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Highlights 

 Research pertaining to system reliability optimization has been categorized 

chronologically into three eras. 

 The first era, the era of mathematical programming involved rigorous optimization 

methods, yet the problems are not always realistic. 

 The second era, the era of pragmatism, involved expanding the problem domain to 

include a broader range of problems, and more realistic problems. 

 The final and current era, the era of active reliability improvement involves dynamic 

reliability optimization models responding to changing conditions and data. 

 System reliability optimization problems remain challenging, but important, while both 

the problems and corresponding solution methods evolve. 
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Abstract – System reliability optimization is a living problem, with solutions methodologies that 

have evolved with the advancements of mathematics, development of new engineering 

technology, and changes in management perspectives. In this paper, we consider the different 

types of system reliability optimization problems, including as examples, the redundancy 

allocation problem (RAP), the reliability allocation problem and the reliability-redundancy 

allocation problem (RRAP), and provide a flow of discussion and analysis on the evolution of 

the approaches for their solutions. We consider the development and advancement in the fields 

of operations research and optimization theory, which have allowed the formalization and 

continuous improvement of the methods and techniques to address reliability design problems of 

even very complex systems in different technological domains. Technological advances have 

naturally brought changes of perspectives in response to the needs, interests and priorities of the 

practical engineering world. The flow is organized in a structure of successive ―Eras of 

Evolution,‖ namely the Era of Mathematical Programming, the Era of Pragmatism, the Era of 

Active Reliability Improvement. Insights, challenges and opportunities are highlighted.  

1. Introduction 

―Success is walking from failure to failure with no loss of enthusiasm‖ – Winston Churchill 

Reliability engineering is a formal engineering discipline, founded on mathematical 

principles, particularly of probability theory and statistics, for systematically and rigorously 

analyzing functional problems in components and systems with the aim to produce a reliable 

design. As an engineering discipline, reliability aims at analyzing and evaluating the ability of 

products and services to perform the functions that they are intended to provide by design.  

While technology improves and advances, the complexity of modern engineered systems 

also increases. At the same time, consumers’ expectations for high functionality, high 

performance and high reliability increase, leading to challenges and opportunities. Then, 

although system reliability optimization problems have been studied, analyzed, dissected and 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

reanalyzed, the continuous rise of new challenging problems demonstrates that this general 

research area will never be devoid of interesting problems to be solved. 

On one side, the development and advancement in the fields of operations research and 

optimization theory have allowed the formalization and continuous improvement of the methods 

and techniques to address reliability design problems of even very complex systems in different 

technological domains. On another side, the evolution of technology, the advancement of 

research ideas and theories, have naturally brought changes of perspectives, in response to the 

needs, interests and priorities of the developing practical engineering world. So, the development 

and application of formal optimization methods to the practical goal of achieving maximum 

reliability under various physical and economic constraints, has remained an ongoing topic of 

scientific development.  

In formal terms, the task of optimization involves formally conceptualizing the decision 

variables, the constraints and the single or multiple objective functions that describe the 

performance of the engineering design problem, and searching for the combination of values of 

the decision variables that achieve the desired goals with respect to the objective functions. 

Whether expressed explicitly in mathematical terms or not, every engineering design problem 

has design objectives which should be maximized or minimized or designed to achieve some 

acceptable requirement. When there is a single predominant objective that can be expressed with 

a series of explicit mathematical equations, then the problem can potentially be solved using 

mathematical programming methods or useful heuristics. Researchers working within the 

broader mathematical programming community are continually developing new methods and 

algorithms to solve broader classes of problems, larger and more difficult problems, and to do so 

more efficiently than before.  

1.1 Eras of Research Evolution 

 The research in complex system reliability optimization has evolved as a continuum of 

ideas and techniques. This evolution can be loosely and chronologically classified into the 

following three eras: 

 Era of Mathematical Programming 

 Era of Pragmatism 

 Era of Active Reliability Improvement 
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The era of mathematical programming is preceded by the original development of 

innovative groundbreaking methods, such as dynamic programming and the simplex algorithm 

(or linear programming), for which the reliability optimization problem has served as a very 

interesting and practical vehicle to demonstrate the methods and apply them. Yet, practicing 

reliability analysts recognized the limitations of these methods in practical applications, mostly 

because only problems that could be formulated to strictly meet the assumptions required by the 

methods could be solved, and this is rarely the case in practice. Furthermore, only small and/or 

unrealistic problems could be solved, because of computation limitations at the time.  

Driven by the desire to apply reliability optimization in practice, the era of pragmatism 

evolved and became increasingly important. New problems were solved and new methods 

developed in response to the pressing needs to consider and integrate into the problem some 

critical issues that could not be readily accommodated by the rigorous mathematical methods. 

For example, actual engineering systems problems could fall outside the assumptions required by 

the methods. Analysts were interested in complex forms of redundancy perhaps mixing 

functionally equivalent, but different components, whose failure behavior may not be simply 

described as a transition from one functioning state to a failure state, but rather as a process of 

transition across multiple states. To address a broader range of problems, compromises could be 

accepted, thus expanding the practical usefulness and applicability of the optimization methods. 

In these previous eras, reliability optimization had been mostly considered as singular, 

static analyses to be conducted and implemented to yield the desired design reliability of the 

system. Under this view, common assumptions were made on the existence of populations of 

homogeneous components and systems, sharing the same failure behavior but with failure 

occurrences being independent from one another. Furthermore, the implied assumption was that 

the conditions defined or considered when conducting the analysis are static and remain 

unchanged throughout the horizon of the analysis (the often-called mission time).  

When changes occur during the system lifetime, then the results of the analysis are 

simply no longer valid and applicable. We are currently experiencing another industrial 

revolution, particularly driven by the increase in information sharing, data availability and 

computational capabilities. In particular, with the proliferation of sensors, environmental 

stresses, usage stresses, failure data, etc., can be collected and processed at regular time intervals, 
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and the advancements in information knowledge that these can bring on the states of the systems, 

offer new opportunities of development for the analysis and assessment of reliability. The era of 

active reliability improvement is, then, ongoing and it is visionary in recognizing that 

components and system conditions change throughout their lives, and system reliability 

optimization methods, to be practically useful, need to dynamically respond to these changes. 

Within each of the three macro-eras discussed above, further sub-classification can be 

introduced, in a specific and unique way. In the era of mathematical programming, further sub-

classification can be done based on the specific mathematical algorithms developed to solve the 

reliability design problem. For the era of pragmatism, sub-classification can refer to which 

practical consideration in the design problem, which previously could not be analyzed, was now 

readily being addressed by the available optimization models. Within the era of active reliability 

improvement, sub-classification can be based with reference to the available data and new 

models for real reliability improvement. 

