠𝑖𝑜𝑛

∑𝑡𝑜𝑡𝑎𝑙
 

(5) 

𝑠𝑐𝑎𝑡𝑡𝑒𝑟𝑖𝑛𝑔 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 𝑝𝑠 =
∑𝑠𝑐𝑎𝑡𝑡𝑒𝑟𝑖𝑛𝑔

∑𝑡𝑜𝑡𝑎𝑙
 

(6) 

𝑐𝑎𝑝𝑡𝑢𝑟𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 𝑝𝑐 =
∑𝑐𝑎𝑝𝑡𝑢𝑟𝑒

∑𝑡𝑜𝑡𝑎𝑙
 

(7) 

These probabilities govern the neutron random walk from a node to another. In this paper, the total, scattering, 156 
capture and fission cross sections of the fuel and of the coolant are calculated using the Monte Carlo reactor 157 



physics code Serpent 2 (Leppänen et al., 2015), adopting the JEFF-3.1.1 libraries for the cross section data 158 
(Santamarina et al., 2009). 159 
Since three different types of reaction may occur (fission, scattering and capture) a three-layer network is 160 
constructed, with each layer representing a reaction type (see Fig. 4). For each spatial position, there is a node 161 
in the fission layer, a node in the scattering layer and a node in the capture layer, representing respectively a 162 
fission, a scattering and a capture occurring at that given position. 163 
Consider the random walk of a neutron, which is initially in the scattering layer: 164 

• The neutron may induce a fission in a fissile nucleus, thus making a transition from the scattering layer 165 

to the fission layer with probability 𝑝𝑓. Upon fission, the original neutron ceases to exist, and new 166 

neutrons are generated at that position. Then, the random walk proceeds considering the path of these 167 
neutrons, returning to the scattering layer with a probability equal to 1. 168 

• The neutron may be captured by a fertile nucleus, transferring from the scattering layer to the capture 169 

layer with probability 𝑝𝑐. Also in this case, the neutron ceases to exist once it is captured. The path of 170 
a new neutron is, then, considered in the same position where the capture occurred. This choice is 171 
made to have the least impact on the neutron random walk, restarting it where it is interrupted. Other 172 
options have been considered (e.g., starting new neutrons at fission nodes), verifying that the adopted 173 
choice is the best in terms of result accuracy. 174 

• The neutron can be scattered with probability 𝑝𝑠. In this case, the neutron moves from a node to another 175 
in the scattering layer. Considering four discrete directions in two dimensions, as represented in Fig. 176 
4, and assuming isotropic scattering, the neutron can move to one of the four adjacent nodes with 177 
probability 𝑝𝑠/4. 178 

 179 
Figure 4. Three-layer network adopted to describe the fuel pin. 180 

 181 
Summarizing, a nuclear reaction is sampled with a probability which depends on the corresponding cross 182 
section of the material at the node position and, if scattering occurs, a direction is sampled from a uniform 183 
distribution (for the isotropic scattering assumption). At this point the length of the neutron free path should 184 
be sampled to determine where the following collision occurs. The case study considered in the present work 185 
is constituted by two different materials, each with its own macroscopic total cross section. Therefore, the free 186 
path length distribution is different in each node and when a neutron moves from a node to another, the path 187 
length sampled in the first node may not be statistically valid in the second, since cross sections could change. 188 
A common way to address this issue is to resample the free path length each time the neutron reaches a new 189 
material. In practice, this requires the comparison between the sampled length and the distance to the nearest 190 
surface of interface between two materials, which is the idea at the basis of the ray-tracing method adopted in 191 
Monte Carlo simulations (Haghighat, 2014).  192 
In a complex network theory approach, this would require the definition of a scattering matrix containing all 193 
the possible links between all the nodes of the network. Each value of the matrix should depend not only on 194 



the distance between two points, but also on all the different materials that the neutron encounters in the path 195 
from the initial to the successive point. However, such operation would be impractical, especially for complex 196 
three-dimensional geometries and heterogeneous media constituted by different materials. To overcome this 197 
issue, an approximation is made, assuming that the free path is always equal to one step and that neutrons 198 
undergo another reaction in the adjacent node. In other words, this is equivalent to neglecting the non-reaction 199 
probability, imposing that a reaction always occurs whenever a neutron moves from a node to another. For the 200 
sake of conciseness, this will be referred to as the “one-step approximation” through the remainder of the 201 
manuscript. In the following sections, the limits of this approximation are discussed and a correction procedure 202 
is proposed, to account for non-reaction probability and improve the accuracy of the approach.  203 
At this point, all the elements of the network topology have been introduced. Summarizing, for each spatial 204 
position there are three nodes (one for each layer), representing the three possible reactions (scattering, capture 205 
and fission). Hence, each node represents a given type of reaction, occurring at a given point of the system. 206 
On the other hand, the links of the network represent the reaction probabilities, which depend on the cross 207 
sections according to Eqs. (5) to (7). This network is weighted, since the weight of the links changes depending 208 
on the material and reaction type, and directed, since neutrons have a specified flight direction. 209 
In addition, the defined network is strictly connected, since given two nodes, there is always a path between 210 
them, in both directions (i.e., from the first node to the second as well as from the second to the first). Note 211 
that the fission nodes of the coolant region cannot be reached at all by neutrons, since fissions do not occur 212 
there. These nodes are simply not seen by the random walker, as if they are not part of the network. However, 213 
the remaining portion of the network, were the random walk actually takes place, is strictly connected.   214 
Due to strict connection, the random walk of a neutron can be described using Eq. (4), here reported for the 215 
sake of readability:  216 

