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ABSTRACT:  

Risk assessment must evolve for addressing the existing and future challenges, and considering the 

new systems and innovations that have already arrived in our lives and that are coming ahead. In this 

paper, I swing on the rapid changes and innovations that the World that we live in is experiencing, and 

analyze them with respect to the challenges that these pose to the field of risk assessment. Digitalization 

brings opportunities but with it comes also the complexity of cyber-phyiscal systems. Climate change 

and extreme natural events are increasingly threatening our infrastructures; terrorist and malevolent 

threats are posing severe concerns for the security of our systems and lives. These sources of hazard are 

extremely uncertain and, thus, difficult to describe and model quantitatively.  

Some research and development directions that are emerging are presented and discussed, also 

considering the ever increasing computational capabilities and data availability. These include the use 

of simulation for accident scenario identification and exploration, the extension of risk assessment into 

the framework of resilience and business continuity, the reliance on data for dynamic and condition 

monitoring-based risk assessment, the safety and security assessment of cyber-physical systems. 

The paper is not a research work and not exactly a review or a state of the art work, but rather it 

offers a lookout on risk assessment, open to consideration and discussion, as it cannot pretend to give an 

absolute point of view nor to be complete in the issues addressed (and the related literature referenced 

to).  

 

KEYWORD: Risk assessment, Simulation, Business continuity, Resilience, Condition 

monitoring-based risk assessment, Dynamic risk assessment, Cyber-physical systems, Safety and 

security assessment. 
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1  Introduction 

Safety is freedom, freedom from unaffordable harm, and, thus, a human right. Risk assessment has 

been the dominant paradigm for ensuring this right in the design and operation of industrial systems. 

Examples of areas of applications include the chemical process industry, the nuclear industry, the 

transportation sectors, the aerospace industry etc.  

Risk assessment is a mature discipline. The structured performance of a risk assessment guides 

analysts to identify possible hazards/threats, analyze their causes and consequences, and describe risk, 

typically quantitatively and with a proper representation of uncertainties. In the assessment, the analysts 

make assumptions and simplifications, collect and analyze data, and develop and use models to 

represent the phenomena studied. For example, the failure modes of components due to a given 

earthquake, the heat fluxes on a structure due to a fire, the response of operators to an accident are all 

the results of conceptual models that attempt to mimic how a real accident would proceed, based on the 

knowledge available. The risk assessment of a system requires the consideration of a possibly very large 

number of scenarios with multiple failures of its components and, by so doing, provides an in-depth 

understanding and knowledge of the system failure modes with consequent increase of the awareness on 

risk and the attention to safety, which typically leads to an overall improvement of the safety of the 

system. 

The World we live in is rapidly changing in many ways. Digitalization is bringing new 

opportunities of connectivity, monitoring and awareness, and is changing the way we communicate and 

socially behave. Mobility and social pressure are changing the landscape in which we live and operate. 

Continuous advancements in technical knowledge and technology are improving our production 

processes, products and services, as well as our environments, while changing the business and 

work/job scenarios. As the digital, physical and human worlds continue to integrate, we experience a 

deep transformation in industry, which far-reaches into our lives. The 4
th

 industrial revolution, the 

internet of things and big data, the industrial internet, are changing the way we design, manufacture, 

supply products and services, the way we move and live in our environment. This is creating a complex 

network of things and people that are seamlessly connected and communicating. It is providing 

opportunities to make production systems and services more efficient and faster, and more flexible and 

resilient the complex supply chains and distribution networks that tie the global economy. 

In this fast-pace changing environment, the attributes related to the reliability of components and 

systems continue to play a fundamental role for industry and those of safety and security are of 

increasing concern, as a right to freedom. The innovations that are being developed have high potential 

of increased wellbeing and benefits, but also generate new failure mechanisms and hazards, and create 

new risks, partly due also to new and unknown functional and structural dependencies in and among the 

systems. On the other hand, the advancements in knowledge, methods and techniques, the increase in 

information sharing, data availability and computational capabilities, and the advancements in 

knowledge that these can bring, offer new opportunities of development for the analysis and assessment 

of risks. An evolution of risk assessment is in the making, or perhaps even a ―revolution‖ that takes the 

form of new approaches to and methods for risk assessment. 

In this paper, I consider the above context and point at some directions that are shaping the road of 

advancement of risk assessment. The underlying perspective taken stands on: 

 the recognition that the knowledge, information and data (KID) available for analyzing and 

characterizing hazards, modeling and computing risk are substantially grown and continue to 

do so; 

 the evidence that the modeling capabilities and computational power available have 
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significantly advanced and allow unprecedented analysis with previously infeasible methods; 

 the concern that the increased complexity of the systems, nowadays more and more made of 

heterogeneous elements (hardware, human, digital) organized in highly interconnected 

structures, leads to behaviors that are difficult to anticipate or predict, driven by unexpected 

events and corresponding emerging unknown systems responses; 

 the realization that to manage risk in a systematic and effective way it is necessary to consider 

together all phases of the potential accident scenarios that may occur, including prevention, 

mitigation, emergency crisis management and restoration, and that this entails an extended 

vision of risk assessment for an integrated framework of business continuity (with respect to 

production reliability and availability) and resilience (with respect also to safety); 

 the acknowledgment that risk varies significantly over time and so may also the conditions and 

effectiveness of the prevention, protection and mitigation measures installed; 

 the consideration of the need of solid frameworks for the safety and security assessment of 

cyber-phyiscal systems (CPSs). 

As the future seems to have already arrived and considering that the roots of the methodologies to 

deal with the associated risks can be found in the past, in the following Sections some directions and 

challenges for risk assessment are discussed in relation to simulation for accident scenario identification 

and exploration, resilience and business continuity, dynamic and condition monitoring-based risk 

assessment, CPSs and their safety and security assessment. 

 

2  Risk Assessment 

Industry is undergoing rapid changes in technology and business management. Competitiveness 

and liberalization have brought considerable advantages in the quality of products and services. On the 

other hand, processes and systems have seen an increase in the complexity of their operation (energy 

ratings have increased, pressures, temperatures, flows have increased, storages have been reduced, 

interdependencies among industries and technologies have increased, particularly through digitalization 

and information sharing, etc.). As a result, hazards have changed and risk of large scale accidents with 

significant losses in both human lives and economic terms has increased. This has led to growing public 

concern to safety and protection from industrial (and natural) disasters, with consequential increased 

intensity in safety regulation and in the scrutiny of safety procedures. 

In this evolving scenario, risk assessment remains a fundamental technical framework for the 

systemic analysis of the risk associated to an industrial activity. The aim is to acquire a proper 

understanding of the issues involved, so as to be able to take confident risk-informed decisions for 

protecting from such risk.  

The underlying principles of risk assessment are captured in the National Academy of Science 

―Red Book‖, where the two activities of assessment and decision making are kept distinct: assessment 

of risk is treated as a scientific activity limited by the available knowledge and the uncertainty inherent 

in risk, and decision making based on risk is regarded as a political activity, with the outcomes of risk 

assessment being one type of input but never the sole basis for decision making (National Academy 

Press 1983). Risk as a numerical quantity is, then, useful for making decisions such as on risk 

prevention and mitigation measures, prioritizing measures on different sources of risk, regulating and 

accepting risk, transferring risk through insurance. Then, again, risk assessment should be considered as 

a tool for safety analysis that supports safety-related, rational decision making. 

Risk assessment is a science that has been developed in the past 40 years to help understanding and 

controlling the risk of accident events. This allows the rational management of hazardous industrial 
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activities, through their systemic understanding. The accident events for which the assessment is made 

are typically extreme but also very unlikely. The rarity of these events is such that there is typically very 

little ‗statistical‘ information associated to their occurrence. The challenge is, then, to lay down all the 

knowledge available about these rare but potentially disastrous accident events, often coming from 

expert judgment supported by indirect physical observations (e.g. the measurement of the duct wall 

thickness in a pipeline) and model predictions (e.g. the prediction of the crack propagation in a turbine). 

The basic idea of risk assessment is to structure, by systematic modelling, the information and 

knowledge available at the detailed component/basic event level to assess the accident risk at system 

level. As knowledge on these events and on the system responses to them is limited, the outcomes of the 

assessment are uncertain. The common framework used to describe the uncertainties in the assessment 

stands on probability theory, and particularly on the subjectivistic (Bayesian) theory of probability, as 

the adequate framework within which expert opinions can be combined with statistical data to provide 

quantitative measures of risk (Kelly and Smith; 2009, 2011). Indeed, the common term used is 

Probabilistic Risk Assessment (PRA), although Probabilistic Safety Assessment (PSA) and Quantitative 

Risk Assessment (QRA) are also widely used.  
For more than 35 years, the probabilistic analysis has provided the basis for the quantification of 

risk (see reviews by Rechard (1999, 2000)), with its first application to large technological systems 

(specifically nuclear power plants) dating back to the early 1970s (NRC 1975). The basic principles 

underpinning today‘s analyses have not much changed since. However, the purely probability-based 

approaches to risk assessment are challenged when dealing with highly unlikely industrial accidents 

(with extreme consequences). For these rare events, only very limited knowledge exists in support to 

the risk assessment and a number of alternative frameworks for uncertainty representation and treatment 

in risk assessment have been introduced (Aven and Zio 2011; Dubois 2010, Baraldi, Flage, Aven and 

Zio 2014; Ahn and Yang, 2003; Kang et al. 2016). 