2. Reliability Optimization Problems 

System reliability design problems have multiple, and often competing objectives. 

However, there are some universal ones, including reliability (to be maximized) and cost (to be 

minimized). Often, the approach taken is to follow a prioritization of the objectives by the 

decision-makers, select the most important objective as the objective function and constrain the 

other objectives within acceptable limits.  

For each formulation to be studied or solved, system reliability optimization problems 

must have three elements: decision variables, constraints and an objective function or functions. 

The decision variables are those variables that can be changed or decisions that can be made to 

improve performance, with respect to the objective function or functions. Examples of decision 

variables include component type (with its intrinsic characteristic of failure behavior and 

reliability), redundancy configuration in the system and others. Constraints are mathematical 

expressions of practical limitations, such as monetary budget or acceptable reliability, which 

limit the choice of decision variables in relation to their feasibility of respecting the constraints. 

The objective function measures the performance of the system for given values of the decision 

variables, and thus, enables the decision on the optimal combination of variables values for the 

optimal solution. The objective function can often be the system reliability to be maximized, or 
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the system cost to be minimized. 

Different forms exist of the system reliability optimization problem. Three typical ones 

are the redundancy allocation problem (RAP), the reliability allocation problem and the 

reliability-redundancy allocation problem (RRAP). The solution methods for each problem are 

obviously different, because of the assumptions and structure of the problem. A thorough review 

of system reliability optimization is given by Kuo et al [1-3].  

2.1 Redundancy Allocation Problem  

The most widely studied reliability optimization problem is the RAP. For many systems 

composed of discrete component types, with fixed cost, reliability and weight, in mathematical 

terms system design becomes a combinatorial optimization problem. For providing the 

demanded system functions, there may often be alternative component types available, at 

different cost, reliability, weight and other properties. The practical problem is to select the 

optimal combination of components types (decision variables) to collectively meet reliability, 

weight, etc. (constraints) at a minimum cost (objective function), or alternatively, to maximize 

reliability (objective function) while achieving given minimum (or maximum) values of other 

system properties (constraints). 

For the mathematical formulation of this problem, we can consider that there are mi 

discrete component type choices available for each subsystem (i=1, ..., s), which the system is 

formed of. Figure 1 shows a typical example of a system with a number s of k-out-of-n logic 

subsystems. If k is equal to 1 for each subsystem, then this is a simple series-parallel system. For 

each subsystem, ki components must be selected from the mi available choices (e.g., assuming an 

unlimited amount available for each of the components). The optimal decision is driven by the 

possibility of placing additional components in parallel in any of the subsystems and/or adding 

levels of redundancy (> ki) of lower reliability components as an alternative to using more 

reliable (and expensive) ones. In other words, there is a large number of possible solutions to 

test, even for relatively small problems (small number of subsystems, small number of 

components, small number of components types, etc.). 

The RAP for a series-parallel system, as the one shown in Figure 1, can be formulated as 

to maximize reliability or minimize cost, under various constraints. Often the RAP is solved for 

series-parallel systems, but other system structures have been considered, as well as more 
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advanced forms of series-parallel systems, including those with several failure modes, phase 

mission types, systems with uncovered failures and systems with imperfect fault coverage.  

RAP has proven to be quite difficult to solve. Chern [4] showed that the problem is NP-

hard and many different optimization approaches have been used to determine optimal or ―very 

good‖ (i.e., near-optimal) solutions, including (1) dynamic programming, (2) integer 

programming, (3) mixed integer and nonlinear programming, or (4) evolutionary algorithms. 

2.2 Reliability Allocation Problem 

The reliability allocation problem and RAP are fundamentally different problems. For the 

reliability allocation problem, the system structure is fixed and the component reliability values 

are continuous decision variables. For this problem, there is no general restriction on the system 

structure. An example of a general system are depicted in Figure 2. Component cost and other 

parameters are defined as mathematical functions of the component reliability. Increasing the 

component reliability (and thus, the system reliability) increases the cost, weight and other 

factors, which may be included as part of the constraints or the objective function. Here, also, the 

goal of the optimization is typically to maximize system reliability or minimize system cost, and 

since the decision variables are continuous, different forms of non-linear programming can be 

used to determine the optimal solutions. To assure that the constraints are satisfied, Lagrangian 

multipliers are often introduced as part of the objective function.  

            

            Figure 1: Series-Parallel System                       Figure 2: General System Structure 

2.3 Reliability-Redundancy Allocation Problem (RRAP) 

The reliability-redundancy allocation problem is the most general problem formulation. 

The system is composed of one or more ―subsystems,‖ i.e., collections of logically connected 

sets of components. Each subsystem has xi components with reliability of ri as decision variables. 

The problem is then to optimally allocate redundancy and reliability to the components of each 
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subsystem with an objective to maximize the overall system reliability. The system and 

subsystems can be in any arrangement, as depicted in Figure 2. Again, typically the objective of 

the optimization is to maximize system reliability or minimize system cost. 

RAP is often considered for series-parallel systems, but other system structures can be 

considered as well. The reliability allocation problem and RRAP has been applied to many 

different system structures, including common structures (series, parallel, etc.), but also 

consecutively connected systems, sliding window systems, flow transmission systems, common 

bus systems and others. 

2.4 Component Assignment and Sequencing Problems 

Two other related system reliability problems are assignment or sequencing of 

components within a system. For assignment problems, there is typically a defined system 

structure, but the available components are assigned to specific locations with the system. 

Sequencing is particularly interesting and important for systems with standby redundancy, where 

the components are activated as needed in accordance with a defined sequence. Sequencing 

problems are solved for optimization for systems with consecutively connected systems and/or 

standby components with cold or warm redundancy required a defined activation sequence. 

The problem of assignment of components to positions within a system to maximize 

reliability was originally presented by Derman et al [5, 6]. An important early research effort [7] 

defined optimal assignments for different system structures. The related problem involves 

sequencing of redundant components. More recently, sequencing of standby redundant 

components has been considered by researchers to maximize system reliability [8, 9]. 

2.5 Other Optimization Problems 

There have been many other related system reliability optimization problems as well. 

There have been extensions of the original problems, as well as related problems including 

spares provisioning, optimization of series-parallel topology, optimal load distribution, optimal 

mission abort policy, test plan allocation, preventive maintenance optimization and others [2].  

3. Era of Mathematical Programming 

Methods initially developed to solve complex system reliability optimization problems 

can be referred to as belonging to the era of mathematical programming. The emphasis was on 
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applying advanced mathematics to obtain mathematically provable optimal solutions. The 

priority was on solving problems to optimality, but in doing so, often the structure and size of the 

problems were limited to be able to apply the rigorous mathematical model. The problems being 

solved in the end were rarely realistic or indicative of actual design problems. Assumptions were 

often introduced for mathematical convenience, and problems that did not meet those conditions 

were avoided. However, these original methods are very important and influential, and they have 

served as the foundation for much of the research and development work in quantitative 

reliability engineering that followed.  