𝝅 = 𝑷 𝝅 (4) 

Recalling Section 2.2, the elements of the vector 𝝅 (i.e., the node centralities) represent the stationary 217 

probabilities to observe a specific reaction type at a given spatial position of the system. 218 
Note that the random walk statistics are entirely captured by the transition matrix 𝑷, whose elements describe 219 

the probability of a neutron step from a node to another. In addition, according to Eq. (4), the stationary state 220 

probability vector 𝝅 can be evaluated as the eigenvector corresponding to the unit eigenvalue. Therefore, the 221 

calculation is purely deterministic and can be performed without actually simulating the neutron random walk 222 
(as opposed to the Monte Carlo approach, in which many random walks must be sampled in order to describe 223 
the neutron global behavior). For this reason, results are not affected by statistics (i.e., by the number of neutron 224 
histories) but only by the cross section errors and by the modelling assumptions. 225 
  226 
3.3. The global network 227 

 228 
The basic idea underlying the proposed approach is to use the centrality indicators 𝜋𝑖 to obtain an information 229 

on the system eigenvalue. However, while node centrality provides a local information on reaction probability, 230 
the multiplication factor depends on the global neutron balance of the system. To overcome this, starting from 231 
the network introduced in the previous section, an aggregate network is defined, constituted by only three 232 
nodes. These nodes have the role of “clusters”, grouping together the fission layer nodes, the scattering layer 233 
nodes and the capture layer nodes of the original network, respectively (see Fig. 5). 234 

As a random walk in the original network can be described by the transition matrix 𝑷, in the same way a global 235 

transition matrix 𝑼 can be defined for the aggregate network, whose elements 𝑢𝑖𝑗 (with i and j = fission (f), 236 

scattering (s) or capture (c)) represent the global probability to move from a layer to another (as indicated in 237 

Fig. 5). 𝑼 is a 3x3 matrix, since the original network is composed of three layers, and the following procedure 238 
can be used to evaluate it. 239 
First, a “clustering” matrix 𝑯 is introduced, whose elements ℎ𝑖𝑘 are defined as: 240 

ℎ𝑖𝑘 = {
1   if the node 𝑖 belongs to the layer 𝑘
0   otherwise                                              

 
(8) 



 241 
 242 

Figure 5. Global network obtained from the original one. 243 

Following its definition, 𝑯 is a Nx3 matrix, which simply indicates, for each node of the original network, the 244 

corresponding layer. Its definition is necessary for the evaluation of 𝑼, according to the following expression 245 
(Piccardi, 2011): 246 

𝑼 = [𝑑𝑖𝑎𝑔(𝝅 𝑯)]−1𝑯𝑇𝑑𝑖𝑎𝑔(𝝅)𝑷𝑯 (9) 

The matrix 𝑼 is the equivalent of the transition matrix 𝑷, referred to the global network instead of the original 247 

one. Thanks to Eq. (9), the spatial dependence of the reaction probability (contained in 𝝅 and 𝑷) is condensed 248 

in 𝑼. Hence, the matrix elements 𝑢𝑖𝑗 represent the global probability that a neutron undergoes a given type of 249 

reaction and therefore provide an information of the neutron behavior over the whole system. In the following 250 
section, this information is used to evaluate the system multiplication factor. 251 
    252 
3.4. Evaluation of the multiplication factor 253 

 254 
In the light of what is described in the previous sections, a neutron random walk can be described using the 255 
original network, in which the nodes of each layer represent different positions in space and using the aggregate 256 
network, representative of the global probabilities that a neutron undergoes a certain reaction, making a 257 
transition from a layer to another. Describing the neutron behavior over the entire system, the aggregate 258 
network is particularly suitable to extract information on the system eigenvalue. The expression for the 259 
evaluation of the multiplication factor is derived as follows.  260 
During the random walk, if the system is critical, the number of neutrons produced by fissions must be equal 261 
to the number of neutrons lost by captures. Hence, the following relation must be valid: 262 

(𝜈̅ − 1) 𝑢𝑠𝑓 = 𝑢𝑠𝑐 (10) 

where 𝑢𝑠𝑓 is the global probability that the neutron induces a fission, in which one neutron is absorbed and 𝜈̅ 263 

new neutrons are produced, while 𝑢𝑠𝑐 is the global probability that the neutron is lost by capture. 264 

Eq. (10) is satisfied only in the case of a critical system. Then, in analogy with the k-eigenvalue method adopted 265 
in the Monte Carlo approach, the multiplication factor k is defined as the eigenvalue that makes the system 266 
stationary, bringing it back to criticality: 267 