 

From a general point of view, the concept of risk is introduced to deal with the possibility that an 

event or situation with undesirable consequences for some subjects may occur. The consequences are 

often seen in relation to some reference values (planned values, objectives, etc.) and the focus is 

tyipically on negative consequences. Correspondingly, the International Risk Governance Council 

(IRGC) defines risk as an uncertain (generally adverse) consequence of an event or activity with respect 

to something that human beings value (IRGC, 2012). Various similar definitions of risk can be found in 

the glossary of the Society for Risk Analysis (SRA) Specialty Group on foundational issues in risk 

analysis (http://www.sra.org/frasg). Detailed scenarios are, then, commonly defined when involved 

subjects treat ―a risk‖, i.e. a specific risk described in terms of originating hazardous conditions and 

undesirable consequences for the subjects. For the purposes of formal analysis and with the aim of 

quantification, formal characterizations and representations of risk are, then, adopted. One common 

description is (Kaplan & Garrick, 1981): 

      *〈        〉+          (1) 

where    represents the sequence of events of the i-th of N accident scenarios,    represents the 

frequency of occurrence of such a sequence of events and    is the consequence that would result if 

that scenario were to occur. For risk assessment in practice, this definition leads to the need of 

developing methods for the identification of the complete set of accident scenarios that could occur, and 

the accurate estimation of their frequencies of occurrence and consequences. As completeness of 

scenarios cannot be guaranteed and accuracy of estimation must be evaluated in the face of limited 

knowledge and approximated modelling, a second-level definition of risk needs to be introduced to 

account for the uncertainties associated to the risk assessment (Kaplan & Garrick, 1981): 
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      *〈     (     )〉+            (2) 

where,   (   ) is a joint probability density function describing the uncertainties on the frequency of 

occurrence    and the consequences    of accident scenario   , and the N+1 scenario is added to 

account for the incompleteness of the set of scenarios, i.e., for those scenarios that have not been 

considered because unknown at the time of the analysis (i.e., the so-called ―residual risk‖). 

As knowledge is central to the risk assessment, the definition of risk can be extended to make it 

explicit (Aven 2010): 

      (       ) (3) 

where   indicates the set of accident scenarios that may occur,   represents the set of consequences, 

  is the metric used to quantify the associated uncertainties and   is the body of knowledge which 

the risk assessment (i.e., the identification of   and the quantification of   and  ) is based on. This 

is coherent with the model of the world introduced in (Apostolakis 1990), conditional on the entire body 

of knowledge and beliefs of the modeler. Note that the formulation in (3) does not restrict the 

representation of the uncertainty to the classical probabilistic one and alternative representations can be 

employed (Aven, 2011; Aven, Baraldi, Flage, & Zio 2014; Dubois 2006; Flage, Aven, Zio, & Baraldi 

2014; Pedroni, Zio, Pasanisi, & Couplet 2017). 

This formulation underlines explicitly the role of the background knowledge systematically 

incorporated in the risk assessment model; it makes it explicit that the risk assessment outcomes are 

functions of the current state of knowledge, and of the related assumptions made and parameter values 

assigned. Recognizing this simple fact has become so important that the need as arisen of explicitly 

specifying the concept that risk is conditioned on   (Knowledge). Then, the methodologies and 

approaches for risk assessment are to be seen as supports for incorporating knowledge in a systematic, 

rigorous and transparent framework. In other (simple and crude) words, risk assessment is a way of 

generating, representing and presenting the knowledge about the risk issues and their future occurrence, 

to allow taking decisions thereupon. This requires developing models based on the available 

knowledge, representing and expressing the related uncertainties, propagating the uncertainties and 

using proper metrics (probabilities or others) to describe risk. Such description of risk is inherently 

conditional on the knowledge  . 

The relatively recent discussions on the fundamental concept of ―risk‖ and other foundational 

issues related to its assessment (Aven 2012a, 2012b, 2016a; Aven & Zio 2014; Cox 2015) have stressed 

and reinforced this common understanding that the outcomes of risk assessment are conditioned on the 

knowledge available on the system and/or process under analysis (Terje Aven, 2016b; Terje Aven & 

Zio, 2014; Zio, 2016c). Recognizing this, leads to accepting the inevitable existence of a residual risk 

related to the unknowns in the system, and/or process characteristics and behaviors. 

Then, it is just as important to be aware of the (incomplete) knowledge conditioning the risk 

assessment outcomes, somewhat along the lines of thought of the former United State Secretary of 

Defense, Donald Rumsfeld, who said the following at the press briefing on 12 February 2002, 

addressing the absence of evidence linking the government of Iraq with the supply of weapons of mass 

destruction to terrorist groups (Rumsfeld 2002):  

―There are known knowns: things we know we know. We also know there are known unknowns: 

that is to say, we know there are some things we do not know. But there are also unknown unknowns: 

the ones we don‘t know we don‘t know.‖ 

Correspondingly, accident events and scenarios in a risk assessment model have been classified 

according to the knowledge available at the time of the assessment (Flage & Aven 2015): 
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1. Unknown-unknown 

2. Unknown-known 

3. Known-unknown 

4. Known-known 

In particular: 1) identifies those events and scenarios that were unknown to everyone, at the time of 

the risk assessment; 2) indicates those events and scenarios unknown to the risk analysts performing the 

assessment, but known to someone else; 3) identifies situations of awareness where the background 

knowledge is weak but there are indications or justified beliefs that a new, unknown type of event or 

scenario (new in the context of the activity posing the risk) could occur in the future; 4) indicates events 

and scenarios that are known to the analysts performing the risk assessment, and for which evidence 

exists. 

According to (Flage & Aven 2015), events and scenarios belonging to 1-2 and 4, and associated to 

negligible probabilities of occurrence, are black swans in the sense of (Taleb 2007), whereas category 3 

is representative of emerging risks, i.e., either new risks or known risks that, however, become apparent 

in new or unfamiliar conditions. Note that, clearly, the concepts of ―new‖ and ―known‖ are dependent 

on the background knowledge available. 

For the sake of giving an example, consider the South Australia power network, which underwent 

a massive blackout caused by a cascading failure triggered by a heavy storm on the 28
th

 Sep 2016. 

Around 1.7M people remained without power for 3h and some days were necessary to restore 

completely the energy supply. According to the preliminary report of the Australian Energy Market 

Operator (AEMO), the heavy storm was a ―non-credible event‖, i.e., either an unknown-known or a 

known-known with a negligible probability associated. However, successive analyses have highlighted 

that the network had more vulnerabilities than expected and that many hazards were underestimated, 

e.g., those associated to wind and lightning: thus, a misuse or misinterpretation of knowledge available. 

Yet, the issue of uncertainty and its interpretation remain difficult and somewhat controversial. In 

risk assessment it is arguable that everything is unknown to a degree and the classification of the 

accident events and scenarios in the four categories given above could be questionable. In particular, the 

first category (unknown – unknown) may be used in the realm of political sciences, where everything is 

debatable, but may be less acceptable/defensible in the context of formal and scientific, risk-informed 

decision making. It may be used to defend a decision after the fact, as in the case of the former United 

States Secretary of Defense. On the other hand, formal Decision Analysis recognizes the fact that a 

decision is made in the light of the existing knowledge (formalized by the risk assessment in the context 

here of interest). In this view, a decision maybe ―right‖ in the sense that it is consistent with a given 

theoretical framework and a given body of knowledge but it might, after the fact, prove ―wrong‖ (in 

terms of the actual outcome), because there is always a possibility of a bad outcome from a decision or 

because the body of knowledge is incomplete to allow taking the ―right‖ decision. This is true also for 

any risk model, which is built and applied on the basis of the existing information and knowledge of the 

developer. Then, the degree of knowledge and information is something that indeed needs to be 

considered in risk assessment and management (Apostolakis, 2004). 

 From the above, we can retain that risk assessment amounts to a systematic and structured effort 

to organize the knowledge available on events, processes and scenarios that affect specific decisions to 

be made for the management of risk. For decision making, risk assessment must provide traceable 

information for arguing the decisions; the risk assessment outcomes must be communicated in a way 

that allow the decision makers to interpret them properly for their purposes and to understand the 

associated uncertainty related to the available knowledge used for the assessment. Risk assessment 

provides the framework for organizing the knowledge available on the system of interest, with the aim 
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of understanding how the system can fail and prioritizing the failure modes so that good decisions can 

be taken (Flage & Aven 2015). The value of the solutions of risk assessment and of the management 

decisions that depend on them, then, stands on the quality of the methodologies and approaches that 

constitute the framework, and on the strength of the knowledge   which the framework incorporates. 

Whereas procedures of quality assurance have been developed for the former, it is still an open issue 

and a research challenge how to explicitly treat knowledge in risk assessment and management. How 

should it be described and evaluated in the risk assessment? How should it be reflected and taken into 

account in the decision-making process of risk management? The answers to these questions are critical 

for the validity of a risk assessment. When a risk assessment is performed to provide information that is 

used for making decisions, there must be a way to tell that it has been performed with adequate 

techniques and sufficient knowledge for making the decisions (Rae et al. 2012). Quality review of a risk 

assessment is essential, as opposition to a particular decision often takes the form of raising questions to 

the validity of the risk assessment (Apostolakis 2004).  

