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Highlights 

 A reliability model for PMS subject to random shocks is proposed. 

 MRGP is used to deal with the dynamic non-exponential components. 

 A MC simulation procedure is proposed to evaluate PMS subject to random 

shocks. 

 The result confirms the importance of considering random shocks in PMS 

reliability.  



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

2 

Reliability Assessment of Phased-mission Systems under 

Random Shocks 

Xiang-Yu Li
1,2

, Yan-Feng Li
1,2

, Hong-Zhong Huang*
,1,2

, Enrico Zio
3,4

 

1. School of Mechanical and Electrical Engineering, University of Electronic Science 

and Technology of China, Chengdu 611731, China 

2. Center for System Reliability and Safety, University of Electronic Science and 

Technology of China, Chengdu 611731, China 

3. Chair System Science and the Energy Challenge, Fondation Électricité de France 

(EDF), CentraleSupélec, Université Paris Saclay, 91192 Gif-sur-Yvette cedex, 

France  

4. Energy Department, Politecnico di Milano, Milano, Italy 

 

 

ABSTRACT 

Phased-mission systems (PMSs) are widely used, especially in the aerospace 

industry. As in the outer space there are many kinds of cosmic rays, such as the 

Galactic Cosmic Rays (GCR), randomly hitting on these systems and causing 

significant impact on the electronics inside or outside the equipment, a reliability 

model for PMSs considering both finite and infinite random shocks is proposed in this 

paper. The modularization method is used to simplify the state space model for each 
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phase and reduce the amount of system states, and the Markov regenerative process 

(MRGP) is used to describe the hybrid components’ lifetime distributions and the 

dynamic behaviors within the modules. Then, two kinds of scenarios, finite and 

infinite random shocks effect, are both integrated into the dynamic modules. For 

demonstration, a phased altitude and orbit control system (AOCS) subjected to 

infinite random shocks is illustrated to demonstrate the procedure of the proposed 

Monte Carlo simulation. Thirdly, the evaluated system reliability under infinite 

random shocks is compared with the same system without considering random shocks. 

At last, a sensitivity analysis is also provided for completion. 

 

Keywords: Phased-mission system, random shocks, Markov regenerative 

process, Monte Carlo simulation, Altitude and Orbit Control System. 

 

NOMENCLATURE 

Mi  The thi  module after system modularization 

M  The states set of the modules 

nT  The phase time of phase n  

n  The phase number 

u  The arrival rate of the random shocks 

S    The failure rate of component S without shocks 

n

S  The failure rate of component S after the thn shocks 
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FT  The recorded module failure time  

 sysR t    The system reliability at time t   

ACRONYM 

AOCS Altitude and orbit control system 

BDD Binary decision diagram 

CCF Common cause failure 

CSP Cold Spare 

FDEP Functional DEPendent 

FT Fault tree 

GCR Galactic Cosmic Ray  

MC Monte Carlo 

MDD Multi-valued decision diagram 

MRGP Markov regenerative process 

PMS Phased-mission system 

SSE Single Event Effects 

 

1.   INTRODUCTION 

In this paper, the reliability of phased-mission systems (PMSs) subjected to 

random shocks is considered. In a PMS, the system needs to perform different tasks in 

successive time periods, known as phases [1]. A classic example is the manned 

spacecraft whose missions can be divided into launch, orbit-transfer, on-orbit 

operation and back-to-earth phases. In these non-overlapping phases, the system 
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needs to accomplish different mission demands. For these complex and high-value 

aerospace equipment, reliability is a very critical value. Usually, the reliability of 

PMSs are defined as the probability that all the consecutive missions are 

accomplished successfully. The challenges in the reliability assessment of PMSs are 

mainly due to three aspects: (1) dynamic behaviors within phases, like the CSP (Cold 

Spare) that is commonly used to improve the system reliability or the FDEP 

(Functional DEPdenct); (2) dynamic behaviors among phases, whereby the system 

configuration changes from one phase to another; moreover, in different phases the 

system will be subjected to different environments, which may lead to different 

stresses and failure rates [1], [2]; (3) phase dependence, in which the components 

failed in the former phases will remain failed in the later phases, in non-repairable 

PMSs [3].  