(
𝜈̅

𝑘
 − 1) 𝑢𝑠𝑓 = 𝑢𝑠𝑐 

(11) 

from which the multiplication factor can be obtained as: 268 



𝑘 =
𝜈̅ 𝑢𝑠𝑓

𝑢𝑠𝑐 + 𝑢𝑠𝑓
  

(12) 

4. Results 269 
 270 

Once k is known, the reactivity ρ can be calculated as: 271 

𝜌 =
𝑘 − 1

𝑘
 

(13) 

A comparison is, then, made between the reactivity calculated by the complex network theory approach and 272 
the Monte Carlo results, in order to assess the accuracy of the proposed method. A comparison is also made 273 
between the Doppler reactivity coefficients, defined as: 274 

𝛼𝐷 =
𝜌(𝑇2) − 𝜌(𝑇1)

𝑇2 − 𝑇1
 

(14) 

Monte Carlo calculations are carried out using the continuous-energy code Serpent 2 (Leppänen et al., 2015) 275 
and the JEFF-3.1.1 cross section library (Santamarina et al., 2009). All the simulations are performed with 100 276 
million neutron histories (10000 generations, 10000 neutrons per generation and one generation per batch), 277 
obtaining a 5 pcm uncertainty on the multiplication factor. The same simulations are used to generate the 278 
homogeneized one-group cross sections for the complex network theory approach (see Eqs. (5) to (7)). A set 279 
of cross sections is generated for each material region and for each value of the fuel temperature considered 280 
for the evaluation of 𝛼𝐷. It is also reminded that spatial effects in each material region are neglected. Therefore, 281 

nodes belonging to the same region are characterized by the same cross sections.   282 
The following different systems are considered as case studies: 283 

• A Pressurized Water Reactor (PWR) UO2 pin with 3.25% 235U atom enrichment; 284 

• A Sodium Fast Reactor (SFR) MOX pin with 15% 239Pu atom enrichment; 285 

• A Lead Fast Reactor (LFR) MOX pin with 15% 239Pu atom enrichment; 286 

• A uniform 235U medium. 287 

In all cases, an infinite (or periodic) boundary condition is assumed. If a neutron is scattered out of the geometry 288 
boundary, it returns in the domain from the opposite side of the boundary (see Fig. 6). This is equivalent to 289 
assuming that the considered geometry is situated in an infinite medium, constituted by a periodic lattice. A 290 
total number of 400 nodes (20 x 20) is used to discretize the pin. A sensitivity study on the number of nodes 291 
has been carried out, verifying that the results are not modified by further refinements. 292 

 293 
Figure 6. Periodic boundary condition (for simplicity, 25 nodes are shown in this picture, but 400 294 

nodes are adopted for the calculations). 295 
 296 
 297 



4.1. PWR fuel pin 298 
 299 

The multiplication factor and the Doppler reactivity coefficient of a PWR fuel pin are calculated at different 300 
fuel temperatures and their values are compared to those obtained by Monte Carlo simulation. The results are 301 
reported in Tables I to III. 302 
 303 

Table I. Multiplication factor and reactivity difference with respect to the value obtained by Monte Carlo 304 
simulation for a PWR fuel pin, for 𝑇𝑓𝑢𝑒𝑙 = 600°𝐶 and 𝑇𝑐𝑜𝑜𝑙𝑎𝑛𝑡 = 300°𝐶. 305 

 Complex network Monte Carlo 

𝑘 1.32760 1.31253 ± 0.00005 

𝜌𝐶𝑁 − 𝜌𝑀𝐶  865 pcm - 

 306 
Table II. Multiplication factor, reactivity difference with respect to the value obtained by Monte Carlo 307 

simulation and Doppler coefficient for a PWR fuel pin, for 𝑇𝑓𝑢𝑒𝑙 = 900°𝐶 and 𝑇𝑐𝑜𝑜𝑙𝑎𝑛𝑡 = 300°𝐶. 308 

 Complex network Monte Carlo 

𝑘 1.31489 1.30022 ± 0.00005 

𝜌𝐶𝑁 − 𝜌𝑀𝐶  858 pcm - 

𝛼 𝐷 (𝑇𝑓𝑢𝑒𝑙 = 600 ÷ 900 °𝐶) -2.428 pcm/°C -2.404 ± 0.020 pcm/°C 

 309 
Table III. Multiplication factor, reactivity difference with respect to the value obtained by Monte Carlo 310 

simulation and Doppler coefficient for a PWR fuel pin, for 𝑇𝑓𝑢𝑒𝑙 = 1200°𝐶 and 𝑇𝑐𝑜𝑜𝑙𝑎𝑛𝑡 = 300°𝐶. 311 