 

3  Simulation for Risk Assessment 

Overall, accidents and incidents can be considered as extreme states of behavior of the systems 

involved (Ale, 2016) and from the above said, it is clear that identifying and characterizing hazardous 

accident and event scenarios is a fundamental task of knowledge mining for risk assessment. This task 

is far from trivial in practice, given the complexity of the systems and processes: a large, combinatorial 

set of possible scenarios, events and conditions needs to be considered, of which only few, rare ones 

lead to critical, unsafe situations. This makes experimentation economically unsustainable and 

physically infeasible. 

This is why simulation has long been advocated as a way to explore and understand system 

behavior for knowledge retrieval (Santner, Williams, & Notz 2003; Simpson, Poplinski, Koch, & Allen 

2001), and has been used for safety assessment since the 1970s-80s. However, it is the continuous 

advancements in modelling techniques (including the fast-running artificial intelligence-based 

surrogate/meta-modelling) and the impressive increase in economical availability of computational 

power (including parallel computing and cloud computing) that are pushing to unprecented levels (and 

benefits) the use of simulation for exploring system behavior and advancing knowledge for risk 

assessment.  

Within a simulation-based accident scenarios exploration, a set of simulations is run with different 

initial configurations of the system design and operation parameters (input), and the corresponding 

system state is computed (output). Evaluation of the system state with respect to specified safety 

conditions (critical thresholds) allows identifying the input configurations leading to critical system 

states. These states form the so called ―Critical Regions‖ (CRs) or ―Damage Domains‖ (DDs) 

(Montero-Mayorga, Queral, & Gonzalez-Cadelo 2014). The CRs may be identified corresponding to 

prior knowledge and expectation of the analysts or be ―discovered‖, i.e., the analysts are not a priori 

aware of such critical configurations and mining by simulation allows identifying them. 

Concurrently, simulation can also be exploited to estimate the accident scenarios probabilities, or 

any other measure of uncertainty adopted to describe risk in (2)-(3). For this, Monte Carlo (MC) 

methods of stochastic discrete event simulation have been generally accepted as a gold standard 

(Labeau 1996; Marseguerra & Zio 1996; Kalos & Whitlock 2008; Dubi 2000; Zio 2013; Rubinstein & 

Kroese 2016). In practice, MC simulation consists in generating a large number of 

samples/trials/histories of system response and counting those that reach the state of interest, i.e. that 

end in the CRs (DDs). For example, for estimating the reliability of a system at a given time t, i.e., the 
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probability that the system does not fail before t, a set of life histories of the system are run and the time 

at which the system fails (Time To Failure, TTF) in each history is recorded. Then, the reliability of the 

system at time t is estimated as the fraction of simulations whose TTF is larger than t. Likewise, 

estimating the probability of occurrence of an event leading the system into a given CR, defined by 

specific thresholds of system safety parameters (e.g. limit temperatures, pressures, heat fluxes etc.), can 

be done by sampling realizations of the system life and counting the fraction of times that the system 

ends in the CR of interest (Robert & Casella 2004). 

Then, the two key research questions in the practice of risk assessment that can be addressed with 

the use of simulation models are: 

 Identify hazardous conditions for the system, i.e., the pairs event-consequence (     ) in 

Eq. (3), which represent critical states of the system (i.e., identify the CRs of the system). 

 Estimate the probability of occurrence of rare critical scenarios, i.e., (   ) in Eq. (3). 

As simple and intuitive the use of simulation may seem for addressing the above two questions in 

the practice of risk assessment, it is actually quite demanding because the models of system behavior 

are: 

 High-dimensional, i.e., with a large number of inputs and/or outputs; 

 Black box, i.e., without an explicit Input/Output (I/O) relation (because coded in a computer 

program or because implicit in an empirical surrogate or meta-model, e.g. based on data and 

artificial intelligence); 

 Dynamic, because the system evolves in time; 

 Computationally demanding even for a sinlge trial simulation, as a consequence of the above 

characteristics of the models and of the numerical methods employed for their solution. 

The high dimensionality in the inputs implies that the system conditions and scenarios to consider 

for simulating the system behavior for the identification of the CRs and/or for the estimation of the 

probability of their realizations (Au & Beck 2003a; Valdebenito, Pradlwarter, & Schuëller 2010), 

increase exponentially with the input space dimensions (Zio 2014). It also renders difficult the a 

posteriori scenario analysis for risk understanding, due to the difficulty of visualization of the results in 

such large spaces; this requires the development of specialized representation tools (Di Maio et al. 

2011; Mandelli et al. 2013a; Maljovec et al. 2016; Liu et al. 2017). 

Black box models, inevitably typically nonlinear, make it impossible to a priori identify the set of 

input configurations that lead the system into CRs. In practice, when the computational model is a black 

box (inherently because empirical, or because complicated even if physic-based), the only feasible way 

to do this is to run simulations and post-process the outcomes. 

For dynamic systems, an additional dimension of complexity comes from having to deal with 

changes occurring to the system during its evolution in time, e.g., events that occur at different times 

(stochastically, e.g., components failures, or deterministically, e.g., control actions) and that affect the 

operation of the system (Siu 1994; Aldemir 2013; Mandellli et al. 2013b; Zio 2014; Mandelli et al. 

2016; Ma et al. 2017a, b; Fan et al. 2017). 

Although computational power is continuously increasing, in many practical instances 

computational cost still remains an issue for simulation-based risk assessment, because in such cases the 

high computational cost for the simulation of even a single system life history prevents the analyst from 

running and exploring the large number of input configurations for mining knowledge to characterize 

the system CRs. This is even more of an issue when analyzing highly reliable systems, i.e., systems 

characterized by very small probabilities of failure, whose CRs correspond to very small domains that 

are very hard to find in the large space of input configurations (Bucklew 2013; Rubino & Tuffin 2009). 
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Two main strategies are currently followed to address the two research questions and related 

challenges above presented: 

 Simulation of large sets of system life histories using the increased computational power made 

available through parallel computing, cloud computing etc.; 

 Simulation by adaptive sampling, which amounts to intelligently guiding the simulation 

towards the system states of interest (i.e., those belonging to the CRs). This entails that the 

simulation methods be capable of automatically understanding, during the simulation, which 

configurations are most promising to visit. 

As answer to the first key research question formulated above, contributions are needed for the:  

 Design and implementation of novel frameworks of adaptive simulation for discovering 

(unexpected) consequences associated to a known set of scenarios (Li et al. 2011; Turati, 

Pedroni, & Zio 2016a). Methods must be found to guide the simulations towards those 

scenarios that are more uncertain regarding the consequences they can lead to (i.e., those 

scenarios about which the knowledge   should be increased). 

 Design and implementation of novel frameworks of adaptive simulation for the identification 

of CRs (Kleijnen 2009; Cerou and Guyader 2007; Echard et al. 2011; Munoz Zuniga et al. 

2011; Cadini et al. 2014; Cadini et al. 2015; Turati, Pedroni, & Zio 2017). Benefitting from the 

advancements in modeling, artificial intelligence and machine learning, such frameworks can 

effectively combine model dimensionality reduction by feature selection/sensitivity analysis to 

screen important inputs, meta-modelling to reproduce the behavior of the computationally 

expensive model by a cheap-to-run one, efficient stochastic models for exploration of the 

system state space, non-supervised classification methods (i.e., clustering) and visualization 

techniques for high-dimensional spaces (e.g., Parallel Coordinates Plot; Inselberg 2007), to 

retrieve and represent the information of interest (i.e., the critical/safe regions). 

As answer to the second key research question formulated above, effective algorithms are needed 

for the simulation of rare events in hybrid models, i.e., models where variables evolve according to 

physical laws that can change as a consequence of discrete (stochastic) events (M Villén-Altamirano & 

Villén-Altamirano 1991; van der Schaft and Schumacher 2000; Turati, Pedroni, & Zio 2016b).  

Simulation of rare events in hybrid models has, indeed, become a fundamental issue in many 

applications. For example, the safety assessment of systems of autnomous cars using verification 

techniques entails ensuring safe trajectories from path planning of autonomous vehicles moving in 

dynamic environments (Lee and Peng 2005). In traffic scenarios, measurements, disturbances and 

decisions of traffic participants are uncertain. This leads to a set of possible initial states, disturbance 

trajectories and behavior predictions for each road actor, with a potentially infinite number of reachabe 

outcome states of a traffic scenario over a given time horizon. As one cannot simulate all possible 

behaviors of traffic actors, effective simulation techniques for hybrid model verification are needed to 

probe the (rare) events of interest, i.e., typically those potentially leading to accidents (Botchkarev and 

Tripakis 2000; Tomlin et al. 2003). Based on the reachable states of an autonomous car and other actors 

in the surrounding, a probability of crash can be obtained (Althoff et al 2007). 