The existing works on the reliability modelling of PMSs can be classified into two 

major categories:  

(1) Combinatorial methods, like Binary Decision Diagram (BDD) [1]-[6] or 

Multi-valued Decision Diagram (MDD) based models [7]. A BDD is a direct acyclic 

graph that is based on Shannon decomposition and the graph has two sink nodes, 

labeled 0 and 1, representing the system working or failure [2]. MDD models are 

natural extension of traditional BDD models which has multiple outgoing edges to 

represent the system being in different states [7] that are commonly used in multistate 

system or system with multiple failure modes. The BDD method was applied by Zang 

and Trivedi [2] to assess the system reliability of a PMS. Xing applied the BDD 
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method in the reliability analysis of a generalized PMS, considering the phase-OR as 

a special case of PMS [3]. Xing also used the BDD method to assess the system 

reliability of PMS considering common cause failure (CCF) and imperfect coverage 

[1], and the PMS considering both internal/external CCF [5]. Tang and Dugan 

assessed the system reliability of PMS considering multimode failures by the BDD 

method [6]. Besides the BDD modelling, the MDD modelling has also been applied 

for PMS reliability analysis, especially considering multi-failure modes. Mo [7] 

pointed out that MDD modelling method is more efficient than BDD in PMS with 

multi-failure modes. In general, combinatorial methods can assess the system 

reliability efficiently, especially in large scale systems. But they can only deal with 

the static system that the primary events in the phase fault tree (FT) model are 

independent on each other. 

(2) State space oriented models, like Markov chain-based or Petri net-based 

models [8]-[10]. In the state space oriented models, the dynamic behaviors in each 

phase are represented by state space models, Markov chains or Petri nets. Then the 

phase dependence is involved in if components’ states do not change during the jump 

of the phases. These models can deal with the dynamic behaviors within phases, like 

the CSP, but they suffer from the state explosion problem, especially in the large scale 

system. 

To overcome the disadvantages of the methods above, a modularization method 

combined with combinatorial and state space models is proposed in Refs. [11], [12]. 

Through the modularization method, the dynamic components are separated as some 
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into independent modules. As a result, the system can be evaluated by the 

combinatorial methods and the independent modules. Therefore, the modularization 

method combines the advantages of both methods.  

The PMS considered in this paper is employed in the aerospace industry, e.g. in 

the manned spacecraft. These systems spend most of their lifetime in the outer space, 

where they are exposed to many kinds of cosmic rays, such as the Galactic Cosmic 

Rays (GCRs) [13]. The ionizing nature of GCR particles can pose significant threats 

to the electronics located onboard, such as the microprocessors to which they may 

cause memory bit flips and latch-ups. This kind of phenomenon is generally called the 

Single Event Effect (SSE) [13] and occurs randomly, i.e. as a random shock. If these 

random shocks are not considered, the reliability of the PMS will be overestimated. 

Random shocks have been considered with different approaches in reliability 

modeling [14]-[24]. Lin and Zio [14] studied the components’ reliability considering 

both degradation processes and random shocks. At the system level, Wang and Pham 

[17] investigated the influence of the degradation and random shocks, in which the 

random shocks can lead the system to failure immediately. Rafiee [18] studied 

cumulative random shocks that increase the components’ failure rates. Berker [19] 

used a semi-Markov model to describe a system under random shocks. Recently, 

Ruiz-Castro [20] considered the extreme failures and cumulative damage caused by 

the external shocks. However, these methods are all considered in single-phased 

systems. 
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The main contribution of this paper is to integrate random shocks into the 

reliability modelling of PMSs and a Monte Carlo simulation procedure is then 

developed for its quantification [26]-[28]. Firstly, the modularization method is used 

to divide the system into several individual modules so that the complicated system 

FT model can be simplified. Secondly, the random shocks are integrated into the state 

space model of the modules by the MRGP. Thirdly, a Monte Carlo method for 

simulating PMS with random shocks is developed to assess the module reliability. 

Finally, the reliability of the PMS is evaluated through the PMS-BDD method and the 

mutually independent modules. 

The paper is organized as follows. In section 2, the basic conceptions of the 

Markov regenerative process and an altitude and orbit control system (AOCS) of the 

manned spacecraft is introduced in detail. To model the reliability efficiently, the 

modularization method is applied to simplify its system FT model. Then, the dynamic 

module is modeled by the MRGP. In section 3, the model for the dynamic module 

under random shocks is proposed. In section 4, the MC simulation procedure for 

assessing the reliability of the dynamic module under infinite random shocks is 

proposed. After that, a dynamic module under finite random shocks is evaluated by 

the MC simulation and approximation method, respectively, and the reliability 

comparison result certifies the proposed MC simulation procedure. In section 5, the 

reliability of the AOCS under infinite random shocks is evaluated by integrating the 

PMS-BDD method and evaluated module reliabilities in previous. Furthermore, a 

comparison between the system reliability analysis with and without random shocks is 
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also provided. Furthermore, the confidence of the MC simulation method and a 

sensitivity analysis is performed. The modelling procedure is shown in Figure 1. The 

summary of the work and main conclusions are presented in section 6. 