 Complex network Monte Carlo 

𝑘 1.30441 1.28993 ± 0.00005 

𝜌𝐶𝑁 − 𝜌𝑀𝐶  861 pcm - 

𝛼 𝐷 (𝑇𝑓𝑢𝑒𝑙 = 900 ÷ 1200 °𝐶) -2.037 pcm/°C -2.045 ± 0.020 pcm/°C 

 312 
4.2. SFR fuel pin 313 

 314 
For the SFR fuel pin, the results are summarized in Tables IV to VI. 315 
 316 
Table IV. Multiplication factor and reactivity difference with respect to the value obtained by Monte Carlo 317 

simulation for a SFR fuel pin, for 𝑇𝑓𝑢𝑒𝑙 = 600°𝐶 and 𝑇𝑐𝑜𝑜𝑙𝑎𝑛𝑡 = 425°𝐶. 318 

 Complex network Monte Carlo 

𝑘 1.45900 1.47637 ± 0.00005 

𝜌𝐶𝑁 − 𝜌𝑀𝐶  -807 pcm - 

 319 
Table V. Multiplication factor, reactivity difference with respect to the value obtained by Monte Carlo 320 

simulation and Doppler coefficient for a SFR fuel pin, for 𝑇𝑓𝑢𝑒𝑙 = 900°𝐶 and 𝑇𝑐𝑜𝑜𝑙𝑎𝑛𝑡 = 425°𝐶. 321 

 Complex network Monte Carlo 

𝑘 1.45341 1.47065 ± 0.00005 

𝜌𝐶𝑁 − 𝜌𝑀𝐶  -807 pcm - 

𝛼 𝐷 (𝑇𝑓𝑢𝑒𝑙 = 600 ÷ 900 °𝐶) -0.879 pcm/°C -0.878 ± 0.015 pcm/°C 

 322 
Table VI. Multiplication factor, reactivity difference with respect to the value obtained by Monte Carlo 323 

simulation and Doppler coefficient for a SFR fuel pin, for 𝑇𝑓𝑢𝑒𝑙 = 1200°𝐶 and 𝑇𝑐𝑜𝑜𝑙𝑎𝑛𝑡 = 425°𝐶. 324 

 Complex network Monte Carlo 

𝑘 1.44990 1.46704 ± 0.00005 

𝜌𝐶𝑁 − 𝜌𝑀𝐶  -806 pcm - 

𝛼 𝐷 (𝑇𝑓𝑢𝑒𝑙 = 900 ÷ 1200 °𝐶) -0.555 pcm/°C -0.558 ± 0.015 pcm/°C 

 325 
 326 



4.3. LFR fuel pin 327 
 328 

For the LFR fuel pin, the results are summarized in Tables VII to IX. 329 
 330 
Table VII. Multiplication factor and reactivity difference with respect to the value obtained by Monte Carlo 331 

simulation for a LFR fuel pin, for 𝑇𝑓𝑢𝑒𝑙 = 600°𝐶 and 𝑇𝑐𝑜𝑜𝑙𝑎𝑛𝑡 = 440°𝐶. 332 

 Complex network Monte Carlo 

𝑘 1.43541 1.44919 ± 0.00005 

𝜌𝐶𝑁 − 𝜌𝑀𝐶  -676 pcm - 

 333 
Table VIII. Multiplication factor, reactivity difference with respect to the value obtained by Monte Carlo 334 

simulation and Doppler coefficient for a LFR fuel pin, for 𝑇𝑓𝑢𝑒𝑙 = 900°𝐶 and 𝑇𝑐𝑜𝑜𝑙𝑎𝑛𝑡 = 440°𝐶. 335 

 Complex network Monte Carlo 

𝑘 1.43178 1.44581 ± 0.00005 

𝜌𝐶𝑁 − 𝜌𝑀𝐶  -678 pcm - 

𝛼 𝐷 (𝑇𝑓𝑢𝑒𝑙 = 600 ÷ 900 °𝐶) -0.545 pcm/°C -0.538 ± 0.016 pcm/°C 

 336 
Table IX. Multiplication factor, reactivity difference with respect to the value obtained by Monte Carlo 337 

simulation and Doppler coefficient for a LFR fuel pin, for 𝑇𝑓𝑢𝑒𝑙 = 1200°𝐶 and 𝑇𝑐𝑜𝑜𝑙𝑎𝑛𝑡 = 440°𝐶. 338 

 Complex network Monte Carlo 

𝑘 1.42974 1.44376 ± 0.00005 

𝜌𝐶𝑁 − 𝜌𝑀𝐶  -679 pcm - 

𝛼 𝐷 (𝑇𝑓𝑢𝑒𝑙 = 900 ÷ 1200 °𝐶) -0.332 pcm/°C -0.327 ± 0.016 pcm/°C 

 339 
4.4. Uniform medium 340 

 341 
In this section, the multiplication factor of a uniform 235U medium is calculated. The value obtained with the 342 
complex network theory approach is 𝑘𝐶𝑁 = 2.26534, while the value from Monte Carlo is 𝑘𝑀𝐶 =343 

2.275353. The reactivity difference between the two methods is -198 pcm.  344 

For this simple case, the multiplication factor can be calculated also analytically. Using the one-group 345 
formulation of the neutron diffusion equation (Lamarsh, 1969), it can be easily found that: 346 

𝑘 =
𝜈̅ ∑𝑓

∑𝑎
  

(15) 

where the absorption cross section ∑𝑎 is the sum of the fission and capture cross sections. It can be observed 347 
that Eq. (15) is formally equivalent to Eq. (12). In fact, substituting into Eq. (15) the same homogenized cross 348 
sections used for the complex network theory method, the predicted multiplication factor is 𝑘𝐷𝐼𝐹𝐹 = 2.26534, 349 

which is exactly coincident with 𝑘𝐶𝑁, independently from the number of nodes of the network. 350 
 351 
4.5. Discussion of results 352 