Simulation is also strongly advocated for the hazard analysis, and safety and resilient assessment 

of critical infrastructures and systems of systems (Alexander & Kelly 2013; Zio 2016). The increasing 

concern on the vulnerability of critical infrastructures (see Section 5 below) and the increasing role of 

systems of systems in safety-critical applications has raised the need for methods to analyse their 

hazards, and verify their safety and resilience properties. One viable way for this is simulation of the 

variety of scenarios that can emerge from the response of the individual system components to different 

perturbations and failures, sampled over space and time. The effects of the interaction between system 
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components can, then, be observed together with the corresponding system behaviour that emerges. The 

challenges for the analysis of such systems come from the fact that the system boundary is not well 

defined and the set of components in the system can vary over time, either as part of normal operation 

(e.g. a new car enters the traffic scene or a new aircraft enters a controlled airspace region) or as part of 

evolutionary development of the system itself (a traffic lane is interrupted because of construction work 

or a military unit receives a new air-defence system). In such an undefined and dynamic setting, 

conventional techniques of analysis may be inadequate for determining whether or not the failure of a 

given component may be hazardous for the system as a whole. Simulation, on the other hand, can 

provide a way of analysis of such systems made of multiple components that interact in complex and 

continually changing ways.       

 

 

4  Extended Risk Assessment: business continuity and resilience 

As mentioned in the Introduction, systems are increasingly exposed to hazards of disruptive events 

(Zio 2016), e.g., unexpected system failures (Hameed et al. 2016), climate change and natural disasters 

(Meng et al. 2015, Yang 2014, Yamaguchi et al., 2017), terrorist attacks (Reniers and Audenaert 2014). 

Risk assessment is, then, applied to inform risk management on how to protect from the potential losses 

caused by the disruptive events (Aven and Cox 2016; Zio, 2016; Yang et al. 2015, Zhang et al., 2014). 

As for the risk description (3), the focus is on the accident scenarios, their possible consequences and 

likelihoods, and the uncertainties therein (Bjerga and Aven 2016). The post-accident recovery process, 

is not considered.  

Yet, given that the sources of hazard leading to disruptive events are extremely uncertain and, thus, 

difficult to describe and model quantitatively, and that the systems are highly connected to each other so 

that the impact of the disruption extends beyond the boundary of the individual systems, an extension of 

the framework of assessment is necessary, for an integrated management of risk and coherent use of the 

available resources. The framework must incorporate aspects beyond those of prevention, typical of risk 

assessment, in order to allow accounting for: 

 the fact that the potential losses suffered from a disruptive event also depend on the 

after-the-fact recovery process; 

 the recognition of the new World that digitalization has brought, with the new systems and 

services that are emerging. For example, according to a survey by IBM Global Services (Costs 

2016), in 2008, enterprises in IT sectors have been estimated to suffer from an average 

revenue cost of 2.8 million US dollars per hour for unplanned application outages inefficiently 

recovered. Another report reveals that for a company that operates data centers, the average 

downtime cost per minute has exceeded $5000 (Downtime 2016). An extension of the 

conventional risk assessment and management methods is, then, needed, so that the recovery 

process can be integrated. 

Efforts in this direction have been made, particularly in the areas of socio-technical systems (Leger et 

al., 2008) and occupational risk. As an example of a working model in which causes, effects and 

remedial actions are integrated can be found in (Papazoglou et Ale, 2007), with the treatment of the 

uncertainties in and by that model as in (Papazoglou et al., 2015). Implementation of a model for a 

complex socio-technical system can be found in (Ale et al., 2009). 

To proceed further into the reflections on the need and challenge of extending the framework of 

risk assessment to cover the pre- and post-accident scenarios analysis, the affine concepts and 
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paradigms of business continuity and resilience are discussed from the perspective of their links to 

system reliability/availability and safety.  

4.1 Business continuity 

Business continuity (BC) is defined as ―the capability of an organization to continue delivery of 

products or services at acceptable levels following disruptive events‖ (ISO, 2012). It measures the 

capability of an organization to remain at or quickly recover to operational states after being affected by 

disruptive events. Business Continuity management (BCM) is a managerial framework that aims at 

ensuring that no disruptive events can lead to unexpected, unwanted interruptions of production or 

service activity. In this view, it lays down the vision of integrating the post-accident recovery process to 

the preventive view of risk assessment (Cerullo and Cerullo, 2004). Indeed, such framework of BCM is 

defined by the International Organization of Standards (ISO) as ―an holistic management process that 

identifies the potential threats to an organization and the impacts to business operations that those 

threats, if realized, might cause, which provides a framework for building organizational resilience with 

the capability of an effective response that safeguards the interests of its key stakeholders, reputation, 

brand and value-creating activities‖ (ISO, 2012). From this definition, it is clear the 

reliability/availability perspective and the link with the resilience concept also in a safety perspective.  

As an integrated management strategy aiming at reducing the technological and operational risks 

that threaten the recovery from disruptions and interruptions, BCM has attracted quite some attention in 

the last couple of decades (Herbane, 2010). A comprehensive approach to BCM planning is proposed in 

(Cerullo and Cerullo, 2004), with particular focus on internal and external information security threats. 

The necessity and benefit of implementing BCM in an organization is discussed in (Zsidisin et al., 

2005). The application of BCM planning to achieve organizational disaster preparedness at Boeing is 

surveyed in (Castillo, 2005). An integrated framework to support BCM planning is presented in (Gibb 

and Buchanan, 2006). The historical evolution of BCM is reviewed in (Herbane, 2010), with the critical 

events that motivated its development. In (Snedaker, 2013), BCM is compared to the conventional risk 

management methods and the comparison clearly shows that BCM not only focuses on the protection of 

the system before the crisis, but also on the recovery process during and after the crisis. A model to 

assess the maturity of the BCM programs is developed in (Randeree et al., 2012) and applied on a case 

study from United Arab Emirates (UAE) banking sector. System reliability models to plan BCM are 

used in (Faertes, 2015).  A framework to integrate BCM and disaster recovery planning, to ensure that 

the system would resume and recover its operation in an efficient and effective way is presented in 

(Sahebjamnia et al., 2015). Methods to ensure the business continuity of a safety-related power supply 

system are presented in (Parise et al., 2016). An enhanced risk assessment framework to support 

business continuity management is developed in (Torabi et al., 2016). A fuzzy cost-benefit analysis 

method for planning BCM strategies is presented in (Rabbani et al., 2016). 

As a holistic, integrated risk management strategy, BCM offers great potential benefits but the 

complexity of the systems and risk problems involved is such that most currently existing BCM 

strategies are based on qualitative methods only, and this limits practical and effective application. Very 

few works concern the quantitative modeling and analysis of BC. An approach to model the system 

behavior in the BC process, based on process algebra and modal logic, has been presented by (Boehmer 

et al., 2009). Similar models have been applied in (Brandt et al., 2009) to describe the BC process of a 

credit card company. A multi-layer model is developed in (Asnar and Giorgini, 2008) to model the BC 

of a loan originating process. In (Bonafede et al., 2007),  Cox‘s model and Bayesian networks are 

combined to model the BC process. A simulation model is developed in (Tan and Takakuwa, 2011) to 

investigate the BC of a company considering the outbreak of a pandemic disease, where the BC is 
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characterized by the operation rate and the plant-utilization rate. These models describe the post-crisis 

behavior of the system. However, no clearly defined business metrics have been proposed from these 

models, which impedes the quantitative analysis of BC and, therefore, limits application in practice. 

To contribute to the advancement of BCM for its application in practice, (Zeng and Zio, 2017) 

have developed an integrated, quantitative framework for modeling BC, founded on the definition of 

four metrics that measure the potential losses caused by the disruptive events. A simulation-based 

method has been presented in the paper to calculate the BC metrics based on the integrated model. To 

demonstrate the use of the framework, the BC of an oil storage tank farm is assessed. The conceptual 

model that describes BC and identifies its major contributing factors refers to a performance indicator, 

denoted by PPIB (Process Performance Indicator-Business), whose value reflects the degree to which 

the objective of the system is satisfied. For example, for an oil refinery, the PPIB is its daily production 

yield; for a manufacturing factory, the PPIB is the products produced per day. The values of PPIB are 

determined by the operation state of the system: the PPIB remains at its nominal value when the system 

is under normal operation and drops to a degraded value when the normal operation of the system is 

disrupted. In practice, an organization is susceptible to various disruptive events, which might 

jeopardize its BC. As already mentioned, commonly encountered disruptive events include: 

 technological disruptions, caused by components or systems failures; 

 natural disruptions, caused by natural disasters, e.g., floods, earthquakes, lightning, etc.; 

 social disruptions, caused by social movements, e.g., terrorist attacks, strikes, supply chain 

disruptions, etc. 

When one or some of these disruptive events occur, the normal operation is disrupted and PPIB 

drops to a degraded value, because of the disruptive events. The production stakeholders, then, suffer 

from losses caused by the business interruption. To reduce such losses, various BC measures can be 

taken to guarantee the continuity of the business process. Generally speaking, those measures can be 

divided into four categories, i.e., 

 protection measures, for defending the system from the disruptive events and preventing them 

from damaging the system. If protection measures succeed, the business process is not 

interrupted; 

 mitigation measures, which intervene when the protection measures fail and initial damage has 

been caused by the disruptive events. The aim of the mitigation measures is to contain the 

evolution of the disruptive events at the early stages of development, so that damages can be 

mitigated; 

 emergency measures, which must come into play when the mitigation measures fail to contain 

the damage, and often require significant human intervention; 

 recovery measures, which aim at re-establishing normal operation, ex-post. 