Solution of complex system optimization problems was possible because of 

advancements in operations research theory and the development of new algorithms. A key 

mathematical challenge was to find an efficient way to at least approximate solutions to 

problems otherwise unsolvable with classic analytical methods. Numerical and mathematical 

approaches were introduced to successfully solve such problems, with the turning point having 

been the realization of the first computer, which provided the possibility to perform sets of 

operations for handling large numbers of data in a time much shorter than previously possible.  

The newborn field of computer science sparked the mind of several mathematicians that 

tried to formulate methods to use computers to help solving practical problems involving high 

computational efforts. The field of mathematical optimization was then born. Several pioneers 

from the first half of the 20th century contributed to develop formulations and algorithms to be 

implemented in computing machines to solve difficult optimization problems, including from the 

fathers of linear programming, Leonid Kantorovich and George Dantzig, Richard Bellman, 

originator of dynamic programming, to the founders of evolutionary algorithms, such as 

Lawrence Fogel, John Holland, Ingo Rechenberg and Hans-Paul Schwefel. Their ideas were the 

milestones from which other variants of the methods developed until today. 

When mathematical programming methods associated with the field of operations 

research were being developed and formalized, but still in their infancy, researchers were 

searching for interesting applications. Maximization of system reliability was considered an 

attractive application. Indeed, it is a difficult and challenging problem, yet practical and useful to 

demonstrate the utility of new mathematical programming algorithms. Typical formulations of 

the problem are challenging, with a highly nonlinear objective function and often integer 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

decision variables.  

Dynamic programming was applied to the system reliability problem as one of the very 

first applications explored. Considering the initial formulations of RAP, dynamic programming 

could almost be directly applied to efficiently obtain optimal solutions. The problem was that it 

was difficult to extend it to solve more realistic or actual design problems. Linear programming, 

or the simplex algorithm, is a very powerful advancement, which allowed for very large linear 

problems to be solved. However, system reliability is a highly nonlinear objective function, so 

researchers had to be creative to exploit the power of the simplex algorithm to solve reliability 

problems. RRAP is nonlinear with both continuous and integer decision variables creating 

another very challenging problem, that was often solved using some variation of nonlinear 

programming. 

3.1 Dynamic Programming 

Dynamic programming was originated in 1954 by Richard Bellman [10], and system 

reliability optimization was among the first problems studied. The aim was to treat mathematical 

problems arising from the study of multi-stage decision processes. The key advancement, as 

compared to previous methods, relies on the fact that when analyzing these problems, not all the 

possible sequences of the present and following stages are needed, i.e., it is possible, instead, to 

state general conditions to determine for each stage the most suitable decision according to the 

current state only, whereas classical approaches gathered information about all the sequences, 

making the calculation cumbersome and unpractical [10]. 

A problem solvable by dynamic programming can be performed as a system, described 

by a set of quantities, the state parameters, that undergo a state variation caused at a certain time t 

by a decision made by the user. The solution aims at taking an initial decision for guiding the 

future ones so that it is possible to maximize a given objective function of the state parameters. 

In many cases the number of parameters considered to make the decision is very large, especially 

when considering stochastic processes in which decisions determine a distribution of outcome 

states. In these cases, the approach allows reducing the dimension of the problem by focusing on 

the current time. To perform the dynamic programming optimization, the state parameters and 

the sequence of decisions to analyze, i.e., a policy, are needed. The optimal policy is, then, the 

one that determines the decision required at each time with respect to the current state of the 
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system. 

Bellman [11] and Bellman and Dreyfuss [12, 13]
 
 demonstrated that an optimal solution 

to the RAP could be found using dynamic programming. In their problem, there was only one 

component choice for each subsystem, and the objective was to maximize reliability with a 

single cost constraint. For each subsystem, the problem was to identify the optimal levels of 

redundancy. A well-known disadvantage of dynamic programming formulations is the difficulty 

of efficiently solving problems with multiple constraints. 

 Fyffe, Hines and Lee [14] used a dynamic programming approach to solve a more 

difficult design problem. Their problem involved a system with 14 subsystems and cost and 

weight constraints. For each subsystem in the Fyffe formulation, there are three or four different 

component choices each with different reliability, cost and weight. However, several of these 

component choices are dominated by other competing choices. Similar to Bellman, only 1-out-

of-n redundancy was considered. To accommodate multiple constraints within a dynamic 

programming formulation, they used a Lagrangian multiplier for the weight constraint within the 

objective function.   

 Instead of using Lagrangian multipliers, Nakagawa and Miyazaki [15] used a surrogate 

constraint combining the cost and weight constraints into one. They then solved a series of 

problem iterations with different surrogate multipliers, with a heuristic to successively update the 

surrogate multipliers. Stopping criteria was provided to identify cases when their algorithm 

would not lead to an optimal solution. The algorithm was demonstrated by solving 33 variations 

of the Fyffe problem with different weight constraints. Of the 33 problems, they found optimal 

solutions to 30 of the problems. Otherwise, the final solution was not feasible (although there are 

feasible solutions to the problem).  

3.2 Linear Programming/Integer Programming 

Linear programming (LP) and Integer Programming (IP) are powerful methods to find 

the maximum or minimum of a linear function describing the performance under assessment, 

which is called the objective function. A standard mathematical definition is the following: 

max {cx; Ax ≤ b, x ≥ 0}or min {cx; Ax ≤ b, x ≥ 0} 

For this formulation y = cx is the objective function to be maximized or minimized, x is 
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the vector of non-negative variables to be found, b and c are vectors of known coefficients, and 

A is a matrix of known coefficients that when multiplied by x have to satisfy the constraints 

expressed by the vector of coefficients b. The problem is defined within a convex polyhedron-

shaped feasible region, intersection of finitely half-spaces represented by linear 

equalities/inequalities. 

This optimization framework was initially used by the Soviet economist Leonid 

Kantorovich who was trying to organize the actions of soldiers to decrease expedition costs and 

increase enemy losses. At the same time another economist, T.C. Koopmans was working on the 

applicability of linear programming to solve classical problems. Their work was recognized by 

the Nobel prize in economics in 1975. Following that, mathematician George Dantzig developed 

an LP methodology to solve optimization problems, providing a formal proof of the solution 

[16]. One of the most important achievements was the reduction of the possible solutions, and 

therefore, the advantage of the method in terms of computing power needed. 