 353 
The results presented in the previous sections point out that the multiplication factor predicted with the 354 
complex network theory approach agrees with the Monte Carlo results within 600-900 pcm, with the exception 355 
of the uniform medium, for which the reactivity difference is lower than 200 pcm.  356 
Good agreement is obtained between the Doppler coefficients predicted by the two approaches. This can be 357 
expected, since the homogeneized cross sections adopted in the complex network theory approach are 358 
generated from the same Monte Carlo simulations that are used for the comparison (and therefore, both the 359 
methods predict the same reactivity variations). However, considering the simplicity of the proposed approach, 360 
such agreement is still an interesting result. 361 



The reactivity error between the two approaches is due to different reasons, namely, the use of group-constant 362 
cross sections and the adoption of only four discretized flight directions for the scattering neutrons. However, 363 
the one-step approximation introduced in Section 3.2 is also expected to have an important role. 364 
As explained, assuming that the neutron free path always has the same length, equal to the distance between 365 
two adjacent nodes, is equivalent to neglecting the non-reaction probability. In fact, a reaction event is imposed 366 
everytime a neutron moves from a node to another. This approximation is rigorously justified in an infinite 367 
and homogeneous multiplying medium, in which cross sections are uniform in space and, as a consequence, 368 
the random walk statistics are independent from the spatial position. Therefore, in this case, sampling the free 369 
path is unnecessary and an arbitrary free flight can be assumed without affecting results. However, in non-370 
uniform systems, the non-reaction probability and, as a consequence, the expected free path length, change 371 
from point to point. Hence, if the medium is heterogeneous (which is the case for the major part of the systems 372 
of scientific and technical interest) the one-step approximation is a critical limit for the proposed method, 373 
constituting an important source of error. This consideration is supported by the fact that in the fuel pin cases 374 
the error is about four time higher, compared to the uniform medium test case. To overcome this issue, a 375 
correction procedure, accounting for the spatial dependene of the non-reaction probability, is proposed in the 376 
following section, in order to improve the accuracy of the proposed method without renouncing the simplicity 377 
of the one-step approximation. 378 
     379 
5. The ∑𝒎𝒂𝒋𝒐𝒓𝒂𝒏𝒕 correction 380 

 381 
As discussed in Section 4.5, the non-rection probabilities in different material regions should be accounted to 382 
improve the accuracy of the proposed approach. This issue is addressed by means of the following procedure, 383 
which is inspired to the Woodcock’s delta-tracking method (Woodcock et al., 1965): 384 

• a majorant cross section is defined as the maximum of the material total cross sections: 385 

∑𝑚𝑎𝑗𝑜𝑟𝑎𝑛𝑡 = max {∑𝑡𝑜𝑡𝑎𝑙
𝑚 , where 𝑚 = materials}  (16) 

• for each material, the reaction probabilities are redefined as follows: 386 

𝑝𝑓
′ =

∑𝑡𝑜𝑡𝑎𝑙

∑𝑚𝑎𝑗𝑜𝑟𝑎𝑛𝑡

∑𝑓𝑖𝑠𝑠𝑖𝑜𝑛

∑𝑡𝑜𝑡𝑎𝑙

=
∑𝑓𝑖𝑠𝑠𝑖𝑜𝑛

∑𝑚𝑎𝑗𝑜𝑟𝑎𝑛𝑡

 
       (17) 

𝑝𝑠
′ =

∑𝑡𝑜𝑡𝑎𝑙

∑𝑚𝑎𝑗𝑜𝑟𝑎𝑛𝑡

∑𝑠𝑐𝑎𝑡𝑡𝑒𝑟𝑖𝑛𝑔

∑𝑡𝑜𝑡𝑎𝑙

=
∑𝑠𝑐𝑎𝑡𝑡𝑒𝑟𝑖𝑛𝑔

∑𝑚𝑎𝑗𝑜𝑟𝑎𝑛𝑡

 
(18) 

𝑝𝑐
′ =

∑𝑡𝑜𝑡𝑎𝑙

∑𝑚𝑎𝑗𝑜𝑟𝑎𝑛𝑡

∑𝑐𝑎𝑝𝑡𝑢𝑟𝑒

∑𝑡𝑜𝑡𝑎𝑙

=
∑𝑐𝑎𝑝𝑡𝑢𝑟𝑒

∑𝑚𝑎𝑗𝑜𝑟𝑎𝑛𝑡

 
(19) 

• a non-reaction probability is defined as: 387 

𝑝𝑛𝑟
′ = 1 − 𝑝𝑓

′ − 𝑝𝑠
′ − 𝑝𝑐

′  (20) 

• finally, the reaction cross sections are again redefined according to the following relations: 388 

𝑝𝑓
∗ = 𝑝𝑓

′  (21) 

𝑝𝑠
∗ = 𝑝𝑠

′ + 𝑝𝑛𝑟
′  (22) 

𝑝𝑐
∗ = 𝑝𝑐

′  (23) 