For example, lightning is a severe threat to oil & gas systems (Chang and Lin 2006). Often, a 

lightning protection mast is installed at oil and gas tank farms as a protection measure against the threat 

of lightning (Necci et al. 2014). If the protection mast fails to protect the system, the oil storage tank 

might catch fire (Necci et al. 2013). Mitigation measures, such as the automatic fire extinguishing 

system, are automatically activated to fight the fire in order to prevent it from spreading to other tanks, 

causing a domino effect (Necci et al. 2013). Emergency measures, e.g., the intervention of a fire 

brigade, are needed when the mitigation measures fail to stop the propagation of the accident (Wu and 

Chen 2016). Then, recovery measures, e.g., the repair and restoration of the affected tanks, are carried 

out to recover operation and minimize the losses caused by the business interruption. 

Fig. 1 presents the conceptual model that schematically illustrates the evolution of a business 

process under a disruptive event (Zeng and Zio 2017). The business process is divided into four phases: 
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protection, mitigation, emergency and recovery. Each phase is associated with the corresponding 

business continuity measure. As shown in Fig. 1, the PPIB of an actual business process might deviate 

from its nominal value due to the presence of various disruptive events. The severity and duration of the 

business interruption caused by the disruptive event can be controlled by implementing business 

continuity measures in the different phases. Among them: protection measures affect the resistance of 

the system to disruptive events; mitigation and emergency measures determine how much system 

performance is degraded from the damage caused by the disruptive event; recovery measures influence 

how quickly the system can recover its performance to normal operation. 

 

Fig. 1 – A conceptual model for the business continuity process. (Zeng and Zio 2017) 
 

 

Fig. 2 – An integrated model for business continuity assessment. (Zeng and Zio 2017) 

As shown in Fig.1, the business process comprises of the protection, mitigation, emergency and 

recovery phases. Since each phase has its own characteristics, different modelling approaches need to 

be integrated to capture the phase-specific characteristics. An example of integrated modeling 

framework is presented in Fig. 2 (Zeng and Zio 2017). The protection, mitigation and emergency phases 
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determine the consequences of the disruptive event. Event trees can be used to model these phases (Zio 

2007). In an event tree model, the probabilities of the intermediate events represent the 

reliabilities/uncertainties of the allocated business continuity measures. The outcomes of the protection 

and mitigation phases depend on the reliabilities of the protection and mitigation measures, 

respectively. Fault tree models can be used to calculate these intermediate probabilities (Zio 2007). The 

result of the emergency phase, on the other hand, involves the modeling of a sequence of activities by 

the emergency response team. Models capable of considering the sequential dynamics of such activities 

should be used for the emergency phase, e.g., the event sequence diagram (Zhou et al. 2016). The 

recovery process also involves the dynamics of maintenance actions, which can be effectively described 

in terms of the process of transitions between system states, e.g., by semi-Markovian models (Compare 

et al. 2016). 

4.2 Resilience 

Resilience is a concept closely related to BC. Here, its consideration is given particularly in 

relation to accidents and, thus, to its specificity with respect to safety, rather than reliability and 

availability of production, or other attributes of functionality for systems and critical infrastructures 

(CIs). 

As mentioned earlier, risk-based approaches have been used to assess hazards and mitigate 

consequences associated with their impact. By identifying the components contribution to the overall 

system risk, the outcomes of risk assessment enable prioritized decisions for system improvements to 

buy down risk. But as already said, the rapid technological evolution, combined with the unprecedented 

uncertain nature and extent of emerging hazards, makes it difficult to characterize all potential hazards 

and estimate accurate probabilities of occurrence and magnitude of consequences, that decision makers 

can confidently rely on for their risk-reducing decisions. This is particularly true for the complex, 

interconnected systems that make up today‘s critical infrastructures and calls for the extension of the 

framework of risk assessment and management, to make these systems resilient to the wide range of 

hazards within specific cost and time restraints, and considering the large uncertainties. Differently 

from the concept of risk, resilience is focused also on the ability to prepare and recover quickly from an 

accident or disruptive event, which may be known or unknown. Managing for resilience, then, requires 

ensuring a system‘s ability to plan and prepare for the potential occurrence of accidents and disruptive 

events, and then absorb, recover, and adapt in case of occurrence.  

It is the lessons learned in recent years from some catastrophic accidents that have led to the 

concept of resilience to ensure the ability of systems and CIs to withstand, adapt to and rapidly recover 

from the effects of a disruptive event (Moteff 2012; Obama 2013; Pursiainen 2009). The outcomes of 

the 2005 World Conference on Disaster Reduction (WCDR) confirmed the significance of the entrance 

of the term resilience into the disaster discourse and gave birth to a new culture of disaster response 

(Cimellaro et al. 2010). As a result, today‘s systems are not only required to be reliable but must also be 

able to recover from disruptions (Zio 2009, Zio 2016b). Government policy has also evolved to 

encourage efforts that would allow assets to continue operating at some level, or quickly return to full 

operation after the occurrence of disruptive events (Moteff 2012). Consequently, resilience is nowadays 

considered a fundamental attribute for systems and CIs that should be guaranteed by design, operation 

and management.  

The concept of resilience varies somewhat by discipline and application (Najjar and Gaudiot 1990; 

Henry and Ramirez-Marquez 2012; Ouyang et al. 2012; Uday and Mareis 2015), and different 

definitions exist such as ―the ability of the system to reduce the chances of shock, to absorb a shock if it 

occurs and to recover quickly after a shock (re-establish normal performance)‖ (Bruneau et al. 2003), 
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―the capacity of an asset, system, or network to maintain its function during or to recover from a 

terrorist attack or other incident‖ (U.S. Department of Homeland Security 2009), the ―ability of the 

system to withstand a major disruption within acceptable degradation parameters and to recover within 

an acceptable time and composite costs and risks‖ (Haimes 2009). From these definitions, it emerges 

that resilience is characterized in terms of four properties, i.e. robustness, redundancy,  resourcefulness, 

rapidity and four interrelated dimensions, i.e., technical, organizational, social, economic. It can be 

considered a new paradigm for risk engineering, which proactively integrates the accident preventive 

tasks of anticipation (imagining what to expect) and monitoring (knowing what to look for), the 

in-accident tasks of responding (knowing what to do and being capable of doing it) and learning 

(knowing what has happened), the mitigative tasks of absorbing (damping the negative impact of the 

adverse effect) and the recovery tasks of adaptation (making intentional adjustment to come through a 

disruption), restoration (returning to the normal state) (Hollnagel et al. 2006).  

Various models, methods and frameworks for analyzing and quantifying resilience have been 

proposed in the literature (Carpenter et al. 2001; Fiksel 2003; Wreathall 2006; Jackson 2007, 2009; 

Peters et al. 2008; Madni and Jackson 2009), with focus on diverse fields of application such as seismic 

engineering and structural systems (Cimellaro et al. 2006; 2010; Poljanfisek et al. 2012; Duenas-Osorio 

and Kwasinski 2012), ecological systems (Holling 1973), economics and financial systems (Starr et al. 

2003; Rose et al. 2009; Amini et al. 2013; Baroud et al. 2015), service systems (Todini 2000; 

Rosenkrantz et al. 2009), telecommunication systems (Omer et al. 2009), urban infrastructures (Jin et al. 

2014; Oyuang and Duenas-Osorio 2012; Attoh-Okine et al. 2009), disaster analysis for avoidance and 

recovery (Bonanno et al. 2007; Tierney and Bruneau 2007; Zobel 2011)  

While resilience can be characterized by many system features and attributes, recovery is a vital 

element of strategies to improve resilience. System recovery and its role in infrastructure system 

resilience have attracted quite some attention. Some studies have modelled the post-disaster restoration 

of various infrastructure systems in an effort to estimate the expected restoration time (Ferrario and Zio 

2014; Liu et al. 2007; Shinozuka et al. 2004), and several others have compared the performance of 

different restoration strategies (Buzna et al. 2007;  a nan et al. 200 ). Other works have tackled the 

problem of post-disaster restoration strategy planning and optimization, for the purpose of restoring 

system service in a timely and efficient manner. Considering multiple types of systems simultaneously, 

(Kozin and Zhou 1990) developed a Markov process to describe the process of infrastructure system 

recovery; then, they used dynamic programming to estimate the repair resources required for each time 

step and for each system, so as to maximize the expected economic return from system functioning. In 

(Noda 1993), a neural network was used to minimize the likelihood of post-earthquake functional loss 

for a telephone system. A mixed- integer programming approach was applied in (Bryson et al. 2002) for 

selecting a set of recovery subplans giving the greatest benefit to business operation. Restoration when 

multiple infrastructures, operated by different firms, are involved was addressed in (Casari and Wilkie 

2005). A case of network restoration was addressed in (Lee et al. 2007), involving the selection of the 

location of temporary arcs (e.g., shunts) needed to completely re-establish network services over a set of 

interdependent networks: a mixed-integer optimization model was proposed to minimize the operating 

costs involved in temporary emergency restoration. A genetic algorithm was applied in (Xu et al. 2007) 

to optimize the restoration of electric power after an earthquake: the objective of the optimization was 

the minimization of the average time that each customer stays without power. An integer programming 

model was proposed in (Matisziw et al. 2010) to restore networks where the connectivity between pairs 

of nodes is the driving performance metric associated with the network. The studies cited above 

involving the optimization of post-disaster CI restoration apply a variety of modelling approaches and 
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focus on different aspects of the restoration strategy (e.g. the repair order of damaged components, 

where and how to allocate repair resources, and so on).  