 

Figure 1. The system reliability evaluation procedure. 

 

2.   MRGP AND MULTI-PHASED AOCS  

2.1.   The Multi-phased AOCS 

In this paper, the AOCS of a manned spacecraft under random shocks is studied. 

The AOCS (altitude and orbit control system) is a critical subsystem of the manned 

spacecraft to control and adjust its altitude and orbit in the whole lifetime. If the 

AOCS fails, the manned spacecraft cannot stay in the right altitude and orbit. 

A.  System Working procedure of AOCS 

The AOCS consists of three functional subsystems—the Sensors, the Processors 

and the Actuators. The working procedure of the AOCS is shown in Figure 2. Firstly, 

the sensors acquire the altitude and orbit data and send it to the processors. Secondly, 

the processors process the data and make decisions, and then, the instructions are sent 

to the actuators. Finally, the actuators adjust the altitude and orbit according to the 

Simplified by 

modularization method

1.System fault tree(FT) model

2. System fault tree(FT) model

Dynamic module

By MRGP

Static modules

Module reliabilities

3. System reliability evaluation by 

PMS-BDD method and module reliabilities

4. Result analysis.
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instructions. The repetition of this working procedure will keep the spacecraft on the 

right altitude and orbit during its whole lifetime. 

 

Figure 2. The working procedure of the AOCS 

Considering that different missions need to be accomplished at different time, the 

whole lifetime of the AOCS can be divided into four phases: launching phase, orbital-

transfer phase, on-orbit phase and back to earth phase. The phase durations of four 

phases are 1 2T days , 2 4T days , 3 30T days  and 4 3T days , which are shown in 

Figure 3. 

 

 

Figure 3. The mission profile for the AOCS. 

B. Components and System Structure 

As described above, the AOCS is composed of three functional parts; 

(1) Micro-computers (Processors): working computer (A), standby computer (B) 

and a switch component (C). (2) Sensors: Sun sensor (D), Earth sensor (E), Star Track 

Sensor (F) and Gyro Assembly (G). (3) Actuators: low thrust thrusters (20N, cold 

standby subsystem, working thruster H, cold standby thruster I and a switch 

Sensor 

subsystem

Processor 

subsystem

Actuator 

subsystem

Altitude and 

orbit data
Instructions

Time T/days

Phase 1 

launching

Phase 2. 

Orbital transfer

Phase 3. 

On-Orbit operation

Phase 4. 

Back-to-earth

2 6 36 39
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component S), high thrust thruster (620N, Q), three Momentum wheels (2 out of 3 

subsystem, J, K and L). 

All the components can be divided into two categories: The working and standby 

components and the switch components. The lifetime of the complicated working 

components follow the Weibull distributions (    /
1

t
F t e




   , where   is the 

shape parameter and   is the scale parameter). And the lifetime of the switches 

(electronics) follow the exponential distributions (   1 tF t e    , where   is the 

failure rate). Due to the confidential requirement, the original data are unavailable, 

and the parameters of the components are provided by the designers of the spacecraft 

after being processed, as shown in Tab I.  

Tab I. The parameters for the phased AOCS 

 A B D/E/F/G H I Q J/K/L 

   1.563 1.725 2.156 2.093 2.185 1.937 1.358 

 (days)  138.12 172.65 1291.50 133.15 188.72 332.84 287.47 

 C S      

  (days) 201.95 216.01      

In the launching phase (1
st
 phase), the spacecraft is launched into the outer space 

and separated from the rocket. In this phase, the sensors and the processors are 

necessary to acquire the position data and process it. The processers (A, B and C) and 

the sensors (D, E, F and G) are necessary. The FT model of phase 1 is shown as 

Figure 4 (a). 
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 In the orbit-transfer phase (2
nd

 phase), the spacecraft needs to be transferred to the 

working orbit step by step. Besides the processors and the sensors, the high-thrust 

thruster 2 and low-thrust thruster 1 are used for the orbit transfer and orbit micro-

adjusting, respectively. In this phase, the processers (A, B and C), the sensors (D, E, F 

and G), the high-thrust thruster (Q) and the low-thrust thruster (H, I and S) are 

necessary. The FT model of phase 2 is shown as Figure 4 (b). 