The general idea of this approach is to homogenize the medium with the introduction of the majorant cross 389 

section, so that all the materials have the same “virtual” total cross section. Then, by replacing ∑𝑡𝑜𝑡𝑎𝑙 with 390 



∑𝑚𝑎𝑗𝑜𝑟𝑎𝑛𝑡 in Eqs. (16), (17) and (18), the reaction probabilities are corrected by the “weight” of each node, 391 

i.e. by the probability that a reaction occurs in that node. Hence, the non-reaction probability must be defined 392 
as the complement to unity of the reaction probabilities, since the sum of probabilities must be equal to 1. 393 
Finally, the non reaction-probability is included in the scattering probability, so that the scattering layer of the 394 
network becomes not only representative of the scattered neutrons, but also of the non-reacting ones (see Fig. 395 
7). 396 

 397 
Figure 7. Complex network including non-reacting event 398 

 399 
5.1. PWR fuel pin 400 

 401 
For the LFR fuel pin, the results are summarized in Tables X to XII. 402 
 403 

Table X. Multiplication factor and reactivity difference with respect to the value obtained by Monte Carlo 404 

simulation for a PWR fuel pin, for 𝑇𝑓𝑢𝑒𝑙 = 600°𝐶 and 𝑇𝑐𝑜𝑜𝑙𝑎𝑛𝑡 = 300°𝐶. 405 

 Complex network Monte Carlo 

𝑘 1.31341 1.31253 ± 0.00005 

𝜌𝐶𝑁 − 𝜌𝑀𝐶  51 pcm - 

 406 
Table XI. Multiplication factor, reactivity difference with respect to the value obtained by Monte Carlo 407 

simulation and Doppler coefficient for a PWR fuel pin, for 𝑇𝑓𝑢𝑒𝑙 = 900°𝐶 and 𝑇𝑐𝑜𝑜𝑙𝑎𝑛𝑡 = 300°𝐶. 408 

 Complex network Monte Carlo 

𝑘 1.30108 1.30022 ± 0.00005 

𝜌𝐶𝑁 − 𝜌𝑀𝐶  51 pcm - 

𝛼 𝐷 (𝑇𝑓𝑢𝑒𝑙 = 600 ÷ 900 °𝐶) -2.405 pcm/°C -2.404 ± 0.020 pcm/°C 

 409 
Table XII. Multiplication factor, reactivity difference with respect to the value obtained by Monte Carlo 410 

simulation and Doppler coefficient for a PWR fuel pin, for 𝑇𝑓𝑢𝑒𝑙 = 1200°𝐶 and 𝑇𝑐𝑜𝑜𝑙𝑎𝑛𝑡 = 300°𝐶. 411 

 Complex network Monte Carlo 

𝑘 1.29090 1.28993 ± 0.00005 

𝜌𝐶𝑁 − 𝜌𝑀𝐶  58 pcm - 

𝛼 𝐷 (𝑇𝑓𝑢𝑒𝑙 = 900 ÷ 1200 °𝐶) -2.020 pcm/°C -2.045 ± 0.020 pcm/°C 

 412 
 413 



5.2. SFR fuel pin 414 
 415 

For the SFR fuel pin, the results are summarized in Tables XIII to XV. 416 
 417 
Table XIII. Multiplication factor and reactivity difference with respect to the value obtained by Monte Carlo 418 

simulation for a SFR fuel pin, for 𝑇𝑓𝑢𝑒𝑙 = 600°𝐶 and 𝑇𝑐𝑜𝑜𝑙𝑎𝑛𝑡 = 425°𝐶. 419 

 420 

 Complex network Monte Carlo 

𝑘 1.47202 1.47637 ± 0.00005 

𝜌𝐶𝑁 − 𝜌𝑀𝐶  -200 pcm - 

 421 
Table XIV. Multiplication factor, reactivity difference with respect to the value obtained by Monte Carlo 422 

simulation and Doppler coefficient for a SFR fuel pin, for 𝑇𝑓𝑢𝑒𝑙 = 900°𝐶 and 𝑇𝑐𝑜𝑜𝑙𝑎𝑛𝑡 = 425°𝐶. 423 

 Complex network Monte Carlo 

𝑘 1.46631 1.47065 ± 0.00005 

𝜌𝐶𝑁 − 𝜌𝑀𝐶  -201 pcm - 

𝛼 𝐷 (𝑇𝑓𝑢𝑒𝑙 = 600 ÷ 900 °𝐶) -0.882 pcm/°C -0.878 ± 0.015 pcm/°C 

 424 
Table XV. Multiplication factor, reactivity difference with respect to the value obtained by Monte Carlo 425 

simulation and Doppler coefficient for a SFR fuel pin, for 𝑇𝑓𝑢𝑒𝑙 = 1200°𝐶 and 𝑇𝑐𝑜𝑜𝑙𝑎𝑛𝑡 = 425°𝐶. 426 