If the objective is to maximize reliability or minimize cost given multiple nonlinear but 

separable constraints, many variations of the problem can be transformed into an equivalent 

integer programming problem using 0-1 decision variables. This was originally demonstrated by 

Ghare and Taylor [17] who used a branch-and-bound approach to solve many randomly 

generated RAPs with 30 subsystems with 15 constraints, and 99 subsystems with 10 constraints. 

Ghare and Taylor assumed that there was only one component choice for each subsystem and 

redundancy was active always 1-out-of-n redundancy. 

Bulfin and Liu [18]  also used an IP approach to solve the RAP. They developed one 

heuristic and two exact algorithms to be applied depending on the problem structure. They 

formulated the problem as a knapsack problem and used a surrogate constraints approach, similar 

to Nakagawa and Miyazaki [15]. The surrogate multipliers were approximated as the optimal 

Lagrangian multipliers as found by subgradient optimization. Bulfin and Liu formulated the 

Fyffe problem and its variations as integer programs and solved the 33 problems previously 

investigated by Nakagawa and Miyazaki, and other examples as well. They also considered only 

subsystems with 1-out-of-n redundancy. Coit and Liu [19] extended their aproach to k-out-of-n 

redundancy subsystems if no mixing of component types is allowed within the subsystem 

parallel structure. 
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Other examples of IP solutions to the redundancy allocation problem were presented by 

Misra and Sharma [20], Gen, Ida, Tsujimura and Kim [21], and Gen, Ida and Lee [22]. Misra and 

Sharma presented a very fast and useful algorithm to solve integer programming problems 

formulated like those of Ghare and Taylor [17]. Gen, Ida, Tsujimura and Kim and Gen, Ida and 

Lee formulated the problem as a multi-objective decision making problem with distinct goals for 

reliability, cost and weight. 

For other system reliability applications, LP has been proved useful in the context of 

structural system reliability by Corotis & Nafday [23]. They used LP to identify the most critical 

failure mode for a structural system. More recent papers [24] demonstrate that LP is particularly 

useful in structural system reliability analysis. The LP bounds can be applied for any type of 

system and for different component probabilities. These bounds are the narrowest possible 

bounds that one can be obtained for a system, for any specified information forthe component 

failure probabilities.  

The main drawback of using LP or IP is that the size of the problem to be solved, and its 

computational cost, increases exponentially with the number of components, questioning its 

efficiency when it comes to realistic, complex systems. An approach has been proposed to 

overcome this issue and extend the applicability of LP. Decomposing the entire system into 

subsystems based on failure modes can be applied to identify component state probabilities and 

joint probabilities of the states of a small number of components. It can also provide bounds for 

the failure probability of large systems. This is particularly useful when other methods are not 

applicable. This approach has been presented by Chang & Mori [25]. The idea is the 

development of a relaxed LP (RLP) bounds method to reduce the number of design variables 

using the universal generating function (UGF) [26].  

RLP bounds method can be applied to a single series or parallel system, but it is not 

applicable to a general system that consists of both series subsystems and parallel subsystems. 

For this reason, an additional assumption can be made to obtain the Strategic Relaxed Linear 

Programming (SRLP). After decomposing the system according to different failure modes, each 

critical failure mode is also considered as a system (or subsystem) itself. The bounds on the 

system failure probability can be computed by the RLP bounds method if it is a series or parallel 

system, and the bounds on its joint failure probability can also be computed by the RLP bounds 
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method. The bounds estimated by the RLP bounds method are, then, used as constraints in 

solving the LP problem for estimating the failure probability of the entire system.  

3.3 Nonlinear Programming 

Nonlinear programming (NLP) refers to a collection of optimization methods defined by 

the same main principles of linear programming, with the difference that the objective function 

and/or its constraints, and therefore the feasible region of the problem, are defined with at least 

one nonlinear equation. The addition of nonlinear equations makes the optimization problem 

much more difficult to be solved, for example: 

 In a nonlinear function it is hard to assess whether a maximum is local or global, and 

unlike linear functions where a max/min location is restricted to the borders of the 

feasible region, for a nonlinear function it can be in the interior of the feasible region. 

 If the objective or any constraints are non-convex, the problem may have multiple 

disconnected feasible regions and multiple locally optimal points within such regions. 

 The numerical method chosen to get to the solution may cause two different starting 

points to lead to two different solutions. 

 It is difficult to ensure that the constraints applied to the problem meet the requirements 

of the feasible region. 

 A tolerance region for the solution has to be considered with a proper uncertainty. 

NLP solvers generally attempt to solve the problem by computing gradient values at 

various trial solutions, and moving in the direction of the negative gradient (when minimizing, 

positive gradient when maximizing). They usually also exploit second derivative information to 

follow the curvature as well as the direction of the problem functions. To solve constrained 

problems, NLP solvers must take into account feasibility and the direction and curvature of the 

constraints as well as the objective. A review of nonlinear programming optimization methods is 

provided by Floudas [27]. 

Mixed integer and nonlinear programming have been effectively used to solve the 

redundancy allocation problem. Considering reliability optimization, important research 

contributions were provided by Tillman, Hwang and Kuo [28, 29]. In these problems, component 

reliability is a continuous decision variable and component cost is expressed as a function of 

reliability and other parameters.   

3.4 Evolutionary Algorithms 
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Evolutionary algorithms (EA) are a group of optimization methods that perform their task 

with a built-in ability to evolve. EA have the three following common features: 

1. Population-based, i.e., they handle a group of solutions, the population, manipulated in 

different ways to optimize the problem; 

2. Fitness-oriented, meaning that EAs favor individuals (a solution belonging to a population) 

which are fitter than others according to established criteria. Each individual has a gene 

representation which is its code together with a performance evaluation, i.e., its fitness value. 

Choosing fitter individuals drives the optimization and the convergence of the algorithm; 

3. Variation-driven: In order to simulate evolution steps, individuals are subject to random 

variations, necessary to explore the problem’s solution space. 

The basic intent of EAs is to implement the Darwinian concept of survival of the fittest, 

applying it to functions to optimize. Through each generation, the solutions considered weak in 

terms of the specific criteria adopted for the optimization face extinction, whereas the best ones 

combine to produce new individuals that potentially can improve the convergence to an optimal 

solution. 

The first attempts to mimic evolution by simulating genetic processes date back to Fraser 

[30] and Bremermann [31]. The main contributor, however, is John Holland, who in 1975 

published ―Adaptation in Natural and Artificial Systems [32]‖ in which he introduced the main 

fundamental concepts of genetic algorithms (GA). In GA, each individual of the population has 

two characteristics: a chromosome and a fitness value representing its quality. The chromosome 

is composed of genes; in the original formulation each gene was considered as a bit, therefore 

either 1 or 0, and the chromosome was a string of zeros and ones. In the following years, several 

researchers developed new forms of GAs.  