In the on-orbit phase (3
rd

 phase), the spacecraft works in the normal orbit and the 

AOCS needs to keep the spacecraft in the correct altitude and orbit. In this phase, 

except for the micro-computers and sensors, the thruster 1 and momentum wheels are 

used as actuators to keep the spacecraft working normally on the right orbit. The 

processers (A, B and C), the sensors (D, E, F and G), the low-thrust thruster (H, I and 

S) and the movement wheels (J, K and L) are necessary and the FT model of phase 3 

is shown as Figure 4 (c). 

In the back-to-earth phase (4
th

 phase). The spacecraft need to transfer to the lower 

orbit and then return to earth. In this phase, the processers (A, B and C), the sensors 

(D, E, F and G) and the low-thrust thruster (H, I and S) are necessary and the FT 

model of phase 4 is shown in Figure 4 (d). 

Phase 1

D1 E1 F1 G1

2/4

A1 B1

C1

CSP

                  

Phase 2

D2 E2 F2 G2

2/4

Q2

H2 I2

S2

CSP

A2 B2

C2

CSP
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(a)                                                                                  (b)  

Phase 3

D3 E3 F3 G3

2/4

J3 K3 L3

2/3

H3 I3

S3

CSP

A3 B3

C3

CSP

               

Phase 4

D4 E4 F4 G4

2/4

H4 I4

S4

CSP

A4 B4

C4

CSP

 

(c)                                                                                  (d)  

Figure 4. The FT models for each phase of the AOCS 

2.2.   Simplified by Modularization method 

In the previous section, the mission profile and FT models of different phases 

have been described. Directly applying state-space modeling methods in system 

modelling for each phase would lead to a very large number of states for each phase, 

known as the state explosion problem [10], which would make it very difficult to 

evaluate the system model. In this paper, the modularization method is used to 

simplify the system FT models and the state explosion problem can be solved to some 

extent. 

The modularization method is proposed by Khoda [29] and used in reliability 

assessment of PMS by Ou and Dugan [11]. A phase module of a multi-phased system 

must meet two conditions [11]: (1) each module is a set of the basic events, which 

means a module must be a subset of all basic events; (2) for each phase, the basic 

events in the collection should form an independent sub-tree in the modularized fault 

tree. According to these conditions, all the bottom events in the FT models in Figure 4 
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of the ACOS can be divided into five independent modules: 1 ( , , )M A B C , 

2 ( , , , )M D E F G , 3 ( , , )M H I S , 4M Q  , 5 ( , , )M J K L , as shown in Figure 

5(a)-(e), respectively. 

A B

C

CSP

M1

   

D E F G

2/4

M2

  
H I

S

CSP

M3

  
Q

M4

  
J K L

2/3

M5

 

(a)                             (b)                           (c)             (d)                  (e) 

Figure 5. The modules for the AOCS 

With these modules, the FT model for the entire multi-phased AOCS after 

modularization is shown in Figure 6. All the modules can be regarded as independent 

bottom events in the modularized FT model and the system reliability can be assessed 

by the PMS-BDD method [2] and the module reliabilities. If there are any dynamic 

logic gates, the modules are dynamic modules [30]. The reliability of the static 

modules can be easily evaluated by their own RBD. Moreover, the reliability of the 

dynamic modules will be evaluated by the Markov regenerative process (MRGP). 

PMS

Phase 1

M11 M21

Phase 4

M24M14 M34

Phase 2

M22 M42M12 M32

Phase 3

M23M13 M53M33  

Figure 6. The modularized fault tree of the multi-phased AOCS 
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2.3.   The MRGP model for the dynamic module 

A.  Basic conceptions of MRGP 

In general, a Markov generative process   , 0Y t t   does not possess the 

Markov property (the memoryless property). But there is a sequence of embedded 

time sequence within  Y t , the Embedded Markov chain (EMC)    , ,n nX S X S , 

which is also called the Markov regenerative sequence (MRS). It satisfies the Markov 

property [25], 

 
 

 

1 1 0 0

1 1

Pr , | , ; , ,

Pr , |

n n n n n

n n n n

X j S S t X i x S S

X j S S t X i

 

 

   

    
  (1) 

where nX  and nS  are the state being visited and the nth transition time. 