 Complex network Monte Carlo 

𝑘 1.46271 1.46704 ± 0.00005 

𝜌𝐶𝑁 − 𝜌𝑀𝐶  -202 pcm - 

𝛼 𝐷 (𝑇𝑓𝑢𝑒𝑙 = 900 ÷ 1200 °𝐶) -0.559 pcm/°C -0.558 ± 0.015 pcm/°C 

 427 
5.3. LFR fuel pin 428 

 429 
For the SFR fuel pin, the results are summarized in Tables XVI to XVIII. 430 
 431 
Table XVI. Multiplication factor and reactivity difference with respect to the value obtained by Monte Carlo 432 

simulation for a LFR fuel pin, for 𝑇𝑓𝑢𝑒𝑙 = 600°𝐶 and 𝑇𝑐𝑜𝑜𝑙𝑎𝑛𝑡 = 440°𝐶. 433 

 Complex network Monte Carlo 

𝑘 1.44528 1.44919 ± 0.00005 

𝜌𝐶𝑁 − 𝜌𝑀𝐶  -187 pcm - 

 434 
Table XVII. Multiplication factor, reactivity difference with respect to the value obtained by Monte Carlo 435 

simulation and Doppler coefficient for a LFR fuel pin, for 𝑇𝑓𝑢𝑒𝑙 = 900°𝐶 and 𝑇𝑐𝑜𝑜𝑙𝑎𝑛𝑡 = 440°𝐶. 436 

 Complex network Monte Carlo 

𝑘 1.44190 1.44581 ± 0.00005 

𝜌𝐶𝑁 − 𝜌𝑀𝐶  -187 pcm - 

𝛼 𝐷 (𝑇𝑓𝑢𝑒𝑙 = 600 ÷ 900 °𝐶) -0.541 pcm/°C -0.538 ± 0.016 pcm/°C 

 437 
Table XVIII. Multiplication factor, reactivity difference with respect to the value obtained by Monte Carlo 438 

simulation and Doppler coefficient for a LFR fuel pin, for 𝑇𝑓𝑢𝑒𝑙 = 1200°𝐶 and 𝑇𝑐𝑜𝑜𝑙𝑎𝑛𝑡 = 440°𝐶. 439 

 Complex network Monte Carlo 

𝑘 1.43986 1.44376 ± 0.00005 

𝜌𝐶𝑁 − 𝜌𝑀𝐶  -188 pcm - 

𝛼 𝐷 (𝑇𝑓𝑢𝑒𝑙 = 900 ÷ 1200 °𝐶) -0.328 pcm/°C -0.327 ± 0.016 pcm/°C 

 440 
 441 
 442 



5.4. Discussion of results 443 
 444 

The results show that the ∑𝑚𝑎𝑗𝑜𝑟𝑎𝑛𝑡 correction leads to significant improvements in the prediction of the 445 

multiplication factor. The reactivity difference with respect to Monte Carlo simulation is reduced from about 446 
600-900 pcm to 50-200 pcm, similar to the uniform case. These results support the consideration made in 447 
Section 4.5, that the one-step approximation represents a major source of error for the uncorrected approach. 448 
In fact, upon application of the ∑𝑚𝑎𝑗𝑜𝑟𝑎𝑛𝑡 correction, the method’s accuracy becomes comparable to the 449 

uniform case study, which is not affected by the one-step approximation.  450 
The residual error can be imputed to the one group-approximation as well as to the discretization of the flight 451 
direction and, considering the simplicity of the method, it is surprisingly small. 452 
A comparison between several deterministic reactor physics codes on a similar 2D pin test case can be found 453 
in Rowlands et al. (1999). An agreement of ~20-360 pcm is found with Monte Carlo results, which is 454 
compatible with the accuracy of the complex network theory approach. In addition, a comparison with the 455 
neutron transport code DRAGON5 (Hebért, 2016), in terms of accuracy and runtime, is presented in Appendix 456 
A, using the fuel pin case studies adopted in the previous sections.  457 
Concerning computational time, the complex network theory approach requires about 20-25 seconds per 458 
simulation, using an Intel® Core® i7-6700HQ CPU with 2 x 4 cores and a clock speed of 2.60 GHz in serial 459 
mode. The application of the ∑𝑚𝑎𝑗𝑜𝑟𝑎𝑛𝑡 correction does not visibly affect run times, compared to the 460 