In more general terms, the resilience analysis of complex systems and CIs cannot be carried out 

only with classical methods of system decomposition and logic analysis. Furthermore, large 

uncertainties exist in the characterization of the failure behavior of the elements of a complex system, of 

their interconnections and interactions (Zio and Aven 2011). A framework is, thus, needed to integrate a 

number of methods capable of viewing the complexity problem from different perspectives (topological 

and functional, static and dynamic), under the existing uncertainties (Ouyang et al. 2009; Reed et al. 

2009; Kröger and Zio 2011; Ouyang 2014): 

 structural/topological methods based on system analysis, graph theory, statistical physics, etc.; 

these methods are capable of describing the connectivity of a complex system and analyzing 

its effects on the system functionality, on the cascade propagation of a failure and on its 

recovery (resilience), as well as identifying the elements of the system which must be most 

robustly controlled because of their central role in the system connectivity (Newman et al. 

2005; Lee et al. 2007; Zio and Sansavini 2011; Fang and Zio 2013; Alipour et al. 2014; 

Kahkzad and Reniers 2015; Praks et al. 2015);  

 logical methods based on system analysis, hierarchical logic trees, game theory, etc.; these 

methods are capable of capturing the logic of the functioning/dysfunctioning of a complex 

system due to random effects and malicious attacks, and of identifying the combinations of 

failures of elements (hardware, software and human) which lead to the loss of the system 

function (Apostolakis and Lemon 2005; Bobbio et al. 2010; Kahkzad 2015; Zhang et al. 

2015); 

 phenomenological/functional methods, based on transfer functions, state dynamic modeling, 

input-output modeling and control theory, agent-based modeling etc.; these methods are 

capable of capturing the dynamics of interrelated operation between elements (hardware, 

software and human) of a complex system and with the environment, from which the dynamic 

operation of the system itself emerges (Trucco et al. 2012; Alessandri and Filippini 2013); 

 flow methods, based on detailed, mechanistic models (and computer codes) of the processes 

occurring in the system; these methods are capable of describing the physics of system 

operation, its monitoring and control (Sansavini et al. 2014). 

The integration of these methods is expected to enable capturing the different relevant aspects of 

the complex systems (Deng et al. 2015). For electric power grids, for example, comparisons between 

structural/topological and power flow methods have been made. Some studies (Baldick et al. 2008; 

LaRocca et al. 2015; Sun and Han 2005; Correa et al. 2013) have provided qualitative comparisons 

between complex network theory models and power flow models, identifying similarities and 

differences, and evaluating advantages and disadvantages. Also, by extensive comparative simulation, 

(Cupac et al. 2013) has shown that a network-centric model exhibits ensemble properties which are 

consistent with the more realistic optimal power flow model. Most recently, (Matisziw et al. 2010) 

conclude on the appropriateness of graph theory techniques for the assessment of electric network 

vulnerability by comparison to physical power flow models. This is confirmed in (Fang et al. 2014), 

where the problem of searching for the most favorable pattern of link capacities allocation that makes a 

power transmission network resilient to cascading failures with limited investment costs is formulated 

within a combinatorial multi-objective optimization framework and tackled by evolutionary algorithms. 

Two different models of increasing complexity are used to simulate cascading failures and to quantify 

resilience: a complex network model, and a more detailed and computationally demanding power flow 

model. Both models are tested and compared on a case study involving the 400kV French power 
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transmission network. The results show that the optimal solutions obtained using the two different 

models exhibit consistent characteristics in terms of phase transitions in the Pareto fronts and link 

capacity allocation patterns. 

 

5  Dynamic Risk Assessment and Condition Monitoring-Based Risk Assessment 

Risk assessment must account for the time-dependent variations of components and systems, as 

they operate, age, fail, are repaired and replaced (Villa et al. 2016). For this, updates are performed to 

reflect the components and systems changes and the corresponding current overall system/plant safety 

state, leading to what is called Living PRA (LPRA). LPRA is a system/plant specific PRA that can be 

updated or modified, when necessary, to reflect the system/plant changes during its lifetime (Johanson 

and Holmberg 1994). Changes can be physical (resulting from plant modifications, etc.), operational 

(resulting from enhanced procedures, etc.), organizational, but also changes in knowledge due to the 

acquisition of operational experience, field data, etc. The updated LPRA, then, reflects the current 

design and operational state of the system/plant, and is documented in a way that each aspect of the 

model can be directly related to existing system/plant information, documentation or analysts 

assumption (Lin et al. 2015).  

Extending the concept of LPRA, Dynamic Risk Assessment (DRA) is defined as a risk assessment 

that updates the estimation of the risk of a deteriorating system according to the states of its 

components, as knowledge on them is acquired in time (Khan et al. 2016; Yadav et al. 2017). DRA is 

capable of capturing the time-dependent behaviour of the system risk profile (Khan et al. 2015, 2016; 

Villa et al. 2016; Heo, 2016). 

An early attempt of DRA was conducted in (Meel and Seider 2006, 2008) where Bayes theorem 

was used to dynamically update the estimates of accident probabilities, using near misses and incident 

data collected from similar systems. A similar DRA method was developed in (Kalantarnia et al. 2009), 

where Bayes theorem is used for probability updating and Event Tree (ET) analysis is used for 

consequence modeling. ET was used in (Roy et al. 2015) to model the accident sequences of an 

ammonia storage unit and Bayes theorem for DRA. ET and Bayes theorem were used in (Pariyani et al. 

2012) to update the risk in chemical process industries based on data from a large near-miss data base. 

A hierarchical Bayesian model for DRA was developed in (Khakzad et al. 2014) and applied to analyze 

the near-accident data of offshore blowouts. A similar hierarchical Bayesian model was used in (Yang 

et al. 2013) to dynamically assess the risk of an offshore drilling platform. 

In (Khakzad et al. 2012), Bayes theorem was combined with a Bow-Tie (BT) model for DRA: 

failure probabilities of the primary events and safety barriers in the BT were constantly revised over 

time and the updated BT model was used to estimate the updated risk profile. BT was used in 

(Paltrinieri et al. 2014) to support the DRA from metal dust accidents. (A similar method was applied in 

Abimbola et al. 2014) to update in real time the risk estimation of offshore drilling operations. A DRA 

method using a Bayesian Network (BN) model was developed in (Khakzad et al. 2013), where the 

probabilities of the basic events in the BN are updated when new accident data are collected. A 

comparison of the BT-based and BN-based methods were made in (Khakzad et al. 2013b), and a 

procedure was given to map a BT into a BN. The DRA for assessing the risk from leakage failure of 

submarine oil and gas pipelines was addressed in (Li et al. 2016) using BT and BN. In (Zarei et al. 

2017), BN was applied for the DRA of a natural gas station.  

Most existing DRA methods, as reviewed above, only use statistical data, i.e., count data of 

accidents or near misses from similar systems, to update the estimated risk indexes. It should be noted 

that in some literature, these statistical data are also called Accident Sequence Precursor (ASP) data 
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(Meel and Seider 2008, 2016; Kalantarnia 2009). A drawback of using only statistical data is that one 

must wait until accidents or near misses (precursors) occur before updating the estimation of the risk 

indexes. Besides, statistical data are collected from similar systems, reflecting population characteristics 

but not fully accounting for the individual features of the target system. 

Additional information potentially useful for the estimation of the risk indexes may come from 

condition-monitoring data. In practice, accident initiating events and safety barriers failures usually 

occur as a result of degradation mechanisms, e.g., wear (Zeng et al. 2016), corrosion (Zeng et al. 2014), 

fatigue (Jiang et al. 2016), crack growth (Baraldi et al. 2012), oxidation (Compare et al. 2016), etc. The 

degradation processes can be monitored in real time and failures can be predicted and anticipated with 

reference to specific thresholds of the monitored variables. The condition-monitoring data give 

information on the individual degradation process of the target system and of the safety barriers, and 

provide the opportunity to update the reliability values before actual failures occur. Therefore, 

introducing condition-monitoring data in DRA could be a beneficial complement to the statistical data, 

towards a condition monitoring-based risk assessment (CMBRA). 