nS  in Eq.(1) is the Markov regenerative points and the stochastic process  Y t  

possesses the Markov property at these time points. With the embedded MRS  ,X S , 

the MRGP  Y t  satisfies, 

    0Pr | ,0 , Pr |
nt S u n n tY j Y u S X i Y j X i        . (2) 

According to Eq. (2), it can be found that the future of  Y t  from = nt S  only 

depends on the past only through state nX  . To define a Markov regenerative process, 

the conditional probability matrix  t   is defined as, 

       , = Pr | 0i j t Y t j Y i   .  (3) 

In majority of reliability problems involving the MRGP, the primary concern is to 

evaluate the conditional probability matrix  t . In the evaluation of  t , two 
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matrices, the  tQ  and  tE , are necessary.    ,= i jt Q t  Q  and    ,= i jt E t  E  

are called the global kernel and the local kernel of the MRGP, respectively, which are 

defined as, 

 
      

      
, 1

, 1

= Pr , | 0

= Pr , | 0

i j

i j

Q t Y t j S t Y i

E t Y t j S t Y i

  

  
 (4) 

From Eq. (4), the local kernel,  ,i jE t , describes the state transition behavior of 

the MRGP during two consecutive Markov regenerative epochs  10, S   and the global 

kernel,  ,i jQ t , describes the state transition behavior immediately after the next 

Markov regenerative epoch 1S . With the global kernel  tQ  and the local kernel 

 tE , the system state transition probability  t  can be evaluated by the Markov 

renewal equation [25], 

        
0

t

t t d t t u   E Q . (5) 

B.  Dynamic module evaluation by MRGP 

Using the dynamic module M3 is used as an example, the system state evaluation 

procedure is illustrated as follows: 

Step 1: construct the state transition diagram. The state transition diagram of the 

dynamic module M3 is shown in Figure 7.  
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Figure 7. The state transition diagram for module M3. 

Step 2: identify the structure of the global kernel matrix  3M tQ  and the local 

kernel matrix  3M tE .  According to Figure 7, the exponential transition from state 

S1 to S3 and from state S2 to S4 are concurrent. It is because that the failure of 

component S does not affect the failure process of component H and I. So states S3 

and S4 are not the Markov regenerative epoch. Hence, this stochastic process shown 

in Figure 7 is a MRGP whose EMC is identified by states S1, S2 and S5. Accordingly, 

the global kernel matrix  3M tQ  and the local kernel matrix  3M tE  of this MRGP is, 

  

   

 

3 3

1,2 1,5

3

2,5

3

0 0 0

0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

M M

M

M

Q t Q t

Q t

t

 
 
 
 
 
 
 
 

Q   (5) 

  

   

   

 

3 3

1,1 1,3

3 3

2,2 2,4

3

3

5,5

0 0 0

0 0 0

= 0 0 0 0 0

0 0 0 0 0

0 0 0 0

M M

M M

M

M

E t E t

E t E t

t

E t

 
 
 
 
 
 
 
 

E  (6) 

S1

(H, I, S)

S2

(I, S)

S3

(H, I)

 HF t

S

S4

(I)

S5

Fail

 IF t

 IF t

 HF t

S
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Step 3: evaluate all the elements in  3M tQ  and  3M tE . The elements in  3M tQ  

and  3M tE  can be computed according to the competing failure mechanism. For 

example, let HT  , IT  and ST  represent the time to failure of components H, I and S, 

respectively. Then, 

      

 

          

3

1,2 1 1

0 0

Pr 2, | 0 1

Pr ' '

Pr & Pr 1

M

t t

H S H S H H S

Q t Y S S t Y

Componet H failsbefroecomponent S fails

T t T T T u dF u f u F u du

   



       

(7) 

It should be noted that during the calculation of  3

1,2

MQ t , the failure of the 

component S does not have any effect on the component I.  3

2,5

MQ t  can be evaluated 

as, 

 
 

       

3

2,5

' '
Pr

or ' '

Pr & Pr & Pr

M

I S I I S I I I

Componet I failsbefroecomponent S fails
Q t

Componet I fails after component S fails

T t T T T t T T T t F t

 
  

 

        

 (8) 

Other elements in the global kernel  3M tQ  and the local kernel  3M tQ can be 

evaluated in the same way. 