A chromosome can be viewed as a sorted string or vector. The evolutionary process starts 

when all fitness values of the initial population have been assigned. Afterwards, the selection 

process begins, in which some individuals are selected in order to be included in the mating pool. 

The fittest individuals are more likely to be selected and spread their properties to the offsprings: 

individuals in the mating pool are combined to produce new hybrids whose fitnesses are 

evaluated to decide whether or not to pass onto the next population, replacing other individuals. 

It is common practice to keep a constant number of individuals inside a population at each stage.  

GA have not been applied practically for system reliability problems until the 1990s, 

when researchers such as Coit & Smith [33, 34] implemented it in a combinatorial reliability 
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design problem. The evolutionary optimization proved very efficient in terms of cost-

effectiveness of the selection of the parts and allocation redundancies for system reliability. 

Several authors then tackled optimization problems by GA. For example, Painton and Campbell 

[35] presented a model based on such methods, highlighting again their robustness and capability 

of finding the optimum over a high dimensional nonlinear space in a considerably shorter time 

than the required one for enumeration. In order to improve the reliability of a personal computer, 

they identified the main components and their failure modes in order to determine some possible 

improvement levels.  

With regards to applications, reliability allocation to minimize total operating costs, 

subject to an overall plant safety goal, was presented by Yang et al. [36]. System optimization 

was used to enhance the design, operation and safety of new and/or existing nuclear power 

plants. They determined the reliability characteristics of reactor systems, subsystems, major 

components and plant procedures in accordance with a set of top-level performance goals. The 

cost for improving and/or degrading the reliability of the system was also included in the 

reliability allocation process as a multi-objective problem formulation. GA was demonstrated to 

determine effective solutions for a typical pressurized water reactor.  

Konak et al. [37] presented general guidelines regarding the implementation of GA for 

multi-objective reliability optimization, proposing a list of techniques and highlighting the 

advantages and difficulties of each of them. The reliable network design problem has been 

studied using multi-objective GA. Kumar et al. [38] presented a multi-objective GA to optimize 

telecommunication networks while simultaneously improving network performance and design 

costs given a system reliability constraint. Kim and Gen [39] studied bicriteria spanning tree 

networks considering the objectives of cost and reliability, while Marseguerra et al. [40] 

determined optimal surveillance test intervals using a multi-objective GA to improve reliability 

and availability.  

Problems studied by Martorell et al. [41, 42] involved the selection of technical 

specifications and maintenance activities at nuclear power plants to increase reliability, 

availability and maintainability for safety-related equipment. They also considered the optimal 

allocation of more reliable equipment, testing and maintenance activities to assure high 

reliability, availability and maintainability levels for safety-related systems. Additional limited 
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resources (e.g., budget and workforce) were required, to form another a multi-objective problem. 

Solutions were obtained by using both single-objective GA and multi-objective GA, to solve the 

problem of testing and maintenance optimization with the objective functions of unavailability 

and cost. 

Various other meta-heuristics have been used for reliability optimization. For example, 

Ant Colony Optimization (ACO) is a population-based, general search technique for the solution 

of difficult combinatorial problems [43]. The method is inspired by the pheromone trail laying 

behavior of real ant colonies. In ACO, artificial ants probabilistically build solutions by taking 

into account pheromone trails, which change dynamically at run-time, to reflect the agents 

acquired search experience and heuristic information on the problem instance. ACO algorithms 

have been applied for the reliability optimization of series-parallel systems [44], also including 

quantity discounts on the redundant components [45], and network optimization by embedding a 

Cellular Automata approach combined with Monte Carlo simulation for network availability 

assessment [46], within a multi-objective ACO search engine [47]. ACO has also been applied in 

hybrid form with Simulated Annealing (SA), called ACO SA, for the design of communication 

networks [48], where the design problem is to find the optimal network topology for which the 

total cost is a minimum and the all-terminal reliability is not less than a given level of reliability.  

SA is another type of meta-heuristics introduced by Kirkpatrick et al [49] and Cerny [50] 

as a general probabilistic method for solving combinatorial optimization problems. SA searches 

the global optimal solution avoiding entrapment in poor local optima by allowing a 

(probabilistically) occasional uphill move to worse solutions. A SA algorithm for communication 

network reliability optimization has been proposed [51], which selects the optimal set of links 

that maximizes the overall reliability of the network subject to a cost constraint, given the 

allowable node-link incidences, the link costs and the link reliabilities. The algorithm employs a 

variation of the SA approach coupled with a hierarchical strategy to achieve the global optimum. 

SA has also been applied to search the optimal solution of system reliability-redundancy 

allocation problems [52] also considering nonlinear resource constraints [53]. Different SA 

strategies have been applied to solve multi-objective system reliability optimization problems 

[54].  

Particle Swarm Optimization (PSO) is another algorithm conceptually based on the social 
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behavior of biological organisms that move in groups, such as birds and fishes [55]. The basic 

element of PSO is a particle, which can fly throughout the search space toward an optimum by 

using its own information and that provided by other particles within its neighborhood. As in 

GA, the performance of a particle is determined by its fitness that is assessed by calculating the 

objective functions of the problem to be solved. Then, PSO has certainly some similarities to 

evolutionary algorithms such as GAs, but it also incorporates a cooperative approach. Indeed, all 

individuals (particles) which are allowed to survive change their positions over time and one 

particle’s successful adaptation is shared and reflected in the performance of its neighbors. 

Originally developed for the optimization of continuous unconstrained functions, PSO did not 

attract much attention from the reliability community, because most reliability optimization 

problems are of discrete nature and have constraints. However, it has been shown that properly 

adapted PSO can be an effective tool for solving some discrete constrained reliability 

optimization problems [56]. PSO has, then, been applied to solve reliability optimization and 

RAP of complex systems [57].  