In this direction, a few initial attempts of using condition-monitoring data in DRA have been 

made. Kalman filtering has been applied in (Zadakbar et al. 2013) to estimate the true degradation states 

from condition-monitoring data and DRA (or CMBRA) based on a loss function associated with the 

degradation states has been conducted. Similar works were also conducted by the same authors using 

different condition-monitoring techniques, i.e., Particle Filtering (PF) (Zadakbar et al. 2015) and 

Principal Component Analysis (PCA) (Zadakbar et al. 2012). To deal with nonlinear and non-Gaussian 

features, (Yu et al. 2014) developed a self-organizing map-based approach for CMBRA using 

condition-monitoring data. The concept of remaining time was proposed by (Wang et al. 2016) and 

used to develop a CMBRA method for multiple condition-monitoring variables. A CMBRA by 

monitoring sensitive variables of a passive residual heat removal system, but without considering the 

possible noise in the monitored data, was conducted by (Kim et al. 2015). However, these existing 

methods consider only the condition-monitoring data, but no statistical failure data. Besides, most of the 

existing methods do not involve consequence analysis models, e.g., ET, BT, BN, etc., when calculating 

the risk indexes. Rather, the risk indexes are assessed directly from the monitored degradation variables 

by considering the affected performance due to the degradation. 

A method for DRA that allows the joint utilization of statistical and condition-monitoring data has 

been proposed in (Zeng and Zio 2017b). Consequence analysis is also considered by means of an ET. A 

first step in the DRA is to online update the reliability of the safety barriers using the two types of data. 

For this, a hierarchical Bayesian reliability model is developed. Based on the model, an online 

assessment algorithm is developed for the reliability values. Statistical data refer to the count data of the 

consequences of accidents that occur during the operation of similar systems, thus providing 

―population‖ information, while condition-monitoring data come from online monitoring the 

degradation of the specific target system of interest and describe system-specific features. 

 

6  Safety and Security of Cyber-Physical Systems 

With the large development of digitalization in the industrial world, nowadays, CPSs are applied in 

many technological areas, including aerospace, automotive, energy, chemical industry, materials, civil 

transportation, agriculture and healthcare. A CPS features a tight combination of (and coordination 

between) the system computational units and physical elements. To the benefit of safe operation, the 

integration of computational resources into physical processes is aimed at adding new capabilities to 

stand-alone physical systems, to enable functionalities of real-time monitoring, dynamic control and 
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decision support during normal operation as well as in case of accidents. For self-adaptive properties 

and extensive capabilities of autonomous ―decision making‖ and handling of uncertain operational 

scenarios, CPSs rely on control systems that utilize software intensive model-based paradigms. When 

compared with more traditional system design frameworks, model-based developments undoubtedly 

provide greater capability and flexibility to rapidly define, analyze and integrate different aspects of a 

given design. However, this expanded capability and flexibility, and the dynamic nature of the 

model-based design environment, also pose challenges to the execution of traditional design validation 

and verification (V&V) processes. It is, thus, essential that methods and tools be made available also to 

facilitate the task of demonstrating compliance of control systems developed in such a model-based 

environments with safety-related requirements and any applicable certification standard (Guarro et al., 

2017).  

In CPSs, cyber and physical processes are dependent and interact with each other through feedback 

control loops (e.g., embedded cyber controllers monitor and control the system physical variables, 

whilst physical processes affect, at the same time, the monitoring system and the computation units by 

wired or wireless networks (Kim and Kumar, 2012; Lee, 2008; Alur, 2015)). The benefit of such 

self-adaptive capabilities is the reason why CPSs are increasingly operated in energy, transportation, 

medical and healthcare, and other applications (Lee, 2008; Khaitan and McCalley, 2015; Bradley and 

Atkins, 2015). 

In the context of CPSs, sensor measurements can be used to monitor the behavior of the systems 

under different operational conditions, including hazardous and malicious ones. Indeed, CPS 

functionality and integrity can be compromised by both hazards (safety related) and malicious threats 

(security related) (Piètre-Cambacédès and Bouissou, 2013; Kriaa et al., 2015; Zalewski et al., 2016). 

Hazards and cyber threats originate from different sources (stochastic degradations and accidental 

conditions, for the former, external malevolent activities that are usually less accessible and less 

predictable for the latter (Aven, 2009; Kriaa et al., 2015)). Distinct properties and mechanisms between 

them suggest different assessment methodologies for their identification. 

CPSs demand that in the risk analysis both safety and security aspects be considered (Eames and 

Moffett, 1999; Kriaa et al., 2015; Piètre-Cambacédès and Bouissou, 2013; Zalewski et al., 2016). With 

respect to safety, hazards relate to components failures that can result in accidental scenarios leading to 

unacceptable consequences on the system physical processes; as for security, malicious attacks can 

impair both the physical and cyber parts of the system, possibly leading to unacceptable consequences. 

Failures of both hardware and software can compromise CPS integrity and functionality (NASA, 

2013). During operation, failures of embedded hardware components (e.g., sensors and actuators) can 

be induced by aging, degradation, and process and operational conditions, which modify the way 

components work and interact with each other, generating multiple failure modes (Wang et al., 2016b). 

For example, sensors can degrade and fail in different modes such as bias, drift and freezing (Wang et 

al., 2016b); actuators can fail stuck, accidentally driving the physical process to be isolated from the 

controlling units of the cyber domain (Zio and Di Maio, 2009; Zaytoon and Lafortune, 2013). 

Components failures can lead to two types of misoperations: (1) failure on-demand, e.g., failing to 

trigger protections or execute proper control strategies (when demanded); (2) malfunction, e.g., spurious 

triggering of protections (e.g., unintentional shutdown) or incorrect execution of control actions. 

Failures on-demand and malfunctions of both hardware and software components have gained 

increasing attention in the risk community (Aldemir et al., 2010; McNelles et al., 2016). 

Resilience of CPS to failures can be granted by self-adaptiveness of control decisions on actuators, 

resorting to intelligent control systems that properly manipulate sensors measurements (Machado et al., 

2016). For example, Proportional-Integral-Derivative (PID) controllers, typically used as feedback 
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controller in CPS to retroact to actuators the actions to be undertaken for responding to changes of 

physical parameters, may suffer of software failures/errors (generated from inadequate specification, 

incomplete testing scope and algorithm/logic failures) that are latent and triggered only when context 

modifications are to be met (Aldemir et al., 2010; Jockenhövel-Barttfeld et al., 2016). In these 

situations, control rules adaptability to variable physical conditions is a fundamental requirement to the 

robustness of CPS for resilience during CPS operation. 

CPSs reliance on digitalization and remote control systems increases their exposure to cyber 

attacks to controllers, databases, networks and human-system interfaces, that can result in the loss of 

system integrity and/or functionality. Malicious activities can be manifested as Denial of Service (DoS) 

attacks (Zargar et al., 2013; Yuan et al., 2013; Rahman et al., 2016), False Data Injection (FDI) attacks 

(e.g., packet/data modification) (Liang et al., 2017; Tan et al., 2017; Mohammadpourfard et al., 2017), 

network scan & sniffing attacks (Trabelsi and Rahmani, 2005; Rahman et al., 2016), integrity attacks 

(e.g., through malware contagion) (Ntalampiras, 2015; Ntalampiras, 2016) and, illegal command 

executions (Shin et al., 2015). They can be initiated in the cyber domain through local or remote 

accesses, mimicking the components failures but isolating the connectivity between cyber and physical 

systems, leaving the physical process uncontrolled and possibly drifting towards severe consequences. 

Cyber attacks can cause serious security and privacy issues (Xiang et al., 2017). Under cyber 

attacks, e.g., by contagion of malware, security-related system features may result to be compromised 

and, the system safety and security potentially endangered. The identification of the cyber threats most 

affecting the system response is quite important for decision-making on optimal protection and 

resilience, as prevention and mitigation of malicious attacks contribute to guaranteeing CPS integrity 

and functionality (Yuan et al., 2014; Fang and Sansavini, 2017; Hu et al., 2017; Wang et al., 2017). 

 

From the perspective of integrated safety and security of CPSs, distinguishing cyber attacks from 

component failures is important for evaluating the potential impacts on the system integrity and 

defining proper protection and mitigation actions for resilience. To make CPSs resilient, it is necessary 

to integrate the knowledge on cyber security, human interactions and complex networks, to address all 

possible failure and threats in a comprehensive and holistic way. For this, frameworks are still needed. 

 

 

7  Conclusions 

Risk assessment is a mature discipline, widely applied in practice for the design and operation of 

safe systems. The assessment involves a structured analysis of the system of interest to qualitatively and 

quantitatively describe risk, based on the available knowledge. The quantitative analysis is often 

criticized in view of the difficulty of assigning probabilities (e.g., to human errors or software failures), 

the difficulty of verifying the assumptions behind the models at the basis of the assessment, the inherent 

uncertainty involved in the phenomena of interest. However, the use of quantitative measures remains 

essential for rational, effective decision making combining evidential knowledge and subjective beliefs. 

The decisions that need to be made will be better if quantitative (and peer reviewed) information is 

available. For this, we need to provide risk outcomes that are either certain (a given accident scenario 

would indeed definitely occur) or of quantified uncertainty (there is a given probability that the accident 

may occur), and can, thus, be compared for risk prioritization and resource allocation. By engaging in 

quantifying the uncertainties and identifying the risk contributors, risk assessment contributes to the 

understanding of the risk and provides information useful for its regulation and management. For this, 

the quantitative measures must express how much, to what degree, we know about the event and, thus, 
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how much we believe in its assessment. In this sense, they are an argument tool in support of the 

decision making. It is the duty of the risk analysts to make transparent the way the quantitative 

measures have been calculated. The risk assessment must, thus, provide an argument that it must be 

possible to scrutinize and not a formalized demonstration of an objective truth. The argument stands on 

the knowledge available and the related modeling assumptions made to formalize the assessment. 