Step 4: using the evaluated  3M tQ  and  3M tE , the system state transition 

probability matrix  3M t  can be evaluated by the Markov renewal equation shown in 

Eq. (5).  
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3.   INTEGRATING OF RANDOM SHOCKS INTO THE PMS 

RELIABILTIY MODEL 

In this section, the random shocks (e.g. coming from cosmic rays) are integrated 

into the PMS reliability model. After modularization as described in the last section, 

all the bottom events in the FT models have been divided into several independent 

modules. The dynamic module, cold standby module 3M  , is used to describe the 

model considering random shocks. In module 3M , H and I are working components 

and S is the switch component. According to the module description, the state 

transition diagram of 3M  is shown in Figure 7. State 1S  is the perfect working state 

and 5S  is the failure state. 

As described in the section of Introduction, the randomly coming cosmic rays 

affect the electronics as random shocks. To integrate the random shocks in the PMS 

reliability model, some preliminary assumptions are made: 

 The arrivals of the random shocks follow a homogeneous Poisson process [14], 

with a constant arrival rate u  (shown in Figure 8). By the opinion of the 

spacecraft designers, the random shocks occurrence rate is set to be 5 days once 

and 1=1/5u days  in this paper. 

 The random shocks are s-independent of the components’ failure process.  

 The damage brought by the random shocks is cumulative, and in particular, the 

random shocks increase the failure rate of a constant amount   at each time 

they occur and cannot lead the components to failure directly. 
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Figure 8. The infinite random shocks process 

In this paper, we assume that M  indicates the system state and N  indicates the 

number of random shocks that have occurred. To integrate the random shocks in the 

PMS reliability model, the system state indicator is extended from M  into  ,M N . 

After integrating the random shocks as shown in Figure 8 into the state transition 

diagram of Figure 7, the state transition diagram with random shocks for module 3M  

is shown in Figure 9. 

 

Figure 9. The state transition diagram under random shocks for module M3 

Furthermore, the failure rates after n random shocks n

S   in Figure 9 are set to 

 = 1+
nn

S S   [14], where S  represents the transition rate of the system from state i  

to state j  without random shocks and  1
n

  characterizes the cumulative effect of 
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the random shocks. By the opinion of experts, the failure rate increment  , due to a 

shock, is set to be 0.3 in the case study of this paper. Due to the infinite state number 

of dynamic module under infinite random shocks, the Monte Carlo (MC) simulation 

method [26], [27] is applied to assess the PMS reliability in this paper. The MC 

simulation for evaluating the PMS reliability under random shocks. 

3.1.   The simulation procedure for dynamic modules 

The MC simulation method for the reliability assessment is based on repeated 

sampling of realizations of system state configurations and computation of the system 

failure frequency [31], [32]. In this paper, the simulation procedure is conducted to 

evaluate the reliability of the dynamic module. During each simulation, two quantities, 

i.e. the number of random shocks N and the module failure time FT , are recorded. In 

each repeated simulation, the failure time of the dynamic module, , iF MT , is simulated 

y the sampled components’ failure time and the logic within the dynamic module. 

Using the module M3 as an example, the simulation procedure for the dynamic 

modules is shown in Figure 10. 
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Figure 10. The simulation procedure for dynamic module under infinite shocks. 

3.2.   Certification of the MC simulation  

In this section, to certify the proposed MC simulation procedure, the reliability of 

module M3 under finite random shocks by the proposed MC simulation method is 

compared to the reliability of the same system by the MRGP and computed by an 

approximation method. 

Considering a scenario that each random shock on component S in module 3 does 

not only lead to the increasing of its failure rate, it also has the cumulative shock 

damage and the component will fail after a certain number of random shocks because 

the cumulative damage reaches the failure threshold [17], [31]. If component S fails 

after the 3
rd

 shocks occur, the state transition diagrams for component S under finite 

random shocks and module 3 under finite random shocks are shown in Figure 11 and 

Figure 12, respectively. 
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Figure 11. The state transition diagram for component S under finite shocks. 

 

Figure 12. The state transition diagram for M3 under finite shocks. 

According to the system description in section 2.3, the unreliability of module M3 

at time t  is the system state transition probability  3

1,5

M t  .  By the Markov renewal 

equation shown in Eq. (5), the state transition probability  3

1,5

M t  can be evaluated as, 

          3 3 3 3 3

1,5 1,5 5,5 1,2 2,5
0 0

t t
M M M M Mt q u t u du q u t u du        (9) 

where    3 3

, , /M M

i j i jq t dQ t dt .  