Several optimization meta-heuristics have been designed for various optimization 

applications in reliability engineering, with varying degrees of success. As no meta-heuristic is 

so versatile to always outperform the other meta-heuristics in all kinds of reliability optimization 

problems, developing new, good optimization approaches can be very helpful in some specific 

applications and benefit practitioners providing more options. Overall, some preferences in 

practice is given to the use of GAs, as they are able to solve both integer reliability problems and 

mixed-integer reliability problems. Furthermore, their applicability is not limited to series-

parallel systems. In many reliability optimization problems, the optimal solutions found by GAs 

have turned out to be superior to those of the other meta-heuristic methods for both integer 

reliability problems (in which component reliabilities are given and redundancy allocation is to 

be decided) and mixed integer reliability problems (in which both the component reliabilities and 

redundancy allocation are to be decided simultaneously). Therefore, GAs are very competitive 

and attractive meta-heuristic methods, especially appropriate for design of nonstandard series-

parallel systems. In addition, the multiple solutions found by the GA sometimes vary 

significantly in the component reliabilities and/or redundancy allocation for systems. This offers 

the design engineer a variety of options from which to choose with only small differences in the 

system reliability.  
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4. Era of Pragmatism 

After exhausting much of the inventory of reliability optimization problems that could be 

solved to optimality by mathematically rigorous methods, researchers entered into an era of 

pragmatism. The driver for this was the need to expand the types of problems to treat, 

considering more complex systems and more realistic reliability behaviors of the components, 

without necessarily being able to mathematically prove the optimality of the solutions (although 

this remains highly desirable). 

Original problem formulations that were solved to optimality often adhered to some 

common assumptions, although not always, including (i) active redundancy, (ii) perfect 

switching of redundant components, (iii) limitations on mixing functionally equivalent 

components within a parallel structure, (iv) binary behavior of components and systems, and 

others. These assumptions simplified the problems and optimal solutions could be found, but 

artificially constraining the problem spaces far from real conditions. Therefore, the usefulness of 

these methods was limited, and there was a need to analyze systems with more realistic 

behaviors, including multi-state systems, uncertain systems, realistic forms of redundancy, etc. 

For the more realistic and complex problems, the assumptions or model forms required 

for mathematical programming algorithms could generally not be satisfied. At the same time, 

more advanced computers and computer processing provided for exhaustive forms of heuristic 

search. GA and other forms of meta-heuristics were now used predominantly. 

4.1 Multi-state Systems 

For components and systems used in practice, often a binary state description 

(functioning or failed) may not be a proper representation of the reliability behavior, because the 

component and system reliability performance has a range of different levels (Barlow & Wu 

[58], Hudson & Kapur [59]). However, evaluation of multi-state system (MSS) reliability is 

more difficult, and potentially mathematically cumbersome. 

Levitin et al [60], and Levitin & Lisnianski [61] presented pioneering and influential 

research models to optimize system design for multi-state systems. Levitin et al [60] determined 

an optimal system structure, and Levitin & Lisnianski [61] optimized imperfect preventive 

maintenance intervals. They used a universal generating function (UGF) approach to evaluate 
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multi-state reliability and a GA to search the solution space to determine the best solution, 

although not guaranteed to be the optimal solution. UGF is a convenient function based on a z-

transform that is useful to systematically and efficiently compute multi-state reliability. 

Levitin and his colleagues continued to extend their innovative work to analyze 

additional applications of multi-state systems. The first formulation of joint structure and 

maintenance optimization problem for multi-state systems was presented in Levitin & Lisnianski 

[62], and the optimization approach was extended to systems with common cause failures by 

Levitin [63]. Later, Levitin & Xing [64] analyzed systems with propagating failures. Each of 

these research efforts represented fundamental advancements. System reliability optimization 

could, then, be applied to an entirely new class of systems design problems. 

In recent years multi-state models for system reliability assessment have become 

increasingly popular. In particular, significant research efforts have been devoted to the solution 

of RAPs for series-parallel multi-state systems (MSSPS) [3, 65-67], which was first introduced 

in [68]. Series-parallel structures are typically considered because they are quite common in 

practice. Due to the difficulty of the problem, meta-heuristics are often used to solve MSSPS 

RAP, even though they can become time-consuming, especially on large systems.  

On the other hand, theoretical analysis of meta-heuristics for MSSPS RAP has been 

generally lacking. Exact/approximated algorithms or guidance for meta-heuristics design have 

not yet been proposed in the MSSPS RAP literature, while it is important because the application 

of RAP to multi-state models often requires exhaustive computational resourses. Indeed, the 

difficulty of solving MSSPS RAP is not only due to the well-known problems of MSS reliability 

evaluation, but also to the discrete, probabilistic and nonlinear nature of RAP problems. 

Another form of a system where the components exhibit multiple states is when 

component failure time distributions or state probabilities and replaced with a stochastic 

degradation process. This problem can be particularly challenging when the individual 

component degradation processes are dependent or have interactions. Song et al [69] determined 

optimal replacement intervals and inspection intervals for systems with dependent failure 

processes. Bian and Gebraeel [70] developed a prognostics model for a multi-component system 

with degradation interactions. 
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4.2 Uncertainty 

The optimization of system reliability relies on a model to provide a representation of the 

system failure behavior. The model is built on a number of hypotheses on the types of 

distributions which the stochastic failure processes of the components obey. The values of the 

parameters of these distributions need to be estimated, and there is always some level of 

estimation uncertainty. There is intrinsic uncertainty and incomplete knowledge of the system 

behavior. Uncertainty can be model or structural uncertainty, which exists on the hypotheses of 

the model, or parameter uncertainty, which exists on the values of its parameters.  

In the literature, a number of aspects, factors and causes of uncertainty have been 

identified, as summarized by Armacost and Pet-Edwards [71], Zimmermann [72]: 

 Lack of information or knowledge: Lack of information, knowledge and/or data is the main 

source of uncertainty. This type of uncertainty can be reduced by collecting more information 

and data. 

 Approximation: Any model involves some degree of approximation, which is necessary when 

there is insufficient information to describe exhaustively the phenomenon of interest or when 

it is desirable to simplify the analysis due to computational constraints or other reasons.  

 Abundance of information or knowledge: People are incapable of assimilating many pieces of 

data and information simultaneously. The analyst usually focuses on those parameters and 

those pieces of data and information that are considered to be more important, while 

neglecting the others. This type of uncertainty is related to biases in subjective probability 

assignments (see Kahneman and Tversky [73] and Aven [74]). 

 Conflicting nature of pieces of information/data: When there is conflicting data, increasing 

the amount of available information and data would not decrease the uncertainty. More data 

may just increase the conflict among different pieces of information and data. Some 

information are affected by errors creating the conflict, although the analyst cannot identify 

them, or otherwise, the model used by the analyst is poor.  

 Measurement errors: The measurement of a physical quantity, such as temperature, weight, 

length, is always affected by the precision of the measurement capability.  

 Linguistic ambiguity: An expert may express that something is big, but the meaning of ―big‖ 
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is ambiguous, and can be interpreted in different ways. 

 Subjectivity of analyst judgments: There can be different interpretations of the same 

information and data, depending on cultural background and competence of the analyst. 

Uncertainty analysis involves identifying and studying the sources of uncertainty and 

propagating the effects onto the output of the model. Uncertainty analysis determines the 

uncertainty in the model output that results from uncertainty in the model inputs (Helton et al. 