uncorrected approach. 461 
  462 
6. Conclusions 463 

 464 
In this work, an innovative approach to nuclear reactor analysis is proposed, bases on complex network theory. 465 
For demonstration purposes, a nuclear reactor fuel pin is modelled as a complex network and the multiplication 466 
factor and the Doppler reactivity coefficient are evaluated for a PWR, a SFR and a LFR fuel pin. For all the 467 
considered case studies, the predicted reactivity agrees within 600-900 pcm with Monte Carlo simulation 468 
results. A possible source of error is the “one-node approximation”, i.e., the assumption that a reaction must 469 
take place every time a neutron moves from a node to an adjacent one, neglecting non-reaction. As discussed, 470 
this approximation can be rigorously applied in infinite, homogeneous systems, in which cross sections (and, 471 
as a consequence, the mean free path) are uniform in space. On the other hand, it can significantly affect results 472 
in heterogeneous systems, in which the mean free path depends on the different materials encountered by the 473 
neutron during the free flight. To address this issue, the medium is “homogeneized” by correcting the reaction 474 
probability by a majorant cross section, allowing to account for non-reaction probability. Good agreement is 475 
obtained between the corrected approach and Monte Carlo simulation, reducing the error to about 50-200 pcm. 476 
In conclusion, this work paves, for the first time, a way for treating nuclear reactor physics by complex network 477 
theory, providing a simple and yet effective approach to estimate the neutronics parameters of a nuclear system. 478 
Complex network theory may be of interest in the nuclear field due to its possible application to control theory, 479 
stability analysis and optimization of measurement instrumentation (Liu and Tan, 2013; Gomez Tejeda Zañudo 480 
et al., 2017; Leitold et al., 2017). Therefore, the present work may constitute the first step for the development 481 
of new and accurate methods for the analysis of nuclear systems from a complex network theory perspective. 482 
In particular, the definition and the testing of a baseline appraoch is fundamental as a starting point for more 483 
detailed analyses based on this method. In addition, the limited computational requirements can be particularly 484 
interesting for core design optimization, especially in preliminary phases where specifications are subject to 485 
frequent changes and, as a consequence, a fast running tool is required. Future work could regard the extension 486 
of the present method to multiple neutron energy groups and by considering thermal-hydraulics, providing a 487 
fully coupled description of a nuclear system. 488 
 489 
A. Comparison with the DRAGON5 reactor physics code 490 
 491 
In this Appendix, the proposed method is compared to the deterministic neutron transport code DRAGON5 492 
(Hebért, 2016; documentation available at http://www.polymtl.ca/phys/en/dragon-download), using the PWR, 493 
SFR and LFR fuel pin case studies. The same homogeneized one-group cross sections adopted in the complex 494 



network theory approach are also used in the DRAGON5 simulations, in order to carry out the comparison in 495 
the same conditions. The multiplication factor and the reactivity difference with respect to Monte Carlo 496 
obtained with DRAGON5 are presented in Table A.I. For comparison, the complex network theory errors 497 
𝜌𝐶𝑁 − 𝜌𝑀𝐶, obtained with the ∑𝑚𝑎𝑗𝑜𝑟𝑎𝑛𝑡 correction (Sections 5.1, 5.2 and 5.3), are also reported. 498 

It can be observed that the two approaches are comparable in terms of accuracy. For each case study, the 499 
complex network theory errors (~50-200 pcm) are slightly smaller than the DRAGON5 errors (~130-220 pcm). 500 
As far as computational times are concerned, each DRAGON5 simulation is carried out in approximately 2-3 501 
seconds, while the complex network theory approach requires 20-25 seconds per calculation. However, it has 502 
to be considered that the DRAGON5 code is written in FORTRAN, which is a compiled programming 503 
language, while the proposed approach is implemented in MATLAB®, which is based on an interpreted 504 
language and therefore it is intrinsically slower. In principle, the complex network theory approach could be 505 
implemented using other programming languages, possibly reducing computational times. 506 
 507 

Table A.I. Comparison between DRAGON5 and the complex network theory approach. 508 

Case 𝑻𝒇𝒖𝒆𝒍 (K) 𝒌𝑫𝑹𝑨𝑮𝑶𝑵 𝒌𝑴𝑪 𝝆𝑫𝑹𝑨𝑮𝑶𝑵 − 𝝆𝑴𝑪 

(pcm) 

𝝆𝑪𝑵 − 𝝆𝑴𝑪 

(pcm) 

PWR 600 1.31023 1.31253 ± 0.00005 -134 51 

900 1.29795 1.30022 ± 0.00005 -135 51 

1200 1.28778 1.28993 ± 0.00005 -129 58 

SFR 600 1.47180 1.47637 ± 0.00005 -210 -200 

900 1.46600 1.47065 ± 0.00005 -216 -201 

1200 1.46243 1.46704 ± 0.00005 -215 -202 

LFR 600 1.44441 1.44919 ± 0.00005 -228 -187 

900 1.44117 1.44581 ± 0.00005 -223 -187 

1200 1.43912 1.44376 ± 0.00005 -223 -188 

 509 
 510 
Nomenclature 511 
 512 
Latin symbols 513 

𝑎 Link weight, - 

𝑨 Adjacency matrix, - 

𝑯 Matrix defined in Eq. (8), - 

𝑘 Multiplication factor, - 

𝑝 Probability, - 

𝑷 Transition matrix, - 

𝝅 Probability vector, -  

𝑇 Temperature, K 

𝑼 Global transition matrix, - 

Greek symbols 514 
𝛼 Doppler coefficient, K-1 

𝜈̅ Mean neutrons per fission, - 

𝜌 Reactivity, - 

𝛴 Macroscopic cross section, m-1 

Subscripts 515 
𝑐 Capture 

𝐶𝑁 Complex network 

𝑐𝑠 Capture to scattering 

𝐷 Doppler 

𝑓 Fission 

𝑓𝑠 Fission to scattering 



𝑀𝐶 Monte Carlo 

𝑛𝑟 Non reaction 

𝑠 Scattering 

𝑠𝑐 Scattering to capture 

𝑠𝑓 Scattering to fission 

𝑡 Time step 

 516 
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