In Eq. (9),  3

5,5 =1M t  and     3

2,5 =M

It F t . Then, the  3

1,5

Mq t  and  3

1,2

Mq t  can be 

computed as, 
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where  HF t  is the CDF of component H (     1 exp / H

H HF t t


   ).  SF t  is 

the CDF of component S under finite random shocks and it can be evaluated by the 

CTMC [10], 

 
    

  
  

  
  

 
  

  

2

2 2 1

1 2

22
2 1

2 1

2 1 2 1 1 2

1 exp

exp exp

S S S

S S

S S

S S

u u
F t u t

u u uu
u t u t

     


   

 
 

       

    
   

 

 
     

   

 (11) 

where u  is the arriving rate of the random shocks and i  is the failure rate of 

component S after the thi  shocks  1
i

i S    . 

To compute the complicated integrals in Eq. (9), an accurate approximation 

method, the trapezoidal integration method [33], [34], is applied in this paper and 

shown as, 

           , , , , , 1 , 1
0

1

1

2

nt

i k k j i k i k j t i k i k j i

i

q t d q t q t          



           (12) 

where the integration interval  0, t  is divided into n equal segments, so the length of 

each segment is /t n  . Integrating Eqs. (10)- (12) into Eq. (9), the system state 

transition probability  3

1,5

M t  can be evaluated. Then, the comparison between the 

reliabilities of module M3 by the proposed MC simulation procedure and the MRGP 

as well as the approximation method is shown in Figure 13.  
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Figure 13. The comparison of module M3 under finite random shocks by different methods. 

The results in Figure 13 demonstrate that the proposed MC simulation procedure 

for the module under random shocks can provide a relatively accurate result.  

 

4.   RELIABILITY ASSESSMENT ANALYSIS 

4.1.   System reliability assessment by PMS-BDD model 

In section 2.2, the complex FT model of the AOCS is simplified as the 

modularized FT model and all the bottom events of the modularized FT are 

independent on each other. Then, the system reliability can be evaluated by the widely 

used PMS-BDD model. Considering the phase dependence by the phase algebra 

proposed in Ref. [6], the system reliability of the phased AOCS can be evaluated by 

the PMS-BDD model by several steps that are described as follows: 
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Step 1: transit the FT model of each phase into the corresponding BDD model of 

each phase. The BDD models for the four phases of the AOCS are shown in Figure 

14. 

 

Figure 14. The modularized BDD model for each phase of the AOCS. 

Step 2: integrate the BDD models for phases into the system BDD models by the 

PMS-BDD method. There are two kind of sort orders in the PMS-BDD, the backward 

PDO and the forward PDO. And through the backward PDO, the system BDD model 

is much smaller. By the backward PDO and taking the order 41M   31M  21M 

11M  42M  32M  22M  12M  43M  33M  23M  24M  35M . Then, the 

system BDD models in the first two phases, in first three phases and in all four phases 

is shown in Figure 15(a), (b), and (c), respectively. 
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(a) System BDD model for the first two phases. 

 

(b) System BDD model for the first three phases. 

 

(c) System BDD model for the all the four phases. 

Figure 15. The system BDD models for different phases. 

Step 3: according to the system BDD models shown in Figure 15, we can get the 

disjoint paths for the ACOS in phase 1 ( 1 ), in the first two phases( 2 ), in the first 

three phases( 3 ) and in all four phases are( 4 ), 
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  (13) 

Step 4: integrate all the reliability indices of the module reliabilities and include 

the dynamic and static modules. As a result, the system reliability in different phases 

can be evaluated as, 

 

   

       
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

   

 (12) 

where 
4

1

i

i

T T


 . 

4.2.   Results 

A. Comparison with the system without shocks 

The MC simulation of the system mission profile was performed with 52 10   

histories in this paper. The system reliability of the phased AOCS considering random 

shocks is represented as the dashed line in Figure 16. Moreover, the reliability of the 

same system without random shocks is represented as the solid line in Figure 16. The 

reliabilities of the AOCS at the end of each phase are also shown in Tab II, as well as 

the relative difference between the reliabilities with and without random shocks and 

the average numbers of shocks in each phase.  
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Figure 16. The reliability of the AOCS with and without random shocks 

Tab II. The results for the AOCS with and without random shocks 

 Phase 1 Phase 2 Phase 3 Phase 4 

 noshock

sysR t  0.999990 0.999624 0.97885 0.973937 

 shocks

sysR t  0.999988 0.999613 0.95980 0.948101 

Relative difference 1.5000-06 1.1002e-05 0.0198 0.0272 

As expected, when the AOCS travels a long time in the outer space, the system 

reliability is lower than that when considering random shocks, especially in phase 3 

and phase 4. If the random shocks are not considered in the modeling, the system 

reliability may be overestimated. 