[75]). In the practice of reliability engineering and quantitative risk analysis, it is common to 

distinguish between aleatory and epistemic uncertainty (Apostolakis [76], Helton and Oberkampf 

[77]). Aleatory uncertainty refers to phenomena occurring randomly, so probabilistic modeling is 

appropriate to describe such occurrences. Epistemic uncertainty involves quantifying the degree 

of belief of the analysts on how well it represents the actual system. It is typically expressed as 

subjective probabilities of the parameters of the probability models. It can be reduced by 

gathering information and data to improve the knowledge on the system behavior. 

For system reliability optimization, uncertainty must be properly accounted for. It is often 

important to consider the uncertainty in the system reliability estimation so that risky solutions 

with unsatisfactorily high reliability estimation uncertainty can be avoided. System designers and 

users are generally risk-averse. Decision makers would generally prefer the design of a system 

whose reliability is estimated with large confidence, as assured by the low uncertainty of its 

estimation. Thus, maximization of the system reliability and minimization of its estimation 

uncertainty is an important formulation, that should be emphasized. 

System reliability optimization research originally did not consider the uncertainty in the 

reliability estimation, although Rubinstein et. al. [78] is an early example of a model to maximize 

the expectation of a series-parallel system reliability estimate with component uncertainty. 

However, maximization of the expectation of the reliability estimate may not be adequate, if it is 

important to avoid system designs with unacceptably high uncertainty. It is therefore desirable to 

use a multiple-objective optimization algorithm, which explicitly considers the component 

uncertainty. 

In Marseguerra et al. [79], a multi-objective GA is developed to select optimal network 

designs that balance the dual objectives of high system reliability and low uncertainty in its 

estimation. Monte Carlo simulation is used to evaluate the objective function and Pareto 
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optimality is introduced to handle the multiple preference criteria. The decision variables are the 

numbers of components, xij, of a given type j to be allocated in the various sections (node pairs & 

links) i of a network system, i = 1, 2,…, s, and j = 1, 2, …, mi. The network is designed to 

maximize the expectation of the network reliability and minimize the variance of the estimate 

(by maximizing the negative variance). Introducing cost and weight constraints, the multi-

objective optimization problem may be formulated as follows: 

Problem P  
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This is an appropriate formulation for a risk-averse decision maker, as opposed to most 

optimization algorithms that require or assume risk-neutrality. Many decision makers may prefer 

a risk-averse solution, with a marginally lower expected value of reliability compared to a 

solution with a higher expected value, but with unacceptable uncertainty. Epistemic uncertainty 

has also been accounted for using interval and fuzzy multi-state models [67, 80-82].  

4.3 Different Types of Redundancy  

The original formulations of the system reliability optimization problems assumed that all 

redundancy was active redundancy. This is a convenient assumption because the failure time of a 

parallel subsystem of components is the maximum of individual component failure times, and 

the reliability, or probability of survival for some mission time, can be expressed using standard 

probability principles that are independent of any failure time distribution assumptions. 

However, many actual subsystem design problems, use a variety of active, cold, warm or hot 

standby, often within the same design, and therefore the original formulations and solution 

methods were not practical or applicable for many actual problems. 

System designs with active redundancy have fully activated components that can 

continue to provide needed design functions in the advent of failure of a primary component, 

until all redundant components have failed as well. Cold standby redundancy involves the use of 

non-activated components that can be switched-on in response to failure of a primary 

component. Often systems are designed with both types of redundancy within different parts of 
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the system, and there are examples where the redundancy type is also a design variable. Cold 

standby redundancy requires switches to detect failure and activate redundant units. However, 

the switches can also fail and must be considered in the optimization model. It is assumed that 

components in cold-standby do not fail, while components in warm standby can fail, but at a 

lower rate those comparable active or hot standby components. Components in hot standby still 

require a switching mechanism, but fail at the same rate as active components.  

A solution methodology was developed to determine optimal design configurations for 

nonrepairable series-parallel systems with cold-standby redundancy by Coit [83], who 

considered a components with non-constant component hazard functions and imperfect 

switching. There were multiple component choices available for each subsystem and component 

failure times are distributed according to an Erlang distribution. Optimal solutions are 

determined using IP with 0-1 decision variables.   

There are other engineering system design projects the choice of redundancy type 

becomes an additional design variable. System design optimization was demonstrated in Coit 

[84] to maximize reliability when either active or cold-standby redundancy can be selectively 

chosen for individual subsystems. Formulation of the problem allowing a choice of redundancy 

strategies is more realistic and practical. Optimal solutions to the problem are found using IP 

considering imperfect switching of standby redundant components [84]. The optimal system 

design is distinctly different from the corresponding design obtained with only active or only 

cold standby redundancy. The same problem was later solved using a GA [85]. Most recent 

research on systems with imperfect switches has been done by Kim [8] and Levitin et al [86].  

The problem with a choice of redundancy strategies has been extended in several original 

ways including a mixed strategy [87] combining both active and cold-standby components 

within the same subsystem. Other recent meaningful system reliability optimization research 

considering mixed component redundancy have provided important models for more varied and 

practical applications [88-90]. There have also been multiple objective formulations to the 

problem with different redundancy types [91, 92]. 

More recently, other different redundancy strategies or types of problems have been 

considering including the standby element sequencing problem and the combined sequencing 

and inspection/checkpointing/allocation policy optimization for different types of standby (hot, 
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cold, warm, mixed). Some research efforts combining system structure optimization with optimal 

standby component sequencing are included in [8, 9, 93, 94]. 

5. Era of Active Reliability Improvement 

 There are currently some very promising on-going research activities that can be 

considered collectively as an era of active reliability improvement. System reliability 

optimization is not a static model, but it is being conducted continuously in response to new data 

being collected on failures, component and system degradation, environmental stresses and 

usage histories. As an integral part of the optimization process, system performance can be 

optimized and improved dynamically as new data is collected and analyzed to provide a better 

understanding of usage conditions and failure behavior, or to compensate for changing 

conditions. Modern sensor and communications technologies facilitate the collection and 

transmission of data so that the optimal system design and maintenance plans can be continually 

enhanced. 

Standard assumptions for most system reliability optimization models have been that 

component failure times form a homogeneous population, and that the failure time distributions, 

or reliability for a fixed time, are static or stationary. In practice, both assumptions are at best 

approximations of actual conditions. Although a population of components may form a 

homogeneous population, their corresponding failure times are influenced by specific 

environmental stresses and user requirements/stresses that can vary appreciably for specific sub-

populations of users or applications. Also, there can be systemic trends in stresses, that can result 

in shifting failure time distributions over time. In these cases, there is not actually a 

homogeneous population of identically distributed failure times, and therefore, most optimization 

models cannot accommodate these realities 

The era of mathematical programming resulted in entirely new insights on optimizing 

system design, and demonstrated how advanced mathematics can be used to solve this problem. 