In this view, the increasing modeling and computational capabilities and data availability open 

great opportunities for mining knowledge and improving models for use in risk assessment. In this 

respect, we have discussed and analyzed some research and development directions with regards to the 

use of simulation for accident scenario identification and exploration, and the reliance on data for 

condition monitoring-based, dynamic risk assessment.  

As for simulation, although it has long been thought has a fundamental asset for the future 

development of risk assessment, it is the advancement in modelling and computing capabilities that is 

nowadays making it actually feasible. Yet, for taking full deployment of simulation, and for taking the 

related benefits, trust must be put in the fast-running artificial intelligence-based techniques of 

surrogate/meta-modelling for their controlled application in exploring system behavior and risk 

assessment, with adequate treatment of the errors and uncertainties introduced by the associated 

approximations.  

Regarding condition monitoring-based, dynamic risk assessment, the increased availability of 

sensors-monitored condition data is indeed opening new horizons to develop conditon-informed risk 

assessment that can be more representative of the actual state of the components and systems. There, 

frameworks of integration of the condition data-driven predictive models into the risk assessment model 

must be soundly developed and practically implemented, for actual industrial benefit.   

The changes and innovations that the World is experiencing, with digitalization and the complexity 

of cyber-phyiscal systems (CPSs), climate change and extreme natural events, terrorist and malevolent 

threats, challenge the existing methods to describe and model quantitatively risk. In this respect, we 

have discussed and analyzed some research and development directions with regards to the extension of 

risk assessment into the framework of resilience and business continuity, and the safety and security 

assessment of CPSs.  

As for resilience and business continuity, they are indeed offerring integrated paradigms that 

extend the risk one, and provide frameworks for more effectively coping with the uncertain nature and 

extent of emerging hazards, and their impacts on today‘s complex, interconnected systems. Several 

concepts, definitions, models and techniques are emerging, all contributing insights into this difficult 

problem. Still advancements are needed, also with respect to how to manage resilience and business 

continuity from a design, normative and operational viewpoint, setting resilience goals, regulating 

resilience within a defence-in-depth safety approach and maintaining resilience margins during 

operation. 

As for the safety and security of CPSs, the problem is of great relevance since these systems are 

applied everywhere, at every scale and every area, including aerospace, automotive, energy, chemical 

industry, materials, civil transportation, agriculture and healthcare. Examples are micro- and nano-scale 

cyber and physical materials, controlled components, cooperating medical devices and systems, 

next-generation power grids, future defense systems, next-generation automobiles and intelligent 

highways, flexible robotic manufacturing, next-generation air vehicles and airspace management, and 

so on. CPS integrate computing and communication capabilities with the monitoring and control of 

entities in the physical world, building a bridge between the cyber space and the physical space. A CPS 

is, then, a system of systems where there is a tight coupling between the computing components and the 

physical components, the underlying processes and the policies governing all this. The cyber part of the 
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system demands security as one of its requirements; the physical part of the system requires safety. The 

system of systems combining the two parts requires both security and safety, and functional 

dependability. In CPSs, components are networked at every scale and each physical component has 

cyber capability. Computing is deeply embedded into every physical component. The behavior of a CPS 

is a fully integrated hybridization of computational (logical) and physical action. Moreover, the 

complete system has an excellent adaptability to the uncertain environment. While it is undoubtful that 

the new technologies will improve our lives, we must not understimate the risks and neglect the 

additional requirements that these bring. The high integration in the CPS has brought new risks as the 

physical components and systems can be malevolently accessed from the cyber space. With the 

integration of the cyber and physical spaces, the use of the general software, hardware, interfaces and 

protocols, the access to the internet etc., bring additional risks that must be considered. If the physical 

environment under control can be taken over by malicious entities, serious damage can occur. Besides 

the physical interferences, attacks, destructions to the physical components, what can be attacked is the 

information flow that runs them. An attacker could eavesdrop and tamper the sensor information, store 

information, control information, and even modify the logic of control algorithms. These can cause 

delays of the system, and even denial of service (DOS), which can pause the system operation. For 

instance, brief outages of critical infrastructures like the power grid may cause immeasurable losses and 

impacts. The suspension of a medical CPS may even be fatal. Therefore, we have to assess and 

demonstrate that our CPSs are dependable, safe, secure, besides being functional and efficient. To make 

CPSs resilient, it is necessary to integrate the knowledge on cyber security, human interactions and 

complex networks, to address all possible failure and threats in a comprehensive and holistic way. The 

aim is to design CPSs with the capabilities needed to operate safely and to survive the impacts of 

natural disasters, human errors, or intentional cyber attacks, with no loss of critical functions. For this, 

frameworks are needed that can combine simulation to recreate the physical components and processes, 

and emulation to recreate the cyber components and processes of networked industrial control systems 

such as SCADA servers and corporate networks. The framework should be flexible and adaptive to 

enable modifications, given that malevolent attacks and cyber threats keep changing to defeat the 

installed protections.  

Other emergent topical aspects interwine with the discussions made in the paper. Some are worth 

at least a mention, because of their expected growing role in the development of the future of risk 

assessment and the bigger picture of future safety.  

A first relevant topic is the growing awareness of the need for a concrete and practical method for 

accounting of safety mindfulness in operational situations (Weick et al. 2008). If the operators are 

aware of the potential threats that can occur during system operation, they can recognize and anticipate 

them. The challenge is in the management of the variety of risk information that can be utilized to the 

scope, including that coming from outside the local environment, e.g. across the industry. Some 

relevant information may take a long time to reach operators or concern new risks that may have been 

identified only by few involved parties, and formal processes of transmission are missing so that the 

needed information may not reach in time the operators who really need it: an incident could occur 

before existing processes have identified, analysed and processed such information, and disseminated it 

to the concerned operators. Fundamentally, safety mindfulness leads to being proactive, based on the 

best and most up-to-date information needed for carrying out the tasks related to the situation. It relies 

on the proper perception of the risk-relevant elements in the environment of interest, within a specified 

time and space domain, the correct comprehension of their meaning and the adequate projection of their 

status in the near future, to guide proper safety actions (Endsley, 1988). Mindfulness has become a quite 

popular concept for safety but has been difficult to implement, and so far there is no accepted measure 
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of organizational mindfulness (Ray et. al., 2011). Concrete proposals on how to engineer mindfulness 

into organisations and processes are still needed.  

Shifting along the risk profile from operational situations, and the need to recognize and anticipate 

risks, to emergency situations, the lessons learned from recent industrial accidents have confirmed the 

need to focus not only on the preventive measures that need to be designed for protection and on crisis 

management plans for mitigation, but also on the capacity to adapt in extreme situations that far exceed 

the scope of safety standards based on probabilistic risk assessment and on the comprehensive analysis 

of disaster scenarios. Crises in which conventional resources are lacking, but societal expectations are 

high, call for "engineering thinking in emergency situations" (Guarnieri and Travadel, 2014). This is a 

new concept that emphasizes adaptability and resilience within organizations—such as the ability to 

create temporary new organizational structures, to quickly switch from a normal state to an innovative 

mode and to integrate the social dimension into engineering activities. Future risk and resilience 

assessments will need to assess and demonstrate also the ability to create and implement effective 

engineering strategies on the fly, and the capability for resilience in the aftermath of accidents beyond 

design basis (those which defeat the designed protections and crisis management plans). 

A last topic which seems worth mentioning, because emerging and expected to emerge even more 

in the developing ―smart‖ technological World, is the social pressure and related behavioral influence 

that can be expected to affect the demand-response behaviour of socio-technical systems. More and 

more attention will need to be paid in risk (and resilience) assessments to the effects of the interwining 

of social media communication onto the operation of technical systems, with phenomena (e.g. of alert 

(positive effect) or fake news (negative effect) on hazards, dangers and opportunities, and others), 

which can deviate mass behavior of demand in operational and emergency situations, with effects on 

the operation and challenges to the capacity of response of the technical systems. Integration of these 

aspects in the risk and resilience assessment and management frameworks will become more and more 

necessary, and will require effective integration of different disciplines and competences.   

In conclusion, the directions discussed in this paper are some relevant ones in which risk 

assessment is evolving and must continue to evolve for addressing the existing and future challenges, 

considering the new systems and innovations that are coming ahead. These directions all revolve around 

the knowledge at the basis of risk assessment and the modeling for organizing it in a structured, 

meaningful way. This involves the development of new methods and approaches, for which additional 

competences are required, e.g. in simulation and data analytics but also in social sciences. This is likely 

to change the framework of risk assessment and the related educational curricula for the preparation of 

the risk professionals of the future. In this view, the Society for Risk Analysis (SRA) Specialty Group 

on foundational issues in risk analysis and the SRA Committee for Specialty Groups have established a 

group of risk analysis experts with the mandate of producing a list of core subjects for the field 

(http://www.sra.org/frasg).  
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