B. Model confidence 
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In this section, following the proposed MC simulation procedure, the reliability of 

the AOCS under infinite shocks and without shocks are evaluated. To assess the 

confidence of the estimated AOCS reliability under infinite random shocks, the 

system reliability evaluation by the MC simulation procedure are repeated for 

200N   times and the results are shown in Tab III. 

Tab III. The reliabilities for the AOCS under random shocks 

Time (days) 0 0.1 0.2 …… 39 

,1

shocks

sysR   1 1.000 1.000 …… 0.9429 

,2

shocks

sysR  1 1.000 1.000 …… 0.9431 

…… …… …… …… …… …… 

, 200

shocks

sys NR   1 1.000 1.000 …… 0.9426 

With the system reliabilities at different time shown in Tab III, the mean 

reliabilities values at different times are shown as the solid line in Figure 17. The 

upper and lower bounds of the 95% confidence of the reliability values at different 

times are represented as dashed lines in Figure 17, respectively. Consequently, it can 

be concluded that the proposed MC simulation method can provide accurate results 

with 52 10  realizations. 
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Figure 17. The upper and lower bounds of the 95% confidence of the proposed MC method with 

52 10  realizations. 

4.3.   Sensitivity Analysis 

In this paper, the effect of random shocks to the PMS is studied. With respect to 

the random shocks modelling, we have analyzed the sensitivity of the system 

reliability estimates to two parameters which are related to the random shocks effect, 

the random shocks occurrence rate   11/ 4,1/ 6u days   and the relative increment in 

the transition rates  = 0.2,0.4  . The estimated system reliabilities for different 

combinations of the two parameters are shown in Figure 18.  
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According to the results in Figure 18, it can be seen that with the increase of the 

relative increment   or the random shocks occurrence rate u , the system reliability 

decreases as expected. Higher   leads to larger components’ failure rates, and larger 

occurrence rate u  values result in more random shocks over the whole lifetime, which 

decreases the system reliability. In Tab IV, the system reliability with parameters 

=0.2  and 11/ 4u days  is set to the standard and other elements are differences 

with different parameters combination. As shown in Tab IV, when the same 

percentage of variation applies to two parameters,   is more influential than u  on the 

system reliability. 

 

Figure 18. The reliability of the Phased AOCS with and without random shocks for different 

combinations of u  and    

Tab IV. The errors of the results for the AOCS sensitivity analysis 

System reliability error 0.2 0.23 0.26 0.29 0.32 0.35 0.4 

0. 247 0% 0.45% 0.98% 1.46% 1.93% 2.42% 3.05% 

0.227 0.45% 0.84% 1.31% 1.82% 2.21% 2.65% 3.23% 
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0.212 0.87% 1.27% 1.66% 2.10% 2.55% 2.85% 3.39% 

0.197 1.27% 1.65% 2.03% 2.38% 2.81% 3.07% 3.55% 

0.182 1.65% 2.02% 2.35% 2.66% 3.04% 3.25% 3.68% 

0.167 2.19% 2.48% 2.74% 3.01% 3.28% 3.52% 3.87% 

 

5.   CONCLUSIONS 

In this paper, an original reliability model of a PMS subjected to random shocks 

has been proposed together with a MC simulation procedure for its assessment. 

Dynamic behaviors, like the cold standby, and different lifetime distributions due to 

different component types are considered during the modeling.  

A practical engineering case, the AOCS in the spacecraft, is used as a case study. 

To evaluate the system reliability under infinite random shocks effect, a Monte Carlo 

simulation procedure is proposed. The proposed MC simulation procedure is certified 

by a dynamic module under finite random shocks. The comparison of the reliability of 

the system considering the random shocks effect or not confirms the importance of 

the random shocks effects on the system reliability. At last, the sensitivity analysis 

involving the parameters that affect the random shocks effect is also carried out to 

characterize the influences of the random shocks model parameters.  

In this paper, only the constant components’ lifetime parameters provided by the 

designers are used to evaluate the reliability of PMS under random shocks. However 

in reality, the uncertainties of these parameters have significant effects on the 

robustness of the system model as well as the system reliability, so this will be part of 

our future work. On the other hand, the shocks arriving rate may not always follow 
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the homogeneous Poisson process: how to model and assess the system reliability 

under different random shocks arriving rate process will be another topic of our future 

research. 
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