The era of pragmatism extended the more theoretical models or developed new ones to address 

actual conditions of fielded systems. However, in both of these eras, the optimization results 

were a final result. The solution to these difficult optimization problems was intended to be 

performed once, perhaps with associated sensitivity analyses. Of course, as new data was 

collected, the analysis could be repeated, but the optimization process did not directly integrate 
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changing conditions. In the era of active reliability improvement, the changing conditions and 

data analyses are an integral part of the model. 

5.1 Dynamic System Reliability Models Responding to New Data 

Dynamic optimization of system reliability has the potential to achieve responsive system 

designs, which are highly reliable with changing or diverse conditions. To achieve the highest 

level of reliability and minimum cost, engineering designs and maintenance plans must address 

changing conditions or new data that provides better estimates of model coefficients or 

parameters. To accomplish this, the optimization must be dynamic. The model is solved over-

and-over or continually as part of the optimization in response to new data/conditions/etc. as the 

system is operated. 

Yildirim et al [95, 96] present two comprehensive models that involve integrating sensor-

based degradation modeling and remaining life distributions with classical mathematical 

programming, specifically mixed integer programs. The resulting model optimizes predictive 

maintenance decisions for a complex system to minimize cost. The application being solved is 

the unit-commitment problem, a well-studied optimization problem, pertaining to power 

generation and transmission. Yildirim et al. [97] considers opportunistic maintenance scheduling 

again within an integrated framework that combines mixed integer programming and sensor-

based degradation models. 

Hao et al [98] addresses dynamic optimization of workload assignment to actively control 

the degradation and failure time for multiple-units system. Components are degrading and 

failing, but the rate of degradation is a function of workload assignment. Multiple units are 

arranged in parallel, and several identical machines may need to operate together to 

simultaneously produce products to meet the high production demand. This parallel 

configuration is designed with redundancy to compensate for unexpected events. As data is 

collected, there is Bayesian updating of degradation model parameters and re-optimization of 

workloads. 

Recent developments by Li et al [99] have proposed providing industrial assets with a 

degree of agency, in order to enable real time prognostics and optimization of the asset's 

operation conditions. They consider the feasibility of improving system-level performance in 

industrial systems by integrating social networks into the IoT (Internet of Things) concept. 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Bascifti et al [100] considers a complex system of buses, generators and transmission 

lines. The model considers the scenarios where unexpected failures happen based on the updated 

remaining life distributions. The modeling framework in this case is a stochastic optimization 

model with chance constraints that leverages sensor-based remaining life predictions. 

5.2 System Reliability Optimization Customized for Specific Subsets of Users 

Data analytics can also be exploited such that the optimal system design can reflect 

differences within a population. There can be regional differences or fundamental differences 

within the user population, and by observing and quantifying specific usage conditions and 

failure patterns, an optimal design can simultaneously correspond to a collection of diverse users 

or conditions. A failure time distribution can be considered as a function of usage and 

environmental stresses, and specific reliability values can then naturally vary to reflect these 

differences. 

Ramanan et al [101] studies an advanced distributed optimization problem. There are 

several interesting aspects and challenges to this problem. The first relates to the computational 

challenges associated with large scale decentralized optimization and the second relates to the 

underlying high-performance computing architecture that is would be suitable for such 

decentralized systems. Advanced data processing of large data sets within subnetworks (local 

utility companies) is required. 

Bei et al. [102] presents a model to fully investigate the integrated redundancy allocation 

and maintenance planning problem with the presence of uncertain future usage stresses. 

Component failure time distributions are expressed as a function of environmental and usage 

stresses. A component system design, with component choices and redundancy levels is selected 

by the optimization model, but specific preventive maintenance intervals are selected for 

different usage and environmental stress vectors. The problem is formulated as a two-stage 

stochastic optimization problem with discrete scenarios defined for different usage and 

environmental conditions. Zhu et al [103] extends this model by considering uncertain aperiodic 

changing stresses. 

6. Future Challenges in System Reliability Optimization 

The safe and productive performance of industrial systems depends on optimal designs 
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that use equipment reliably, and on testing and maintenance activities that assure the required 

high level of reliability, availability and maintainability of the equipment. This is done through 

the efficient assignment of resources that are usually limited. A number of challenges arise in 

relation to the modern complex systems reliability optimization: 

 Integration and response to continual streams of data proving new and updated information. 

 Accounting for both aleatory and epistemic uncertainties within the decision-making 

framework of system reliability optimization 

 Cooperative optimization of multi-agent systems, with individual objectives to be optimized 

within an overall system optimization 

 Integrated optimization of reliability design, maintenance, spare parts inventory and logistics 

management 

 Dynamic optimization of evolving systems under changing conditions 

7. Conclusions 

In this paper, we have provided an organized discussion and review on the evolution of 

the subject of complex system reliability optimization, which is at the heart of reliability 

engineering. We have presented how the development of solutions to such problem, and their 

application, have evolved as a continuum of ideas and techniques, which we have 

chronologically organized into the three eras of Mathematical Programming, Pragmatism, and 

Active Reliability Improvement. 

In this flow of development and advancement, we have highlighted the joint pull force 

coming from the fields of operations research and optimization theory, and from the evolution of 

technology. Their combination has led to the advancement of research ideas and theories, 

brought new perspectives from the engineering world, and resulted in the development and 

continuous improvement of methods and techniques to address reliability optimization problems 

of increasingly complex systems. 

The underlying message that emerges from this is that system reliability optimization is 

an ongoing topic of scientific development and will always be so. The research is actively pulled 

by the advancements in mathematics, operations research and optimization theory, and in 

response, researchers will continually develop new methods and algorithms to solve, more 

efficiently than before, broader classes of problems, and larger and more difficult problems. At 
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the same time, the research is pushed by the changes in technology, and in the engineering and 

social worlds, practitioners will continually demand for new developments to cope with the 

practical challenges encountered on the field.  

In conclusion, today we are treating problems that involve more complex systems and 

more realistic reliability behaviors of the components, including multi-state, uncertain behaviors, 

etc. We are beginning to address them dynamically, as new data is collected and analyzed to 

provide a better understanding of usage conditions and failure behavior, or to compensate for 

changing conditions, so that the optimal system design and maintenance plans can be continually 

enhanced. This is possible due to the collection and transmission of data by modern sensor and 

communications technologies. Yet, new opportunities and challenges are always arising, and it 

will always be necessary to find efficient ways to solve new problems or problems previously 

unsolvable.  
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